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§1. Introduction

The higher order‘approximations in the reductive perturbation
method are studied for the weakly dispersive nonlinear’system.
It is shown that the secular terms appearing in the higher order
terms are eliminated by addlng to the Korteweg—de Vries equation
the derivatives of the higher-order conserVed densities, so that
a general nonlinear dlsper51ve system of equatlons can be approx-

imated by the equation of the form,

, - 'u,, + + AL . { = , .

W - utu U T8 ]A-J+l(u),€ 0 (1.1)
: jz22

in which }4 is the j+1 th conserved density. It is shown

j+1
further that the coefficients GAj can be determined by the linear
dispersion relation of the original system. The equation (1.1)
is the so-called generalized KAV equation, which is completely
integrable and physical effects of the conserved densities in
this equatidn afe given by the renormalization of the Qelocities
of the KAV scolitons. Also, eq.(l.1l) is rewritten in terms of the
conserved quantities,_thevform of which is more general in the
sense that for the strongly dispersive system the nénlinear
SchrBdinqer equation is not modified by the conserved densities
but by the conserved quantitics.

-1-
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§2. Reductive Perturbation Method for Weakly Dispersive Systems

In this paper, we consider the following system of equations

for a column vector U with n (real) components, Uy Uy 0ttty Uy }'a

U,, *+ AU,X + Kl[KZ(K3U’x)'x]'X =0 . (2.1)

t

Extension to a more general system was done in Ref.l. See

also examples . in §5.

Here A is a n xn real matrix funétion of U, and its eigenvalues;
Ai (i=1,2,°+**,n), are assumed real and distinct, so that the
corresponding n eigenvectors Ri (i=1,2,---,n) are linearly
independent; K, +K, and K, are also (real) n xn matrix functions
of U. 1In what follows the neccessary analiticities of A, {Ai};
{Ri}.and Ka(a=l,2,3) with respect to U will be assumed in a domain

(0)

of the U space, say . Let U be a constant vector in £, which

is a trivial solution of eqg.(2.1). Then a neighboring solution

U is expanded as

vy g 4 25(2) o, (2.2)

]
[

where € is a small (positive) parameter, Consequently the

matrices A and K, are also expanded as-

as ] a2 a0y gy 40, (20y(2) g 4 (0)
=0

1 (1) (1), (0) cee
+ 5070 .VuVuA } o+ (2.3)
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in which the notations are the same as are used in Ref.l) and 2)
. (0) = (0) _ coe (0)_
i.e. A ZA(U ), vu—(a/au’ ’ , 3/8un), VuA —(VuA)U=U(O) etc.

The linear dispersion relation for the frequency w and the wave-

number k is det]—wI+kA(O)—k3K{0)KéO)K§O)]=0, where I is the unit

matrix, and it yields the expansion in terms of small k

w=Ai(°)k—uk3+ (2.4)

(0)

1 3

We now assume that the i-th mode is genuinely weakly-dispersive

2) that is,

2)

as well as genuinely nonlinear, kiol R§°)¢o, u#0, for

“u

which the Gardner-Morikawa transformation is introduced by

g
Il

el/2 (a0 gy | (2.5a)
T = 63/2 t o (2.5b)

in which and in what follows the subscript to specify the i-th

mode is omitted. Under the boundary condition

(0)

Uu->1U for X > o j.e. for & » o,

following the standard procedure of the reductive perturbation

method, we get in the order 33/2

(0) (1) _
W U'E =0
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i.e. U(l) = R(O)u(l)(E,T)

(O)E—A(O)I+A(O) (1) is a scalar function of £ and T to

0(85/

Here W and u

be determined in the next order, 2), in which we have

Moy a@uD 4+ @l -0, .6

(0);(2) (1)
wilu,t 4 U0 4+ U

Multiplying this equation by L(O) from

the left yields the KdV equation for u(l)‘as'the:compatibility

where K(0)=K{O)K50)K§3).

condition,

R }C (u(l))-= uf%) - 6u(l)ufé) + ufé%a =0, (2.7)

(0) (0)

in which R is normalized by Vuk(q)~R =-6 and p(or eq.(2.4))

is assumed equal to unity. (If p is -1, the transformation

3/2

T==~¢ t and the normalization VuA(O)-R‘O)=6 gives (2.7).) On

the other hand, solving eq.(2.6), we have

(
U(Z) - R(0)u(2) + JV(Z)dE (2.8a)
where
(2) _ 3 .1 5(0) (1),2 , 2(0),(0) (1),
v = Bg[2 R (u )7 +K R u'gg] ’ (2.8b)
that is,
U(z) = R(O)u(z) + £~ﬁ(0)(u‘l))2 + ﬁ(O)R(O)u(l) (2.8c)

2 "gg !

(0) (0)

in which R and K are given by
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14

20) = g0 .y 5(0)

(020 _ o _ (0

7/2

The terms of the order ¢ are collected to give

WOy 4 q@IRMO) | g0 g A(O)R(0) (1) 2)) g (O)R(0),(2)

'y Yreee

= 5(2) (1), (2.9)

14

in which S(z) is the column vector dependent on u(l) and‘its

£-derivatives only. Again, the compatibility condition of this
(2)

equation gives the equation for u

L wP)ul? = 52) (1)) (2.10)
Here ﬁﬂ(u(l)) is the linear operator defined by
(1), . 2 2 (1) , a3
L) E g -6 gpu + Py (2.11)

and s(z) (=L(0)S(2)/(L(O)°R(O)) is expressed by

@) _ @) ()2, 4 @M 1D, () (1), (1)

S "EEE 3 Yrg Urgg

sy ultteer (2.12)
in which sé2) (i=1,2,3,4) are constants. It should be noted that
the homogeneous equation associated with eq. (2.10), ai(u(l))w=0;
is the linearized KAV equation.
It is straightforward to write down the higher order equations,
n+3/2 (n) _p(0), () ry(n) (u(l),

namely in the order € , assuming that U

- 5 -
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"“,u(n_l))di, we have

(0),,(n+1) (n),(0) (0) . (0),(0) , (1) (mn) (0), (0) (m)
W U'E + u, . R + R VuA R (u u )’£ + K R u,EEE
= s, (2.13)
where S(n) depends on u(l),"',u(n-l) and independent of u(n).

Hence the compatibility condition becomes the linear equation

for u(n), (n22)

(2) ...

£Dye@ o gm0, w® e e,

P (2.14)

where s(n) (EL(O)S(H)/(L(O)R(O)) is known function of (&,1) whenever

u(l),"',u(n—l) are known. On the other hand, egqg.(2.13) gives

g@+l) _ p(0) (aFl), Jv‘n“.):dg , (2.15a)
where Vhﬂi)and g(n) are introduced by

Vﬁﬁﬂ)= [ﬁ(o)u(l)u(n)-Fﬁ(O)R(O)uEE%],g + g (2.15b)

w(@g@m _ ) _ () (0) (2.15¢)

-It is to be noted that eg. (2.14) has the same homogeneous part

for all n. We also remark that eq.(2.14) admits the secular
(n) =(n)

solution, if s contains a term s satisfying the homogeneous

equation (the linearized KAV equation), e.q. ﬁ(n)=Tg(n)+f(n)’
where f(n) is given by,ﬁ(u(l))f(n)=s(n)~§(n). For example, if
u(1)

is the one-soliton solution of the KAV equation (2.7),

u(l) = —2K2 sechzn ’ n = K(£—4K2T) + 86 , (2.16)
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2 e . . .
then ufi)“sech n tanhn satisfies the linearized KAV equation;

(n)

hence if s contains a term proportidnal to sechzn tanhn we have

the secular solution. ' This secular solution arises due to the

self-resonance in the way élosely analogous to that in the non-
=(n) . (n)

linear oscillation. Hence the term s in s ~which gives rise

to the secular term will be called the resonance term.

§3.. Solution to the Linearized KdV Equation

Since the resonance term is a solution to the linearized
XKdV equation, it is required to examine the properties of solutions
of this equatibn. We first wention that the solution w to the

linearized KAV equation

L (wMyw =0 | (3.1)

is exoressed by

N

)
w==§€[f c

) mwmz («‘;,r)exp(-SK;’ T) +I C(k)wz(g,r;k)exp(esik%)’dk]' . (3.2)
m * . —o0

Here c_ and c(k) are arbitrary constants and y is given by the

inverse scattering scheme for the KAV equation (2.7):

(1) 2

_wlgg + u ¢>= k w y (3.3a)

(1) (1)

.3
w,T + 4¢'ggg - 6u w,g - 3u,g v = 4ik7y , (3.3b)

(c.f. Appendix A). Eq.(3.2) demonstrates that the solution to
the linearized KAV equation (3.1) is given by the supberposition

-0f the derivative of the squared eigenfunction. Eg.(3.2) is
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proved by direct substitution: assuming w=(¢2),g and substituting
this in eqg.(3.1) we find that the left hand side vanishes if ¢
satisfies egs.(3.3), i.e. ¢=¢expﬁ4ik3T). However, as will be
shown in Appendix B, the set of functions (l!)mz),E (m=1,2,***,N)
and-(wz(k)),g (—»<k<=) is not complete. Therefore the expression
(3.2) does not give all the solutions of eq. (3.1), but it covers
the set of the solutions of eq. (3.1) which are bounded for 1>«
(see Appendix B). On the other hand, the conserved densities of

u(l)).

the KAV equation (2.7), which we denote by.j4i( are expressed

similarly in terms of the squéred eigenfunction as follows,

. . N .
= (_qy3t1 23+1 2
“‘4j+1 (-1) 2% ko0 C (T T (E,T)

+ % f k23l L (k)v? (E,7;K) expt8ikT)dk . (3.4)

The proof is given in Appendix C. Incidentally the expressions

(1)

of_A j(u(l)) in terms of u may be found by the recursion

formulae

Assrre =~ iUgreee e DA 2P Ap L A s

which enables us to immediately write down the expressions for

the first three densities,

1 2
A= a0 d, = am e’ -ufth
(3.6)
- 0™y 52 4 1on D (1) _ (1)
JA 37 (1/32) [-10(u ) +5(u,g ) +10u Urge u’EEEE] .

Finally, we note that the solutions (%f), £ corresnond to
the variation of the initial phases of the solitons 6u(l)/59m

which is seen easily by the one-soliton case, while (wz(E,T;k)),g

-8 -
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corresponds to that of the reflection coefficient Gu(l)/éro(k).

It is then understood that corresponding to the variation of the
eigenvalue Kk ,du(l)/6Km (m=1,+++,N) also satisfy the linearized
KdV equation, however as can be seen again by the one-soliton
solution those are secular solutions growiné proportional to rt.

It is shown in Appendix B that the set of functions given by the
variations with respect to the full scattering data constitutes the
complete set. Therefore the initial function can be expanded by
the complete set of functions so that the resultant solution of
the linearized KAdV equation is obtained automatically. The
existence of the unbounded (secular) solution of the linearized
KAV equation doés not contradict the stability of the soliton:
Usually, the soliton is considered as stable, because the point
spectrum of the Schrddinger operator does not change under initial
perturbations. However for the carefplly specified initial

condition, which is given corresponding to_Gu(l)/éK i.e. for the

m
one soliton case by 25ech2(K£+e)+sech2(Kg+6)tanh(Kg+e)—ZKgsechz(Kg+e)-

tanh{(k&+0), the point'spectrum shifts by the order ¢.

§4., The Method of Renormalization

We first consider the purely one-soliton solution (2.16) for

ﬁ(l). Introducing this equation into eq.(2.12) yields,
2 2 ‘
s(2) K7(b{2)sech2n tanhn+b§“)sech4n tanhn+b§“)sech6n tanhp) , (4.1)

where b;z) (j=1,2,3) are constants independent of x. Here we note

the following relations which will be used throughout in the
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subsequent computations;

g% sechznn = -2n sechznn tanhn (4.2a)
g% sechznn tanhn = -2n secthn + (1+2n)sech2(n+l)n . (4.2b)

The first term in the bracket of eg.(4.l) satisfies the linearized
¥4V equation (3.1), whilst the other terms do not. Hence the first
term is the resonance term. It should be noted that the resonance
term derives from the linear term in 3(2)' and this holds in any
high order. We now attempt to eliminate this resonant term in

all the s(n)'s. For illustration, we first consider the set of
egs. (2.7) and (2.14) for u(n) (n>1) as the basic system to solve,

which may be inclusively written as

a)((u(l)) ) snjC(u(l))u(n) = ) S (4.3)

n>2 n>2

Then, we add on both sides of eq. (4.3) the term ngl endxufz),

(1), 2,(2),

where $8) is given in a powerseries of g, §i=gi
with coefficients to be determined later. The crucial point in
our procedure is that §) on the left hand side is not expanded
while on the right hand side it is expanded so that k(n)‘s are

(n)

determined successively to cancel out the resonant term in s .

Then the KadV equation is modified to

i) - eaMElp) + Grgr + ma,(:é) =0, (4.4)
whilst eq.(2.14) for 3¢?) pecomes
L@+ auff =52 . W HEd (4.5)

- 10 -~
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in which 3(®) ig defined by 3@ =@ @), rrom eq. (4.5) we
obtain A(l) 4 (2)/4 hence up to this order &)X is given by
—€K4b(2)/4 The one-soliton solution of eq.(4.4) derives by the

Galilei-transformation §=£—6AT, that is,

ﬁ(l) = —2K2 sechzﬁ , n = K{E—(4K2+6K)T} + 8 . (4.6)

Thus the higher order effect is given by the renormalization of

the soliton velocity. In this sence we call eq.(4.4) as the

~ (1)

renormalized KAV equation. With the u and &), eq.(4.5) becomes

02 - e@Mma®h,; +

(2) (2)

= x (b secn4n tanhn +b sechsﬁ tanhn) . (4.5)"

By means of egs.(4.2), a particulaf solution of this equation is

obtained as

ﬁéZ) =« (8(2) sech’fi+g 2 secn®s) (4.6)"
where 6(2) f% (2b(2)+b§2)),6§)— (2)/48. The general solution
of eq.(4.5)' for u( ) is given by

~(2) _ ~(2) ~(2)
u = U, + up ’ (4.7)

(2)
0

eq;(4.5)‘, the linearized KAV equation. However, as was noted

in which u is a solution of the homogeneous ecuation for

already, the linearized KdV equation admits the secular solution,
(2)

which is given by éu(l)/GK. Therefore, in general, ﬁo should

be expressed as

- 11 -
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2) ~(2) ~ (1)

=w + cK(Su /8x) , (4.8)

(2)

where w ‘is given by eq.(3.2), being bounded for 1»>». The

(2)
0

secular term in ﬁ can be eliminated as follows. Solve the

Schrddinger equation (3.3a) for the initial function ﬁ(l)(E,O)

+€cK(Gﬁ(l)/6K)|T=O. Then the eigenvalue « is shifted by which the
(1) '

evolution of u is determined, while the special initial function

CK(éﬁ(l)/éK)lT=0 must be subtracted from the initial function

ﬁ(z)(E,O) so that ﬁéz) becomes W(Z). As the result, the second

dfder effects on the KAV §oliton are given by the renormalization
of the amplitude and the width as well as the velocity. Since
the velocity;shift can be replaced by the phase-shift, it may be
stated that the secénd order effects are given by the renormali-
zation of the scattering data. By means of the mathematical

y(a=1) o (m)

induction, it can be proved that and the particular

solution ﬁén) are given by
>\(n—l) - K2n d(n—l)" : (4.3a)
. 2n o 3 ,
u;n) =<0 ) Bsn) sechzjn , (4.96)
j=1 | ; .
n+l . )
s = (2043 57 p ) 5eon?IF tannf (4.9¢)
j=2' J .
where d(n), B;n)' bgn) are constants independent of k, consequently
u‘l). Here it is to be noted that, for the one-soliton solution,

') becomes

the conserved density J4j+l(u(l)

J4 541 T —%%—l)j+l 23 u 4 (4.10)

- 12 -
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Therefore, we have

1 -1 _(5-1
6kuf€? = jzz eIl o3 {/4j+l,£ , © (411

where aj's are constants independent of k, that is, independent

of u(l). Thus the renormalized KAV equation becomes well estab-

(1) (1)
"E

We now show that for the N-soliton solution, the renormali- -

lished one for u , when G§iu is expressed by (4.11).
zation term can be revresented samely bv the higher order conserved

densities. This may be seen by using the expression for the

N-soliton wave function uél)
N .
(1) 2
u = - Z 4 C ’ (4.12)
N me] momm -
where
2 1 2
mem > 5 K sech . for T > o , ‘
(4.13)
_ a2
Ny = Km(i 4Km T) + em .
Consequently, from eq.(3.4) we have
14 341 N 2(5+1) 2
541 7 (-1) ) Ko sech N, v for T > o |, (4.14)

m

On the other hand from eq. (4.1) 5(2) becomes

(2) 7 (2) 2
s > i Ko (bl sech U tanhnm)
N
7 ,,.(2) 4 (2) 6
+ I% k, (b, sech N tanhnm+b3 sech™n_ tanhnm) ,  (4.15)

in which the coefficients b(z)

i (i=1,2,3) are independent of Ko

hence m. Consequently, the first term which is to be eliminated

_13_.
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is equal to

P /2)- (0 A, 00 . - (4.16)

Therefore, a generalization to the N-soliton case can be deduced

as follows. Corresponding to L ERGXu(n)

n31. rg add, on both sides of

eg. (4.3) the term

Z SRS (,452%

nZl 322 :
where /4§1)=,4j(u(l)), /4§n)5(d/dv)J4j(u(l)+vu(n))|v=0ﬁ4ju(n) (n>2)
and ij=ej—la(j—l) to which the same rule of expansion as that |

in the one-soliton case is applied. Then the renormalized KAV

equation takes the form

(1) (W5 (1) ~ (1) ~ (1) - '
b Gy + A, jgzaxjj4j+l(u Vg =0, (4.17)
which is called the generalized KAV equation and may be written as

~ (1) - ’

U, +_A rg T o, (4.17)

g ~ ) .
=, A 1 = - "’(l) . -
where_A jzlsxj 541 with le_ 8 and )4j"’4j(u ). The higher
order equations are correspondingly modified, and corresponding

to (4.5) we have
L@aMhya@ - %)+Am)=§u)+ghﬂy€, (4.18)

The lefthand side of this egquation is.given by the linearization
of the generalized KdV equation (4.18), while from eq.(4.16) it
1 2

3
The generalized KAV equation is completely integrable.

is anticipated that a

- 14 -
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Namely it is solvable by means of the inverse scattering scheme,
where the Schrdndinger equation is valid samely so that the
spectrum is not altered by the presence of the higher conserved
densities, only the evolution equation for y is modified as is
given in Appendix D. Consequently, for 1+, the N-soliton solutions
are obtained by modifying the velocities of the solitons (see
also Appendix D). Therefore the higher order effects are given
by the renormalization of the velocities of the KdV soliton.
The explicit form of the N-soliton solution (for t+w) may be found
by the following heuristic arguments. Assume that for t-ow

‘31\(11) > mgl - 2|<nf sech2ﬁm , (4.19)
where ﬁm=Kﬁ{g~(4Kﬁf+ﬁ%m)r}+em and 6xm is constant to be determined.
Then @m (the m-th eigenfunction of the Schr8dinger eguation (3.3a)
with potential ﬁél)) tékes the form /%; @m—+JE;7Z sechﬁm. Hence

by means of the definition of J4j we have

. N .
4y Jt+lL 2(3+1) 2~
4 541 7 D) I% Ko sech’f_ . (4.20)

Introducing eqgs.(4.19) and (4.20) in eq. (4.17) yields

23

1 TS
7 83y (-1) <o,

(4.21)

2

Sh o=~ 1
m jZ

which is in agreement with that obtained in Appendix D by means
of the inverse machienery.

It is also worthwhile to note that the éeneralized Rdv
equation (4.17) is given in terms of the conserved quantities,
f~5fﬁjd£. That is, the last (renormalization) term on the left-

J

hand side of eq.(4.17) is written as j§2 ijdij

+2/6ﬁ(l) where

- 15 -



1 (Appenfix C). Hence eq.(4.17)

is expressed by the canonical form

Svj{is defined by {2/(2j+l)]6kj~

< (1) 8T oI,
su jz2 au

Here we note that in the strongly dispersive system reducible to
the nonlinear Schrddinger equation, the renormalization term

cannot be represented by the conserved densities but by the

4)

conserved quantities. Therefore the canonical form (4.22) is

more general than eq. (4.17).

With the lowest order solution ﬁ(l) given by eq.(4.17), we

proceed to the next order equation (4.18), which has properties

similar to those of eq. (2.10). In general, when ﬁ(l) satisfies

eq.(4.17), J4j,£ (j=1,2,--+) satisfies the homogeneous equation
for eqg.(4.18). To prove this, using (4.17)"' we first get

(% ~ e ~ ~/
Aj'TS“AgAf:"A;AG'“g_) , then by means of the relation

5)°

which was first derived by Lax and is proved in Appendix E,

~ ~)

we obtain J4j’r+34‘Aj’£= 0, hence differentiating once with respect

to £ gives
(J’j’E)IT + (A‘A’]’E)IE = 0.

Since the homogeneous part takes the same form in all order, this

is valid in any higher order. Also, for the N-soliton wave

function of u(l), in the limit 1+, the extra term on the left-
hand side of eq.(4.18) due to the renormalization (jéq 6Ajj4j;lﬁi2))%

can be eliminated locally by means of the Galilei-transformation

—155
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g-+§m=5—5XmT (m=1,2,+++,N), where 6Xm is given by eq.(4.21). 1In
other words this term may be discarded provided § is replacéd by
gm. We thus find that for t+«, discussions go parallel to“tbap
of the one-soliton case, because in the limit 1+~ the N-solitons
are locally equivalent to the one soliton.

So far we have considered the particular solutions uén?‘(nZZ)

(n) (n)

assuming that ug =0 (n22). Since the eguations for u (n22) are

(n)

linear, the general solution can be obtained by adding to u,

(n)

homogeneous solutions uy "- In this case, when initial functlons

(n)

(3.2) is given by the point spectrum % cm%f rg e uy thus specified
' (n+l)

the

will not give rise to the new secular term in s

(2)

be shown by the one-soliton case. Let GO be given bv —4K0w2,

~(3) ~(2)

it gives even functions, hence U,

This may

asechzﬁ tanhn, then in s
does not produce the secular term.

So far, we have considered the system of equations given by
egs. (2.7) and (2.14) as the basic set to be solved. However, the
renormalization for the'original system of equations, which may
be taken as the set of egs. (2.6), (2.9) and-(2.l3), is achieved
similarly. Namely we first add on the lefthand side of eq.(ZQS)

the term ea: {A (0?. Then it yields the generalized X4V equation

(2) (l)

(4.22) while U(z) takes the same form as U , because 4, is
eliminated by eq.(4.17). 1In the next-order equation (2.9) the

terms sa‘)ﬂ ~(Z)R O)ancil ea('l)ji 3,£R(O) are to be added on the left-—

~and right-hand sides respectively. It is then obvious that eqg.{(4.18)
~(2)

for .u is reproduced, while eq.(2.9) so modified gives
§(3) = p(050(3) J\?mdg ,
where 9(3) = V(B)(ﬁ(z),ﬁ(l)) .

- 17 -
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The same applies to eq.(2.13). Thus in all order discussions go
parallel to those.done previously for the set of egs. (2.6) and
(2.14).

Finally we show that the coefficients 6Aj in eq. (4.17) can be
determined by the linear dispersion relation (2.4). Since ij are

independent of ﬁ(l)
(1)

, they may be determined by the one-soliton

solution of 1 'In this case, as can be seen frome eq. (4.9b)

(n)

for x>~ U (n>4) damps at most as exp(-2n). Hence from eq. (2.15)
it follows that U is approximated by U-Uomexp(-zﬁ) for x-w,

Substituting this expression for U in eq.(2.1l) and linearizing, we

get
detl(sl/2 ) {=2 —€(4K2+5X81+A0(€l/2K)'+4K0(€l/2K)3l =0
that is
detl[-)\O ~e{ac? - Z %(—l)j+l K2j6A5}1I+ Ay + K0(4€K2)| =0 .

j22

In comparison with the 1linear dispersion relation, one sees

immediately
2.1 4 1 6 '
AO + e{4k +3 « 57\2——2—K ax3: }
= [w/k] ,
k=iet/2 (2¢) . (4.23)
1)

)

§5. Example (Ion Acoustic Wave

For the system composed of warm electrons and cold ions, the

basic equations can be reduced to

_18_
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an 9 4 0,0 d 1l on, _

3¢ TPV T 2t ) 70 (5.1a)
v v 1 3n _

etV Tawx -0 : (3-10)

in which x and t are stretched by the factor v¥2 in comparison to
those in ref.l, n is the density of the electrons and v the flow =
velocity of the ions. This system can not be given in the matrix
form (2.1), because of the existence of the time-derivative ih the
dispersive term; however, as was shown in ref.l, the reduction goes

entirely parallel to that of eq.(2.1). That is, for u,=n, u

1 2
have A=v*l, hence for nl=l, v=0 the linear dispersion relation is

_l/2=ik(l—k2-%%kAiﬂ'°). Consequently, we have

=v, we

given by w=ik(l+2k2)

the KdV eq. (2.7) for u(l) where n(l)=v(l)=—6u(l), while

nf2) = _gu(2)  (2) o gy (2) (1)y2 _ ¢, (1)

- 18 (u Urgg - (5.2)

(2)

The explicit form of s is obtained as

(2) _ (1),2 (1) _ (1) (1) _ (1) (1) _ 3 (1)
s = 18 (u ) u,g 3u u,gg 6u u,ggg 5 u,ggggg .
Hence, after the renormalization we get
6t - saMald) + alfl, v eas A @M, 4 e =0

¥~ (2) _ ~(1)2~(1) _ aan (1)~ (1) _ o~ (1)~ (1)
gtll (63u u,g 33u,g u’EE 21u u,ggg)

.

The N-soliton solution becomes

- 19 -
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N
~ (1) _ 2 2.
u - £ 2Km sech nm ’

Tn o 2 2 2 .
where nm_Km{E (4Km -€24Km +0 (e ))T}+9m r and the dressed part is
expressed by

5 (2) v 4 2. 4y oo
0 > I%[ 9c - {sech”f_+6sech i }1;

L) () __ = (D) (2) (2)

=-6u and the equations for n and Vv take the same
form as eq. (5.2). (Note that 6A2=48£ derives directly from

eq.(4.23)).
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Appendix A. Inverse Scattering Scheme

For eq.(3.3a) we introduce the Jost functions ¥ and ¢ with

the boundary conditions6) for the right scattering
v(g,t:k) ~» e_lkg g » -0, (A.1la)
6(g,7:%) - eKE

£ » o (A.1Db)
For real k, it holds

w(ng;k) = a(le)(b(ng;_k) + b(le)q)(ng;k) e
(A.2)

2 2
la(k,T)|° - |b(k,T)|° =1
and the bound states are given by
a(ick, , 1) =0 (k=ik, , 2=1,2,++-,N) (A.3a)
w(E,T;iKQ) = b, (1) (&, 15iky) . (A.3b)
From ed. (3.3b) we get
a(k,t) = ao(k)
b(k,T) = by (k) exp (8ik>1) (2. 4)
By (T) = by (1)/(1d(iky)) = By, exp(SKZ?T)
Hence the right scattering data S(T)‘are given by
8ik>t Bep T N
S(t) = [R(k,T)=b(k,T)/a(k)=R, (k)e B, e Kot
0 20 27,1
(A.5a)

- 21 -
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and the left scattering data are given by

3 —8!<23f N

s(T) = [r(k,T)Eb@k,f)/a(k)=ro(k)e—81k T,_{Cloe ,Kg} 1 .

Appendix B. Squared-Eigenfunctions

We introduce the squared-eigenfunction and its spatial

derivative by

(E,T:k) = 62 (E,1:k) = <E|k> , (B.1a)

Al

Y(E,TK) = gp VP(E,TiR) 2 <klE> . (B.1b)

By means of egs. (A.la) and (A.2) V¥ and @ satisfy the equations

_ .2 Ay _ 2y _ 1 (1),2,_ .
Ls® = k"% , LST = kY 5 Urg Y (=R, T;k) (B.2)
1 2 v ,1( (1)
where L, =->—+u + = dg'u, =,
S 4 .2 2 €
9g £
A . .. .
and LS is adjoint to LS rl.e.
2 g
S R N O Tl T
9 -R
From egs. (B.2) we have
= oorrPyal o2 p ot = |
WLSQ @[LSW-kz Uy Y= (-R, T;k) 1] BgF (B.3)
= -1y d .02
where F = 4[W BEQ 0] BEW]

g 00
+ %[J yag: +w2(—R,T;k)1-J u%’.@de' ,

-R £

- 22 -
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while the evolutions of ¥ and ¢ are governed by the associated KAV

7}

equation; and the linearized KdV equation, respectively.

Let the innerproduct be defined by
JW(E,k)@(E,k')dE = <klk'> . - (B.4)

Then in view of egs. (B.2) it becomes

d | 1 = ___.__.__.l i E.. r k'Y - ] _3 £ =
<k[k'> = 77 a8 gk —e ek g wE T g D, -
Hence for real k, k' we have
<klk'> = -2inka’ (k) § (k-k') ; (B.5)

for complex k, k' with positive imaginary parts, at the zero

points of a(k) we get

ok <klieg>log = ikgdg Sy (B.6) -
We also obtain
<iK£|iKm> = <k|iKm? =0 (B.7)
39 , $2. . .
and =TT <k |k >[k—1K2 (a, +ik,a a )sz . (B.8)
k'=ik
m

- The completeness relation can be shown in the same way as was

" 8)
done by Kaup by considering the integral

[}
11
e
N
AN
~
\
o]
A
)
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where the contour C vasses through the upper half plane above all

the zero noints of al(k), namely

o N. .. . .
J = iJ %%lk> ——fL—— <k| + z T_—T7TI§%(Ik><kl)lk_-
—~ ka” (k) 2=1 1Kga2 , .—le
N a :
+ z ( 1l +1i 3 )llK ><ik I . (B.g)
=1 2.2 K 513 2 2
=L Kg 3y 292
. . (1) éu(l)
The secular solution for one-soliton solution of u iy

corresponds to

3 : 2

-8k T 3 . = - X (2+tanhn) sech™n

é 2 YETK) g S,
. 2 2

+ 2 X £ sech™n tanhn
o
; 2
where n = k(&-4c 1) + 6.

Appendix C. The Conserved Density and the Conserved Quantityv

9)-

For the conserved quantity, Ij={,4j dg, we have

' ® 2 .23
iy = 2141 I In|a(k)|%-x*? ak
41 . N 2541
(-T2 § ST (c.1)
. m

I,
J+1 . _
Hence EETTT is calculated as

* .
1541 _ 2541 r 1 _sa(k) 1 sa (0,25 g
- *
su (D) 21 j_, ak) o (D7 Fay su®
. N . 6k
+1 . 23 n .2
+ (-1 2 7 @i+nx? —ay - (C.2)
m Su

- 24 -
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Using the relations proved by Kodama and Wadati,lg)

1 sa(k) . 1 6a¥(k) 1 2 a2,
S0 oD T e R 0V (B8 =2 RV, R )
(C.3a)
6|<m Cm 2 . | B
m: T 3% vo(E, le) r _ (C.3b)
u m
we obtain
2 Mg (° e
23+ S (O W, ’
. N .
J 23-1 2 .
+ (-1) 21% Ko c v (£,dk )
= /4 .(u(l)) . » (Cf4)

J

..33...
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Appendix D. The Generalized - KdV Equation

In the canonical form, the generalized KAV equation is

given by
39T 3L 66(1) '
where H[ﬁ(l)] = %g'l3[ﬁ(l)] - 7 ijIj+2[ﬁ(l)]'

j22

while the canonical variables are represented by the scattering

data
k 2
P(k) = — Inla(k) |® , Q(k) = arg b(k)
(D.2)
‘—- 2 el _. - * s o
p.=k° , q =-2lnb_ (m=1,2,--,N)
consequently
1o, = 220 (7423 pigge + (eIt g p (234172
j+1 2 J_. | L Pn .
v (D.3)
Hence we have
H=3 | s JOSE U S LE A ) j k23 p 1y ax
-0 j22 J -0
32 ¥ 52 41 N (25+3) /2
- 1p + ] 2(-1) sV, ) P . (D.4)
m . | m
m 322 m

The canonical equations (Hamilton's equation) are integrated as

follows.

For the continuous spectrum,
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ap(k) _ _ _SH _ : a o
3T - 50 (k) 0 i.e. ET: a(k,tT) 0 , (D.5a)
dgQ (k) 0H 3 2343 23+1 )
= =8k~ - ] == §v.k , (D.5b)
art P (k) 552 3
which yields
b(k,t) = bo(k)exp(i8k3r —i ] 23 5y 423 oy
. . :]
jz2
For the point spectrum,
dp
mo_ _éi = i _..d_ ==
Ti? . 6qm 0 l.e. ar Km 0 , (D.SC)
dap, _ sm _ 16p. 324 T (c1)3* (2543 6v,p (23+1)/2
dart dpm | ‘ j32 Jjm
‘ (D.5d)
which gives
_ 3. 13+ 2343 23+1
b (1) = b ,exp(8k °1 } (-1) 5— SV - T) .

322 J

Then the asymptotic solution (pure solitons, r(k)=0) reduces to

RN ) —ZKH?sechz[Km{E —(4an—.z (—l)j+l Z%gg-éijn?j)T}*'em]
m 322
' (D.6)
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5)

Appendix E. Lax's Theorem

Consider the linearized equation of eq. (4.17),
5 3 gl (D). o |
wv=-gUAethy . @E

Let the solutions of (4.17) of one-parameter family be given by

uél)=u(l)+€v. Then

d
ac !

j+l[u§l)] le=o = 2j2+l(/4j'V) (E.2)

is time invariance, where (£f,g)=/f-gdf (f,gaLz(R)), consequently,

(1)

3 - / du ' oV
ar( Ay = (A = + Ay 5D

Il

YN RS -

Namely _)4; 5%‘)4] -_,4,—5%_,4. =0 .
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