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Solitons and Rational Solutions of Nonlinear Evolution Equations

Junkichi SATSUMA ( Kyoto University )

1. Introduction

It is well known that certain nonlinear evolution equations
haQe N-soliton solutions. Recently the apparently quite differen£
class of rational solutions was investigated by Airault, Mckean ’
and Moser.l)

In this lecture, I would like to talk about the close relatione
ship between the two types of solutions; the rational solutions
can be recovered by taking a long wave 1imit‘of the soliton
solutions obtained by Hirota's method. For the Korteweg~deVries
(RAv) equation, I would demohstrate the results for the first few
soliton solutions and then show how performing the above limiting
procedure on the Backlund transformation of the K4V equation
yields a recuréion relation capable of generating thé full class
of rational solutions.

The method we employ can be readily adapfed to the other
nonlinear evolution equations that possess soliton solutions, 1In
the case of the modified KAV equation, the nonsingular, rational
solution presented by Ono is recovered from onec<soliton solution,
and an algebraic solution with strange behavior is obtained from
two-soliton solution.

The most interesting example is that for the multi-dimensional

problem. For the Kadomtsev-Petviashvili ( two-dimensional Kd4v )

*) This is a cooperative work with M.J.Ablowitz (Clarkson

College of Technology).
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equation, the long wave limit of a two soliton state gives a mode
which decays algebraically in all directions ( we refer to such a
mode as a lump ). A solution which describes a collision of two
lumps is obtained from 4-soliton solution. The two~lump yields
zero asymtotic phase shift after interaction, In general, a
2M-soliton solution gives an M-lump solution. Another example is
the two-dimensional nonlinear Schrodinger (2DNLS) equation., In

the case, two-dimensional envelope hole solutions are obtained.

2. Rational solution of KdV equation

The KdV equation,

we t+ 6“—“)( + uxxx =0 (2-1)
P
is transformed into
3
Dx(D-t'f'Dx))()c :O, (2.2
through a variable transformation,
W=2CLog Fux, (2.3)

where we assume u-»>0 as |xl-»00 and use a special type of differen-

tial operators,

B0 a-b

Q2 _d\", 9 2
(ax 'ax) (W‘gg}ﬂa(zt) bt /x=z’£—t’ (2-4)

2)

Hirota obtained from (2.3) an N=soliton solution describing a

multiple collision of solitons. The solution is given by

)

Iy = exp (-2: A Ml ‘-#.2: 7/0'/> (2.5)

/4 =0.1 =

f

Te= kex- k7t + 9.,

2-¢)

Ophy = (kb)) Chth; ) , (27)
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where ’ke)are arbitrary phase constants, The first two of (2.5)

are written as

7
f=1+¢ 7, (2:2)

%)+ 72 f‘AIJ.

fo=1te" s ey tz-9)

The one-soliton solution (2.8) is expressed in terms of u as

kl2 (’ZZ / 3 o) - (2100
W= 5 sech — (RX-kt+7,7")
) 7(0)
We may choose the phase constant 7, as e ’/ = -1 and then (2.10)

is transformed into the singular soliton,

w=-% wsecfz—z/f(/e,x-k,”f), (2-113

If we take the limit kl—>0 ( i.e. the "long wave" limit ) in (2.11)

we obtain a rational solution,
w - —2/7CL €2:12)
It is significant that by choosing the phase constants
appropriately, all the fN described above, have nontrivial,
distinguished limits. In what follows it is easiest to develop the
ideas for fN.
In order to best explain the above results we return to (2.5),

which includes (2.8) and (2.9) as the simple cases. Letting

i :
oAy = € , (2.8) is written as
JC; : 1+ O(legl ) (2-13)
§.= ke (7-kE) ) (214D

As kl—»o, we have

fr= 1+, Ci1+5,) + Ok . (205

If we take ¢f, = -1, then
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1= -k (2+0ck))

= x =0,, | (216>

where we define =g iff £ = eax+bg with a,b independent of x.

It is easily seen that (2.16) gives the same u as (2.12).

The same idea applies to f2. From (2.9), we have

fo = | +d, Sfl'f A, €§2+ oy ol Silr;lhq”' €217
Choosing o, = ~do, = (kl+k2)/(kl~k2) in (2.17) and taking a limit
kl’ k2 - 0 with kl/k2 = 0(l), we obtain
f. = “ZI bl Cborb,) [ XP+12¢ + OCk) ]
= 0. = P2t c2.8)

which gives a rational solution having three poles. Similarly,

from 3-soliton solution, we have

f3 — 03 = 25+ 60Xt -T20t° (219

In principle this technique applies to any number of solitons.
However the calculations are tedious, and we shall instead use the
Backlund transformations for the K4V equation to generate a recursion

relation for the polynomials.

The Backlund transformation of the KdV equation is given by3)
2
(sz'krw/) JLN'fo/ =0, (2-20)
2 3
(Dt + Bkl‘I-H Dx + D)( ) fl\/'fhl\‘/ =d . (2:21)

Equations (2.20) and (2.21) yield an (N+1)-soliton solution fN+l=

Enar (ot ek )y

Furthermore, from (2.20) we have a superposition formula of four

from an N-soliton solution fN=fN(kl,--~,kN).

soliton solutions,
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Ve
Dx fN—/ : 7(:\/4-; = fﬂfﬂ , (2-22)

where £} = f(k;, " ky kg, ) and £ = £ (ke k).
By taking a limit of k; — 0, we have fN—>9annd (2.20) and (2.21)

are reduced to

2 ' '
DS Oy - One, = O 5 (2.20")
3 .

(Dt+-D)() 6/*/ @NJ‘/ - O) ‘ (22/’>
respectively. Moreover, noticing ‘9N = xN(N+1)/2+---, we obtain
from (2.22),

2 ’ /

Equation (2.22') is equivalent to the recursion relation of

4)

rational solutions of KAV equation discovered by Adler and Moser

We can get higher order rational solutions by using (2.22') and

c(2.21").

3. Rational solutions of modified KdV equation

We consider the modified KdV equation,

Ut+ GZ/ZU.X +VXXX = 0, (31>

under the boundary condition v — vy as |Ixl 200 . By transforming

the dependent variable in (3.1) as

V= Yo+ il $/F ), (3:25

we find that v is a solution of (3.1) if f satisfies a couple of

" bilinear equations,
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(33

(De + 6U D+ DE) #%F =0
(3-4)

(D -2V, Dx) 5 F = ¢

where asterisk denotes complex conjugate.

A one~soliton solution of (3.3) and (3.4) is given by

% #
:F, = 1+ € + 7 , 3-5)
Vo= foa- (EUk: +b5)T + 7 (34>
(37

# i
e” = 1+ ik /27
Inserting (3.5) into (3.2), we have an explicit form of the one-

soliton solution,

V= U+ /?IZ/ ( Vavi+k? cosk 7, +2V, ). (38)

’Zlm) .
= -] and take the limit of

If we choose the phase constant as @

kl-e 0 in (3.8), we obtain a rational solution,

U = Vo— a4Vs / [ 4V (X-6VE)+ 1] 3-9)

This solution was recently found by Onos) and is a nonsingular

algebraic solution.
The two-soliton solution is given by

2,+ ) o hr P N .
foo i+ @M LB, QAR 31
P

e™ = kb)) (kR (317)

Choosing the phase constants as
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.,z'(O) 72‘0) kn'f'kz kb,
e =-e = Tk (7+ SUT , (392)

and taking the limit ki—e 0 ( kl/k2= 0(1)), we have the following

rational solution;

3 2 3
]ZU\(§¢+ z§ - X “24§t)
Vo= v, - 0 2V, 16V , )
avt (5412t - o )T 4 308 )t

where 5= x - 6vgt. This solution is not stationary and, instead,

has a strange behavior. A rough sketch of time development of the
solution (3.13) is shown in fig.l; It pulsates in the neighborhood

of t=0 and goes to the stationary solution (3.9) as t - tw .
-t:-l)b ‘t'—'o t:-DO

4, Multi-dimensional systems

4-1 Kadomtsev=Petviashvili (K-P) equation

The technique developed in § 2 and 3 may be extended to multi-
dimensional systems. As one of the example, we consider the K~P

equation,

where ¢f is a constant depending on the dispersive property of the

system. It was already shown that (4.1) admits an N-soliton
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solution describing a multiple collision of solitons each of which

6)

has a different direction of propagation. Here we show that a
two~dimensional lump solution which decays algebraically in all
directions can be obtained by taking the long wave limit of a two

soliton state.

Equation (4.1) is transformed into

(DxDe+ DE+ DY) F-F =0, C4-2)

through the variable transformation (2.3), where the boundary
condition u = 0 as |x/—>00 is taken. The one~ and two-soliton

solutions of (4.2) are given by

f, =1+ e”, | (43>

f,=1+re?+ e+ e Urtet A (4°4)
where '

e = k[ x+P§-CErap?yt] + 7. 45

exp A = [3ck-b)-acp-p)}/ { 30h+)- o CR-BY}. 46>

(q)

. @ . .
Taking € = =1 and ki ~>» 0 (with p;= 0(1), kl/k2= 0(1l)), we find

jCl - 9] ’ 47)
jcz g 6’92 * B’z ) ) | (45 )

where '
9(_ = A+ P..? -0(P;_2f , i
BU - /Z/Q/(R:-B.)Z) 410

and we have used
‘QXPAIZ s , + ,Zklbz /a/(B'Pz)z' (,4\,’)
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Although £ f., are generally singular at some position, a

17 ~2
nonsingular solution is obtained for f2 by taking « = ~1 ( in
which case the wave system has so called positive dispersion )

%
and P, = Py- In this case we have

f, = 6 6* - 12/ Cp-p*)? ,‘>O , (#12)

which gives a nonsingular rational solution,
2

GL-CxHBRYDP+ PR Y 4 7 ]
w =

, (4-13)
[ X+ Py) + Py, 27

where we have used

P Pe+ i P ,

"

/

z

X- CRPO

:}‘I

i}

¢t 2Kk t.

Hence we have a permanent lump solution decaying as O(l/xz, 1/y2)
for |® , |y| - ¢ . This solution is essentially the same as that

shown by Bordag et al.”

We note that when N = 4 one may obtain a
two-lump solution which leave 2zero asymptotic phase shift after
interaction. In-general when N = 2M this method yields formulae

for an M-lump solution.

4.2. Two-dimensional nonlinear Schrodinger (2DNLS) equation

As another example of multi-dimensional system, we consider

2DNLS equation,

iAt—O"Axx—('/—‘yy =>A’A}2-¢'20’QA B (e

.Ul@xy’f@yj =-—(/A’z)x7( R
415

(=11
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Imposing a boundary condition lA!z—aff'as [x]-? 6 and transforming

the dependent variablesin (4.14) and (4.15) as

A= ¢/f (416>
@= 2(‘&93[))()( , (4_.//7)
£f; real,
we have a couple of bilinear equations
‘ 2
(iDe-0'Di+ Py -£°) 3 f =0, c4-18)
2 2 2
(0D +py - £°) Ff = -39%, (419
We can derive N-soliton solution from (4.18) and (4.19). By taking

the same procedure as in §4.1, we obtain from a two-soliton state

the following rational solution;

u4

]

9/ &: + o, (4.20)

1§}

P e ickxr LYy-wt)

g [(9/‘/'2(:/4/)(&24‘2(:/42)‘)'0(;)]

where (4.2 )
W= - ok+ L+ £ 5 422>
A0
GC: x+ P d- [-20’k+2ﬁl’;—-—h~_-—jt) (4:23)
AL = J(O’*‘P\:z)/)ﬁ?) (¢2%)

0 RY (otR)
oA = , (@25
o [DVoup* Yorp? ~+Rfl) ] .

*
If we choose P,= Py and § = -1, then we have A

*
, = A, and ;> 0,
and (4.20) and (4.21) gives an envelope lump solution

2 A 19/*1" A:*@/ ) :
A= P2 (1+
A= A2 (1+ 4 T Y .

The solution describing a collision of these lumps can be also

obtained from the soliton solutions.

10
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