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Remarks on the Theory of Perturbed Solitons

Yoshi H. ICHIKAWA
Institute of Plasma Physics

Nagoya University, Nagoya

Abstract

The Bogoliubov-Mitropolsky perturbation method has been
applied to the study of a perturbation on soliton solutions to
the nonlinear Schrddinger equation with nonlinear Landau damping.
Results of the present analysis are discussed in comparisonbwith
the numerical observation of Yajima et al and with the theoretical

results obtained by Karpman and Maslov.

§1. Introduction-

Extensive researches on various types of exactly solvable
nonlinear evolution equations have established the notion of
solitons on firm mathematical ground provided by the inverse

scattering method%mz) The solitons may be regarded as nonlinear

normal modes in which the exact solution of given physical system
can be expanded. Thus, it is natural to proceed to investigate
the interaction effects between solitons and other degrees of

freedom of motion in the system.

*) The complete version of this report will be published in
Physica Scripta under the coauthorship with Professors Weiland

and Wilhelmsson.
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Since the standard nonlinear equation such as the Korteweg-
de Vries equation is the lowest order approximation of the weakly
dispersive system, we have undertaken to examine higher order

corrections to the KAV soliton in the physical systems such as

ng)

the ion acoustic wave and the shallow water wave? Complete

analvsis of the higher order secularities has been carried through

7)

by Taniuti and Kodama ’, who have shown that renormalization of

the secular terms is accomplished by addition of derivatives of
the higher order conserved quantities to the Korteweg-de Vries

8), Karpman and Maslov?mll)and

equation. On the other hand, Kaup
Keener and McLaughlin;Z) have exaﬁined simple examples of pérturbed
solitons by apprlying the iﬁversé scattering methéd to perturbed.
nonlinear evolution equations.

Here, we will‘present an’egample of‘explicit.énalysis of
perturbed envelop soliton for the nonlinear Schrodinger equation

with nonlinear Landau dampingl3)

. Y 32y
13—+p§-)—(—2-+q,‘l/|2ll’ = ¢ R(Y):

where

R(Y) = -

Sl

% - ' ax' ¥(x, t)

™
j l¥(x', )2
o

Examining numerical solutions of this equation, Yajima et a114)

have observed that a unperturbed envelop soliton initially at rest
starts to run under the action of the nonlineér Léndau damping,
sufferring asymmetric deformation of its shape. Reféfring to 

their observation, we have studied a temporal evolution of the

one soliton on the basis of the Bogéliubov—Mitrbpolysky perturbation

theory}s)
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§2. Nonlinear Schrddinger Equation with real coefficients and

Perturbation R (V)

We write the perturbation nonlinear Schrédinger equation as

2 .
iy 2 gly|2y = er(¥) (1)
ot ox?

where € << p, g, 1 and we assume p-g > 0. We are going'to

consider a perturbation around the unperturbed one soliton solution
1 ‘

— . u - }i
v, = 2\)sech[(2—ql§)2 2v (x-2ut) Jel [p (X-2ut) + (55 +2qv*)t]

(2)

As can be seen this solution depends on two independent parameters,

v and uy. We write the perturbed solution as
q,1/2 12 5 (e
Y = 2v(t) SeCh[(Zp) z(t)le "pvi(t)
| t
z = 2v(t)(x - 2 J u(t)dat) (4a)
0
t 2 . .
§ = f (l‘—pi?l + 2gv2(t)) dt (4b)

0

Using the Bogoliubov-Mitropolsky method we expand

P = po(2,To,T1) + €p1 (2, To) + °°° (5a)
6 = 09(2,To,T1) + €01(2,Ty) + °°° ‘ (5b)
where
= =——1‘l—
Po 2vsech o z, Og 3D z + 68 ,
and 1
= (9,2
o (Zp)

The time derivative is expanded as
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9 d d d 9 9 d

5€ - 9ty T 9ts 9z T 5ty Y 3ty Bz (6)
where 19 = t, T = € t °°° . Introducing now

0Z _ 0Z _ _

T 2V and 5Te dvu

we obtain to order zero

2

9po _ 9P ¢ 2 9Pg 900 2 300 _

9T 4vu 92 + 8pv 3z Sz + 4pviee 322 =0 (7a)
3 30 Yo 52

po 2BL — gvup, ZZL + 4pv?p, (20?2 - 4pv?l P - gp? =0
9T 0z 0z 572

(7b)
The first order equations become considerably more complicated

but may abbreviated in the form

9p1

51, T bp(P1r00) = Mp(po,00) (8a)
30'1 _
3T, + LR(D1101) = MR(po,OO) (8b)
where ‘
_ 3p 9z 9p -io
= - [9Pqo 90 0
My [3e * 31, 2z T Im {R(posoole } (9a)
- _ 300 9z 90y, _ 1 -ic0,
"r 52 * 515 320 T 5, Re (Rlpodole } (9b)
and
- 2009 90p3 , 9dPg 903 2 320’0 320'1
Lp = 8pviI=gt =5 + 557 50 * 4pvil ,PL t Po ) ]
. 3z 0z
3Z 9P
+ 9T g z (10a)
- 92 030y, p1 30, 3z 30, 201 304y 2
LR 93Ty 92 * po(aro ATy 32) * 4pv Do( 32)
2
+ gpv2 200 301 _ 4p,2 L 3701 _ 3q,p, (10b)
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Equations (8) may be expressed as

3 P1 P1 .
D ( ) + L ( ) =M . (11)
0 O] g1

By introducing explicitly the zeroth order solution

90 ¢ - H — - B . a_Z_ = =
2z 2\)p 9T - 9T - P +2qvT; 9T - 4vu

we obtain
2

3 osechoaz 3 97
0 8pv°[2 —— — »~ + sechaz ; 2]
9z
_ 2V 932 g »
sechoz [p o > + 3gsech<oz] 0
zZ
where 1 M
9,2 T
a = (55) and M —-(
M

Since M contains parts that depend only on the slow time scale
T; , we will obtain secular contributions to (21) on the time
1

scale T, unless M does not contain a part that is orthogonal to

P1 (D1 . : :
L ( 01') where o1 ) is unknown. This may be written as
(o) 00 pl
J ¥Y(z)M dz = 0 if J Y(z)L { ) dz = 0
- 00 -0 01

The last condition may be rewritten as

= 0 o ,p
J ¥ (z) L( 1) dz = f ( 1) Y vyaz = o (13)
O1 [oF} '

=c0 -0

where L+ is the operator adjoint to L.
P1
In order to satisfy (13) for arbitrary ( ) we must
01

impose the condition
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Lty = o (14)

The operator 1Y is obtained from L by transposition and partial
integration yielding

2 qv

0 -2vp > sechoz + Sechaz 6gvsechaz
L+=
8pv? 2 [-2 3sechaz 2 sechaz] 0
9z 0z 9z
(15)

v r

We now want to find a solution V¥ =( ) satisfying (14). We
6

then obtain

52 G 9

-2vp 2(sechaz) Sechos (gv-6gvsechaz) = 0 (L6a) .
02

d d dsechoz, _ ' ‘ o |

T2 (5E4rsechaz) - 2r ——32———) =0 (16b)

with the solution
r = K sechaz | ] (17a)
8 = - ysechoz g% sechaz . (17b)

where K and vy are arbitrary constants.

The conditions for nonsecularity now are

(18a)

i
[«

J r M, (po,00)dz

- 00

il
(e

J 0 M, (po,00)dz

- 00

(18b)

By introducing
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To
9z _ Z 9V oy
9T1 Y] 0T 4v JO 9T dTo !
we may write (l8a) as
o T
v 2 zZ 3V _ %3u dsechaz
J [2 5T, sech“az + (v 51, 4vj 3T, dTo) 2vsechoz p l1dz
-0 0 )
= Im J R(po,qo)e_lo° sechazdz
Integrating the left hand side we now obtain
Bii = % Im J‘ R(po,oo)e—l00 sechoz dz (19a)

-0

In order to evaluate (18b) we rewrite M_ as

R
M. o= - (22w, 38 2u T 3 dty) - Re{R(po,00)e 7%}
R . 2vp 93T, 90T, ) 9T, 0 2 sechoz
From (18b) we then obtain
ap ®  sinhoz -io,
ST = - %P Re ————~— R{(po,00)e dz (19b)
T1 2
cosh”az

-0

We have thus obtained the variation in time on the time scale 1,
of the independent parameters v and u . In order to write our
solution as a function of a single time we make the replacements

T9o =t and 71 = et. Our results give the same variation in time

of v and u as those of Karpman and Maslovll). They, however,

t
introduce two more independent Variablgs, §(t) and E(t)=J 2u(t)dt.

0
Their results for these quantities differ from the present ones

by the appearance of terms that are one order higher in €.

A similar discrepancy is present between the resutls of Karpman

9)

and Maslov for the Korteweg de Vries equation and the results
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16) and seems to be due to the larger freedom

by Ott and Sudan
in the choice of number of independent parameters in the Karpman

Maslov approach.

§3. Nonlinear Landau damping

The additional term in the nonlinear Schrddinger equation

due to nonlinear Landau damping was derived by Ichikawa and

Taniutil3). It may be written
[0
P 2(z" ig(z,t
R(pg,00) = = ;J E‘Z_(z—.’tle' o(z,t)et0 (28

-0

Introducing this nonlinear, nonlocal term into (19a) and (19b)

we obtain

=0 (20a)

@l
<
!

;3 P [ f sinhaz dz?z' (20b)
_l_) cosh?az'cosh®az %72

wf
ot

8capv

3|

A numerical calculation of the double integral yields

p fw Im sinh z dzdz' - 1.4615
cosh?z'cosh®z z-z' ) )

- 00 - 00

An analytical calculation is included in Appendix 1. We may
then reduce (20b) to

AT 3

T 3.7217 epv (21)
The results (20a) and (20b) may also be obtained by introducing
the solution with time dependent v and u into the expressions
for time derivative of number of quanta, momentum and energy

13)

given by Ichikawa and Taniuti . The conservation of number
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of quanta is a well known feature of nonlinear Landau damping,
which just causes a wave quanta of a higher frequency to turn
into one with a loWer frequency.

From (21b) we observe that a soliton initially at rest will
start to move due to the nonlinear Landau damping. This is
in qualitative agreement with the numerical results of Yajima

et all4). Effects of nonlinear Landau damping on solitons

has recently also been observed experimentally by Watanabel7).
Integrating (21) twice with respect time, we get for the trace

of the maximum point of envelope soliton £ (t),
E(t) = E£(0) + 1.46(%) p (2v)? t2. (22)

In Fig.l, we compare the theoretical result of (22) with the
observed results of Yajima et al for the two values of € = 0.27
and € = 0.5m. Although the present analysis is restricted only
for the variation of the 0-th order soliton core, we notice
agreements between the perturbation calculations and the numerical

experimental observation are remarkable.

§4. Concluding Remarks

The analysis developed in the preceeding sections illustrates
behaviour of perturbed envelope soliton. The motion of envelope
soliton observed by Yajima et al are in good agrrement with our
analysis, yet the asymetric distortion of the envelope soliton
calls for further investigation of the first order components
p1 and o0;. Analysis of contribution of similar term for the

K-dV soliton has been carried out by Karpman and Maslov, recently.
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19) have suggested to

We also remark that McLaughlin and Scott
investigate fluxon interactions on the basis of a perturbed
sine-Gordon equation.

In conclusion, we emphasizé that the perturbation theory of
solitons or envelope solitons provides us promissing tools to

investigate the physical system composed with strongly interacting

many degrees of freedom.
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Appendix

Evaluation of the double integral in eq. (25b)

We write
(o] i !
I=p S sinh z 232? (1)
-®» - cosh?z'cosh’z
Since
sinh z _ _ % g% sechzz)we may write
cosh®z
o) 1 l
I = - % P S dz gi sech?z/" dz, sech?z’ (2)
e z w Z7Z

It is convenient to express the last integral in Fourier
representation
0

: —_
since s elk(Z z )dk = n8§(z-z') -1iP popapey

-0

we obtain

1 _1
z=-z' 2

ip [-/0 ik (z=2") gy ro Jik(z'=2) 4

_ % [ =/0 eik(z—z')dk + eik(z—z’)dk] _ % ~ i_ e‘ik(z-z')dk

0

-0 - 00

The last integral in (2) is then

1k(z z') k 1kz

—lml 2|__l_°°k
I, = 2_i dz'sech?“z 5 {w X dk— f TET F(k)e dk
where
F(k) = [ sech?z e'¥%3z = 1k csech (g k)
The total integral is then
_ioe. 3 10 S0, =ik'zoo . @k ikz . _
I-= 4_i dz 52 [2“_i F(k')e dk li TET F(k)e dk =
R L ¢ P o i(k-k' )z
Bﬂ_i dk_i dkk'F (k') F (k) T~T [ e

- 13 -
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_,__l_m ’°° ' ' k ' —1 ! =
= a7 i dk S dk F(k) F(k') TET k' 2n§ (k-k')

-— -0

Il

% %k F2 (k) dk = % o (-»—11],;-—-——)2 kdk
0 sinh (3 k)

- 00

= ;TBT {°° £® csech? £dg = sz T (4)z(3)

1 w t2
EN

where [ (3)

dt

with the numerical result

I=1.461525939 ........

- 14 -
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¥

§(1)

The trace of the maximum point of the envelope soliton
for two values of the size of the nonlinear Landau
damping, €=0.2m and 0.5 7. The broken lines are read

from Figs.1l a) and 1lb) of Yajima et all4)

, while the
real lines represent the results of (27) for p=1/2

and 2v=1.

Fig. 1



