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Nonlinear Dispersive Wave with Weak Dissipation
S .WATANABE

Research Institute for Energy Materials,
Yokohama National University, Ohoka, Minami-Ku,
Yokohama 232, Japan

Approximate one soliton solution is obtained for Korteweg-de Vries
equation and nonlinear SchrBdinger equation with a small dissipation

term by means of modified conseivation law.

§1. Introduction
Solution of a nonlinear evolution equation such as Kortweg-de Vries

equation can be expressed by solitons of different amplitudes and by a

wave train a tail. The contribution of the tail is usually small
and is neglected. Then one obtain soliton solution by means of an inverse
scattering method.

If a dissipation term is added in such an evolution equation, one has
no longer stationary soliton solution. 1In this case, non—s&iiton part
solution plays an important role and is not neglected. A perturbaﬁién
theory of the inverse méthodl) aﬁd the multi~time expansion methodz) give
a non-stationary solitoﬁ but do not give any information on the property
of a tail. 1In this report, we present approximate one soliton solution

and simple propérty of a tail for K-dV equation and>non}inearkSchrBdinger

equation with a small dissipation term.

§2. K-dV equation with dissipation

We consider the following two K-dV equationswith dissipation
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The first equation is K-dV-Burgers equation and the second, K-dV equation
for an ion acoustic wave in plasma with ion-neutral collisionz).

It is well known that the K-dV equation has infinite number of
conserved quantities. The first fhree ones among them are
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Apart from these conserved quantities, we have ahother type of conserved

3)
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Differentiating this equation with respect to the time, we have

H%undx= J %uzdx . (4)

As the right hand side of eq.(4) is nothing but the second conserved
quantity I2, the left hand side of eq. (4) is conserved.

The modified conservation laws of the K-dV-Burgers equation are

a? Il =0 ’ (5)
4 I, = N (u )2 dx (6)
dt "2 1 - x) ’ :
451 =c u? u  + (u 3 }dx )]
dt 73 1 e XX >
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and so on. The eq.(4) also holds, but is no longer time independent.

I1f the dissipation is weak, the solution of eq.(l) can be written as

s. n.s.
u(x,t) = u "(x,t) +u (x,t) ’ (8)
s. n.s. . . ' :
where u”~ and u are soliton and non-soliton parts of the solution.

The order of magnitude of uS" and u™"%" is assumed to be 0(1) and 0(e),

1

be determined from the result. As a soliton part solution, we employ

respectively, where ¢ is related to the dissipation coefficient C, and will

u’(x,t) = a sech? {(a/6)1/2(x—€)} s 9
where the amplitudeva and phase & change in time.
In seeking the solution, we make use of the following two assumptions.

(a) Terms of order €2, €3 ... are neglected. That is, we do not retain

n.s.

terms of (un's')z, (u )3 and so on. (b) The spatial overlapping be-

n.s S n.s.

tween u°' and u"' %" is assumed to be small and is neglected; u u 20
From these assumptions, we see that eqs.(6) and (7) contain only the
soliton part solution. Thus we obtain from either of these equations the

damping of soliton amplitude;

8Cla(0)t - o : . R
a(t) = a(0) ( 1+'———Z§———0 o, ' : (10)

where a(0) is the amplitude of soliton at t=0. Substituting eqs.(8) and
(10) into eq.(5), we obtain

o 8C,a(0)t

J a8 dx = {24a(0) /2 {1- (1+ —% )‘1/2} >

5 o . (11)

As to the phase &, we have the following equation from eqs.(4) and (10);

dg ., 1 da_ _a _ -1/2 d = n.s.
at T2adac T 3 { 24a(0)} dtJ Xu dx . (12)

Although the second term on the right hand side of this equation is of
order €, we drop this term and solve eq.(12). Physically this term ex-

presses the phase shift of soliton by emitting the tail. The solution of
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eq. (12) is
_ 45 45 a(t) a(0) , V2 ‘ ;
g=1{4¢+ 24C1 - 2401 2(0) }{ 2(0) } a3)

where ¢ is the position of soliton at t=0.

From eqs. (10), (11) and (13), we recogﬁize thatis should be takeﬁ as
8Cla(0)t/45. Our solution holdsuonly wﬂen g€<<1l; that is, t<<45/8cla(0).
Exbanding eq.(11) for small &, we see thé non—éoliton part solution to be
0(e).

The modified conservation laws for eq.(2) are given as

d _ .

It I1 = -Czll _ i (14)

45 - a1 | | (15)

dt ~2 272 ? . .

4. - _ Y 2 ' :

it I3 C, J_m{u (u) Ydx (16)
and

at J—wxu dx C2 J_mxu dx = J_mz u“dx . (17)

The method of obtaining the solution is the same as that of K-dV-Burgers

equation. The results are as follows:

a(t) = a(0) exp(—éczt/3) . (18)

I Wt Stdx = {24a(0)}1/2exp(—02t) {1—exp(C2t/3)} <0 (19)
- a(0) _ _a)

g={¢+ 3C2 } exp( Czt/3) 3c, . (20)

In this case, € is equal to .JCZt. Therefor -eqs.(18)~(20) hold for

t<<l/Cz. The eq.(19) shows that the non-soliton part solution is pro-

portional to ¢ for small e.
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Numerical solutions of eqs.(l) and (2) confirm the validity of our

4)

solutions on soliton and tail °.

§3. Nonlinear SchrBdinger equation

The following nonlinear SchrBdinger eduationss’6)are considered in

this section:

. 1 .
1ut+5uxx+ ]ul2u+ ieu=0 s (21)
ot [ 2 7 . ‘ .
iu +'l11 + Iulzu + eP lEiE—Lgll— dx'u =0 . (22)
t 2 xx ey XX '

For £=0, eq.(21) has infinite number of conserved quantities. The first

three equations are

[
]

1 J lulzdx ’
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]

2 f% j (quxﬁﬁxﬁﬁ)dx ? (23)
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2_ 14 |5y
3= | dulzlalva
In addition to these quantity we have

= 2_...t_ *y - %
IO f_m{x[ul 51 (u u_-uu )} dx .

Differentiation of this equation with respect to the time gives

é%-[— x|u|2dx = é%'J—w(u*ux—uux*)dx . (24)

=const.

In the case of eq.(21), the modified conservation laws are given as
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d =
a—tIl—- 2811 s
41 = - 2er1 (25)
dt “2 2 ?
R S ) (Ju_|2-2]u]"dx
dt 3 o X ’
and eq.(24) is modified as
£ 2dx = — * -y * - 2¢ 2
it [-wxlul dx 21 [-iuxu gx u)dx - 2 o[_wx|u| dx . (26)
Solution of eq.(20) is assumed in the form:
u=ud S . » v 27)

when u°° and u"°°" express the soliton and non-soliton parts of the solution,
and is assumed to be O(l) and O(e) respectively. As well as the K-dV
equation in §2, we neglect the spatial overlapping between u®* and ™% and

. , ' . s.
look for the solution of order 1 and . As a soliton part solution, u °,

we employ

u = Asechael® s (28)
where

o= A(x- vt -¢) 5

B ’=vx—-]§(v2 -AZ)t + o

If =0, A, v, ¢and 6in eq.(28) are time independent, but they change in
the time for eqs.(20) and (21). We note in eqs.(25) and (26) that all
modified conservation laws are expressed in terms of the quantities of

0(1) and 0(e?) ...., if the overlapping between v®* and u™ S

is neglected.
This means that any pair among eq.(25) gives the same result in deter-

mining the velocity and amplitude of a soliton, eq.(28). The solution is



d
‘d‘t'A—-—ZE:A .
(29)
d
dtv—O .

That is, the velocity of a soliton is constant, but the amplitude decreases
as exp(-2et).

Concerning eq.(21), the modified conservation laws are

'_g_ N ® ® Iu(x'9t)[2 * % \
I - ¢P J J — (u u tu u)dx'dx

=00 00 - .

. er® ' 2 '
_d_.]'_ = 4¢P J f _IL(E’—E)J_(U *U." u*u )dX'dX
o X=X XX XX

-—C0

and so on. For eq.(21); eq.(24) holds but is no longer time independent.

The solution of eq.(21) cam be obtained in the same way as eq.(20);

ac - ° ’

v _ a3 o . ; ,
qr = €IA , (30)
d

-——if= - 1A%t ,

-] o h2 It
I= J J §_e;c;(_'x__ sech?x tanh xdx'dx

= 1,462 .

The amplitude of a soliton does not change, but the trajectory changes
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as

§4.

%QIA3t2. The soliton accelerates in time without changing the amplitude.

Discussion

For the K-dV equation with dissipation, the damping of a soliton

obtained in §2 agrees with the results of multi-time expansion method and

of the perturbation theory of inverse method. The phase &, however, is

different from the result of Karpman and Maslov;

8C.a(0)t
45 1
S A T

) . (31)

This result can be oBtained when the second term in the left hand side of

eq. (12) is neglected as well as the second term in the right hand side.

The neglected terms is easily seen to be small. In fact if we expand

eqs.(13) and (31) by e, they agree with each other up to 0(e?) exact.y.

Concerning the nonlinear SchrBdinger equation with dissipation, we

can not obtain time dependence of phase 6 from the conservation laws.

We do not know at present the conservation law which describes the phase

6.

The time dependence of 6, however, can be obtained in the following

way. If we substitute eq.(27) into eq.(20) or (21), we obtain, after

n.s.

linearizing with respect to u R
. N.s. n.s. s.
i = .
u +ou S(u™ ") (32)

The right hand side of eq.(31) represents a source term in terms of u .

.

The source term generaly has a secular term. One can remove this secularity

by choosing a proper time dependence of 6.

the non-soliton part u

It is easily shown that the source term S(us') is of order €. That is,

RS- 45 of order €. Therefor, the assumption employed

in 83 is justified.
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