ASYMPTOTIC CYCLES ON TWO-DIMENSIONAL MANIFOLDS

Kôichi Yano (Tokyo University)

INTRODUCTION

In 1957, S.Schwartzman introduced the concept of asymptotic cycles. This concept represents how the trajectory of a flow rounds around the phase space in the homological meaning. Let us recall the definition.

Let M be a closed C° Riemannian manifold and \mathcal{L}_t a C¹-flow on it. Choose p a point of M and consider a one cycle $\hat{C}_{T,p} = C_{T,p} + C'_{T,p}$, where $C_{T,p}$ denotes the trajectory from p to $\mathcal{L}_T(p)$ and $C'_{T,p}$ a minimal geodesic from $\mathcal{L}_T(p)$ to p.

 $\underline{\text{DEFINITION}}$ The $\underline{\text{asymptotic cycle}}$ of p , denoted by \boldsymbol{A}_p , is defined by

$$A_{p} = \lim_{T \to \infty} \frac{1}{T} [\hat{C}_{T,p}]$$

when the limit exists. (Here [] denotes the homology class.)

It is easy to check that $\mathbf{A}_{\mathbf{p}}$ is invariant under the flow $\boldsymbol{\varphi}_{\mathbf{t}}$ and is independent of the choice of Riemannian metrics.

Here we study the relations between asymptotic cycles and

the behaviour of trajectories on closed orientable two-manifolds. In Section 1 we give fundamental notations and statements of results, in Section 2 we describe the outline of the proof of Theorem 2 and Section 3 is a note for Theorem 3 and the remaining problem.

1. NOTATIONS AND STATEMENTS OF RESULTS

Throughout this paper, we suppose M is a closed orientable two-manifold and $\psi_{\rm t}$ is a C flow on M . And for simplicity, we assume that $\psi_{\rm t}$ has only a finite number of equilibrium points.

If p is a point of M , L_+(p) denotes the positive semi-trajectory departing at p and $\omega(p)$ the ω -limit set of p .

We call $L_+(p)$ exceptional and $\overline{L_+(p)}$ an exceptional domain if $L_+(p)$ is contained in $\omega(p)$, nowhere-dense, and neither an equilibrium point nor a periodic trajectory.

A subset C of M is called a circuit if C is a unicursal diagram consisting of equilibrium points and trajectories connecting them.

THEOREM 1 One and only one of the following eight cases occurs.

- (1) $L_{\perp}(p)$ is an equilibrium point.
- (2) $L_{\perp}(p)$ approaches one equilibrium point.
- (3) $L_{\perp}(p)$ winds around a circuit from one side.
- (4) $L_{\perp}(p)$ is a periodic trajectory.
- (5) $L_{+}(p)$ winds around a periodic trajectory from one side.

- (6) $L_{+}(p)$ is locally dense (namely, $L_{+}(p)$ contains a non-empty open set).
- (7) $L_{+}(p)$ is exceptional.
- (8) $L_{+}(p)$ approaches one exceptional domain.

To state Theorem 2 and Theorem 3, we need the following definition.

DEFINITION

- (i) $\alpha \in H_1(M; \mathbb{R})$ is <u>rational</u> if $\alpha \neq 0$ and there exist $k \in \mathbb{R}$ and $\alpha' \in H_1(M; \mathbb{Z})$ such that $\alpha = k\alpha'$.
- (ii) $\alpha \in H_1(M; \mathbb{R})$ is <u>irrational</u> if α is neither 0 nor rational.

THEOREM 2 Suppose A_p exists and is rational, then $L_+(p)$ is either of type (4) or of type (5).

THEOREM 3 If M is a two-dimensional torus, then A exists for all $p \in M$, and

if $L_{+}(p)$ is of type (1),(2) or (3), then A_{p} is 0.

if $L_{+}(p)$ is of type (4) or (5), then A_{p} is rational or 0.

if $L_{+}(p)$ is of type (6),(7) or (8), then A_{p} is irrational or 0.

Moreover $\omega(p_1) = \omega(p_2)$ implies $A_{p_1} = A_{p_2}$.

2. ASYMPTOTIC CYCLES OF SEMI-TRAJECTORIES OF TYPE (6)

It is immediate that the asymptotic cycle A_p is zero for a semi-trajectory $L_+(p)$ of type (1),(2) or (3). For $L_+(p)$ of

type (4) or (5), A_p is given by $A_p = \frac{1}{\tau}[C]$, hence is rational or zero. (Here [C] denotes the homology class of the periodic trajectory and τ is its minimal period.)

The rest of this section is devoted to show that asymptotic cycles of semi-trajectories of type (6) are not rational. If $L_+(p)$ is of type (7) or (8), we can perform a similar computation and obtain that A_p is also never rational. These results and the previous observation imply Theorem 2.

Let p be a point of M with $L_+(p)$ locally dense, then by the orientability of M, we can construct a simple closed curve C which is transverse to the flow ψ_t and is contained in $\overline{L_+(p)}$. Consider the Poincaré map $\mathcal G$ of this flow with respect to C. $\mathcal G$ is defined on $L_+(p) \cap C$, a dense subset of C, hence $\mathcal G$ may not be defined at a point x only if x is of type (2), and the finiteness assumption for equilibrium points implies that the cardinal number of such points is at most finite.

Now we define P-transformations.

DEFINITION $\mathcal G$ is called a <u>P-transformation</u>, if there exist distinct k points p_1,\dots,p_k and distinct k points q_1,\dots,q_k in S^1 , such that $\mathcal G$ is an orientation-preserving homeomorphism from $S^1\setminus \{p_1,\dots,p_k\}$ to $S^1\setminus \{q_1,\dots,q_k\}$.

For a P-transformation $\mathcal G$, $\ \mathcal G_R$ (resp. $\mathcal G_L$) denotes a right (resp. left) continuous extention of $\mathcal G$, and

 $\bigcup_{n \in \mathbb{Z}} \mathcal{G}_{R}^{n}(\{p_{1}, \dots, p_{k}\}) \text{ is denoted by } S(\mathcal{G}). \text{ We call a point of } S(\mathcal{G}) \text{ singular and a point of } S^{1} \setminus S(\mathcal{G}) \text{ regular.}$

<u>PROPOSITION</u> Let $\mathcal{G}: S^1 \longrightarrow S^1$ be a P-transformation, then \mathcal{G}_R or \mathcal{G}_L has a non-trivial invariant measure on S^1 .

COROLLARY Let $\mathcal{G}: S^1 \longrightarrow S^1$ be a P-transformation with a regular point \mathbf{x}_0 satisfying $\overline{\{\mathcal{G}^n(\mathbf{x}_0)\}_{n\geq 0}} = S^1$. Then every \mathcal{G}_R (or \mathcal{G}_L) invariant measure \mathcal{M} satisfies the condition that supp. $\mathcal{M} = S^1$ and $\mathcal{M}(S(\mathcal{G})) = 0$. And for every regular point \mathbf{x} , any cluster point of the sequence $\frac{1}{n}\sum_{k=0}^{n-1} \mathcal{G}_{\mathbf{x}}^k(\mathbf{x})$ gives a \mathcal{G}_R (hence also \mathcal{G}_L and \mathcal{G}) invariant measure. (Where \mathcal{G} denotes the Dirac measure.)

What we must prove is that if the asymptotic cycle exists for a semi-trajectory of type (6), then it is not rational.

For a semi-trajectory $L_+(p)$ of type (6), take a transeverse curve C_0 as before and the P-transformation $\mathcal G$ induced by the Poincaré map with respect to C_0 . Without loss of generality, we can assume p is contained in C_0 .

Let $\mathcal T$ denote the first return time with respect to $\mathbf C_0$.

$$\mathcal{T}(x) = \inf \left\{ t > 0 : \psi_t(x) \in C_0 \right\}$$

Then the n-th return time of p is given by

$$T(n) = \sum_{k=0}^{n-1} T(\mathcal{G}^{k}(p)) .$$

It is enough to show that every cluster point of the following sequence is irrational or zero:

$$\frac{1}{T(n)} [\hat{C}_{T(n),p}] .$$

Assume the contrary, then there exists a sequence n_i such that

$$\alpha = \lim_{i \to \infty} \frac{1}{T(n_i)} [\hat{c}_{T(n_i),p}]$$

is rational.

By the previous corollary, we can suppose that the following sequence converges to a \mathcal{G} -invariant measure, taking a subsequences if necessary.

$$\mathcal{M} = \lim_{i \to \infty} \frac{1}{n_i} \sum_{k=0}^{n_i-1} \mathcal{O}_{\varphi^k(p)}$$

Using this invariant measure, we will be led to a contradiction.

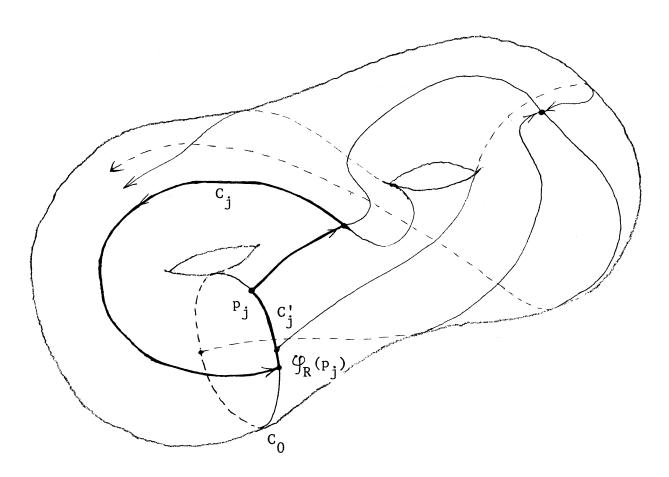
Let γ_0 be the homology class represented by c_0 , then the intersection number of α and γ_0 is given as follows:

$$\langle \rangle_{0} = \lim_{i \to \infty} \frac{1}{T(n_{i})} \left[\hat{c}_{T(n_{i}), p} \right] \circ \left[c_{0} \right] \\
 = \lim_{i \to \infty} \frac{1}{T(n_{i})} n_{i}$$

$$= \left(\int_{C_0} \Upsilon(x) \, d\mu(x) \right)^{-1}$$

As in the definition of P-transformations, let p_1,\dots,p_k be points in C_0 where $\mathcal G$ is not defined and the ordering is compatible to the orientation of C_0 .

Consider the integral homology class $\gamma_j = [\hat{c}_j] = [c_j + c_j']$, where c_j denotes the 'trajectory' from p_j to $\varphi_R(p_j)$ (more precisely, c_j is the limit of the segment of the trajectory from x to $\varphi(x)$ as x approaches p_j from the right side) and c_j' is the segment from $\varphi_R(p_j)$ to p_j in c_0 .



The intersection number of α and γ is given by

where $\chi_{(\phi_R(p_j), p_j)}$ denotes the characteristic function of

the open interval ($\mathcal{G}_{R}(p_{j}), p_{j}$).

So, we obtain the following equation.

$$\alpha \circ \gamma_{j} = \left(\int_{C_{0}} 7 d\mu \right)^{-1} \cdot \mu((\mathcal{P}_{R}(P_{j}), P_{j}))$$

If we put $a_j = \mu((\mathcal{G}_R(p_j), p_j))$, then this equation becomes

$$\mathbf{a}_{j} = \frac{\alpha \cdot \gamma_{j}}{\alpha \cdot \gamma_{0}}.$$

Hence, by the assumption that \propto is rational, a, is a rational number for all j.

Let us introduce the coordinate in C_0 by measure \mathcal{M} . Since $\mathcal{G}|_{(p_j, p_{j+1})}$ is continuous and preserves \mathcal{M} , it follows that $\mathcal{G}|_{(p_j, p_{j+1})}$ $(x) = x - a_j$. But all a_j 's are rational numbers, this contradicts the fact that \mathcal{G} has a regular point with a dense orbit. Thus we obtain the desired result.

3. CONVERGENCES OF ASYMPTOTIC CYCLES

In the case of a two-dimensional torus, every P-transformation induced by a semi-trajectory of type (6) has a continuous extention on S^1 . Then Theorem 3 is obtained from the fact that every

homeomorphism of S^1 with a dense orbit is uniquely ergodic.

We expect that the result of Theorem 3 holds also for a surface of higher genus. This is essentially reduced to the next problem.

<u>PROBLEM</u> Is every P-transformation with a dense positive-orbit uniquely ergodic ?

REFERENCES

- [1] A.Maier: Trajectories on the closed orientable surfaces (Russian); Math. Sbornik, 12 (1943), pp.71-84.
- [2] S.Schwartzman: Asymptotic cycles; Ann. of Math., 66 (1957), pp.270—284.