84

Some Generalized Toeplitz Operators

福岡教育人 内山 九

1.Introduction

Let L^2 be the Hilbert space of all square Lebesgue integrable unctions defined on the unit circle, and L^∞ the Banach algebra of all ssentially bounded functions defined on the unit circle. We denote he Hardy spaces corresponding to L^2 and L^∞ by H^2 and H^∞ respectively. If h is a function in some Hardy space, then by the Poisson ntegral formula h is extended to an analytic function in the open mit disc.

Given ϕ in L^{∞} , let M_{ϕ} be the operator on L^2 defined by M_{ϕ} h = ϕ h for h in L^2 .

et P' be the projection from L^2 onto H^2 . Then an operator on H^2 efined by

$$T_{\phi} = P \cdot M_{\phi} \mid H^2$$

is called a Toeplitz operator with symbol ϕ . In particular, if ϕ is the identity function, then T_{ϕ} is called the shift operator. From seurling's theorem, each invariant subspace for the shift operator is of the form ψH^2 with some inner function ψ (i.e., ψ is in H^∞ and $|\psi(e^{it})| = 1$ a.e.)

For an inner function well known Hilbert space $H(\psi)$ is determined by

$$H(\psi) = H^2 \ominus \psi H^2.$$

From now we fix an inner function ψ and hence Hilbert space $H(\psi)$. We denote the projection from H^2 onto $H(\psi)$ by P.

Definition. For ϕ in L^{∞} , we define the general Toeplitz operator $\phi(S(\psi))$ in the sense of [1] by $\phi(S(\psi))=PT_{\phi}|H(\psi)$.

If ϕ belongs to H^{∞} , then $\phi(S(\psi))$ was defined in [3] and [4], and its properties are well known. Sarason showed that if ϕ is in H^{∞} , then $\phi(S(\psi))$ is compact if and only if $\overline{\psi}\phi$ belongs to $H^{\infty}+C$, where C is the Banach algebra of all continuous functions defined on the unit circle. In this paper we extend this result to ϕ in $H^{\infty}+C$.

2. Trivial Results

We denote the inner product in $H(\psi)$, H^2 and L^2 by (,) , (,) and (,)" respectively. Let $B(H(\psi))$ be the Banach algebra of all bounded operators on $H(\psi)$, and x a mapping from L^{∞} to $B(H(\psi))$ defined by $x(\phi) = \phi(S(\psi))$.

Proposition 1. x is a contractive star linear mapping.

Proof. For f and g in $H(\psi)$, we have $(\overline{\phi}(S(\psi)f,g)=(PT_{\overline{\phi}}f,g)=(T_{\overline{\phi}}f,g)'=(f,T_{\phi}g)'=(f,PT_{\phi}g)'=(f,\phi(S(\psi))g).$ Thus $x(\overline{\phi})=\phi(S(\psi))^*$. The rest is trivial.

Proposition 2. If ϕ is an invertible function in L^{∞} whose essential range is contained in the open right half plane, then $\phi(S(\psi))$ is invertible.

Proof. There exists an ` $\epsilon > 0$ such that $||\epsilon \phi -1|| < 1$ (c.f.[2]). From proposition 1, it follows that

$$||\varepsilon\phi(S(\psi)) - I|| < 1$$
,

which implies that $\phi(S(\psi))$ is invertible.

From this proposition, we can obtain the next proposition by the same techniques as the proof of 7.19 of [2]. Therefore we omit the proof.

Proposition 3. $\sigma\left(\phi\left(S\left(\psi\right)\right)\right)$ is included in the closed covex hull of essential range of ϕ .

Proposition 4. If ϕ is a real valued function in L^{∞} , then $\sigma(\phi(S(\psi))) \subset \sigma(T_{\underline{\phi}}).$

Proof. Hartmann-Wintner showed that

$$\sigma(T_{\phi}) = [\text{ess inf } \phi, \text{ ess sup } \phi],$$

which is a closed convex hull of the essential range of ϕ . Thus the assertion follows from proposition 3.

3. Main Results

We denote the identity operators on $H(\psi)$, H^2 and L^2 by I, I' and I".

Lemma 1. For ϕ in H^{∞} + C, $(I"-P')M_{\phi}$ P' is a compact operator on L^2 .

Proof. Let $\phi=\phi^1+\phi^2$ be a decomposition of ϕ such that ϕ^1 is in H^∞ and ϕ^2 is in C. Then it follows that

$$(I"-P')M_{\phi}P' = (I"-P')M_{\phi^2}P'.$$

Take trigonometric polynomials q_n (n=1,2,...) whose sequence uniformly converges to ϕ^2 . Then ,since

 $|| (I"-P')M_{q_n}P' - (I"-P')M_{\phi^2}P'|| \leq ||M_{q_n} - M_{\phi^2}|| \leq ||q_n - \phi^2|| + 0 \quad (n \to \infty),$ finiteness of the rank of, $(I"-P')M_{q_n}P'$ implies that $(I'-P')M_{\phi^2}P'$ is compact.

Lemma 2. For ϕ in H^{∞} + C, PT_{ϕ} (I'-P) is a compact operator.

Proof. This lemma follows from Lemma 1 and next relations; $\mathrm{PT}_{\varphi} \; (\text{I'-P}) = \mathrm{PP'M}_{\varphi} \; (\text{I'-P}) = \mathrm{PP'M}_{\psi} \; M_{\overline{\psi}} \; (\text{I'-P}) = \mathrm{PP'M}_{\psi} \; M_{\varphi} \; M_{\overline{\psi}} \; (\text{I'-P}) = \\ = \mathrm{PP'M}_{\psi} \; (\text{I''-P'}) \; M_{\varphi} \; P' \; M_{\overline{\psi}} \; (\text{I'-P}) \; .$

Proposition 5. If ϕ is in C and η is in L^{∞} ,then $\phi\left(S(\psi)\right)\eta\left(S(\psi)\right)-\left(\phi\eta\right)\left(S(\psi)\right)$ and $\eta\left(S(\psi)\right)\phi\left(S(\psi)\right)-\left(\phi\eta\right)\left(S(\psi)\right)$

are compact.

Proof. Since $T_{\phi}T_{\eta} - T_{\phi\eta}$ is compact, we have $PT_{\phi}PT_{\eta}P - PT_{\phi\eta}P = PT_{\phi}PT_{\eta}P - PT_{\phi}T_{\eta}P + compact = \\ = PT_{\phi}(I'-P)T_{\eta}P + compact.$

Thus ,by Lemma 2, $\phi(S(\psi))\eta(S(\psi))$ - $(\phi\eta)(S(\psi))$ is compact. Since $[\eta(S(\psi))\phi(S(\psi)) - (\eta\phi)(S(\psi))]^* = \overline{\phi}(S(\psi))\overline{\eta}(S(\psi)) - \overline{(\phi\eta)}(S(\psi)),$ we can conclude the proof.

Set $H_0^p = \{ f \in H^p; f(0)=0 \}$. It is well known that if f belongs to H_0^1 then there exist f_1 in H^2 and f_2 in H_0^2 such that $f=f_1f_2$ and $|f|=|f_1|^2=|f_2|^2$ a.e..

Lemma 3. If ϕ is in H^∞ + C, then there exists a compact operator K from H^2 to \overline{H}_0^2 (conjugate space of H_0^2) such that

$$\frac{1}{2\pi} \int_0^{2\pi} \phi \overline{\psi} f dt = (Kf_1, f_2)'' + (\phi(S(\psi))Pf_1, P'\psi \overline{f}_2)$$

for every f in H_0^1 , f_1 in H^2 and f_2 in H_0^2 such that $f = f_1 f_2$.

Remark. It is not assumed that $|f| = |f_1|^2 = |f_2|^2$. Proof. Since $\psi \overline{f}_2$ is orthogonal to ψH^2 , $P' \psi \overline{f}_2$ belongs to $H(\psi)$.

$$\begin{split} \frac{1}{2 \, \pi} \int_0^{2 \pi} \, \phi \overline{\psi} \, \, f \, \, dt &= \, (\, \phi f_1, \, \psi \overline{f}_2) \, "= \, (P' \phi P f_1, \psi \overline{f}_2) \, " \, \, \\ &+ (P' \phi (I' - P) f_1, \psi \overline{f}_2) \, " \, \, + \, ((I'' - P') \phi f_1, \psi \overline{f}_2) \, " \, \\ &= \, (P' \phi P f_1, P' \psi \overline{f}_2) \, " \, \, + \, (\overline{\psi} P P' \phi (I' - P) f_1, \overline{f}_2) \, " \, \, + \, (\overline{\psi} (I'' - P') \phi f_1, \overline{f}_2) \, " \\ &= \, (\phi \, (S(\psi)) P f_1, P' \psi \overline{f}_2) \, \, + \, (\overline{\psi} P T_\phi \, (I' - P) f_1, \overline{f}_2) \, " + (\overline{\psi} (I'' - P') M_\phi f_1, \overline{f}_2) \, " \, \end{split}$$
 Thus $K = M_{\overline{\psi}} P T_\phi \, (I' - P) \, + \, M_{\overline{\psi}} \, (I'' - P') M_\phi \, |_{H^2}$ satisfies the conditions of this lemma.

The proof of next theorem is deeply depend to [3].

Theorem 1. Let ϕ be a function in $H^\infty+$ C. Then ϕ (S(ψ)) is compact if and only if $\overline{\psi}\phi$ belongs to $H^\infty+$ C.

Proof. Suppose first that $\overline{\psi}\phi$ is in $H^{\infty}+C$. Then there exist η in H^{∞} and ζ in C such that $\phi=\psi(\eta+\zeta)$. Since $(\psi\eta)(S(\psi))=0$, it follows that $\phi(S(\psi))=(\psi\zeta)(S(\psi))$, which is compact [3].

Suppose next that $\phi(S(\psi))$ is compact. We wish to show that the kernel of functional of $\overline{\psi}\phi+H^\infty$ on H_0^1 is sequentially weak star closed. Let f_n be a sequence in the kernel of it which converges weak star to f. Let $f_n=f_{1n}f_{2n}$ be the factorization of f_n such that f_{1n} and f_{2n} belong to H^2 and H_0^2 , respectively, and that $|f_n|=|f_{1n}|^2=|f_{2n}|^2$. Then , since each of sequences of $\{f_{1n}\}$ and $\{f_{2n}\}$ is bounded in L^2 , we may assume that each of sequences above weakly converges to f_1 and f_2 respectively in L^2 , and $f=f_1f_2$ [3]. It is clear that f_1 is in H^2 and f_2 is in H_0^2 . From lemma 3, there is a compact operator K such that

$$\frac{1}{2\pi} \int_0^{2\pi} \phi \overline{\psi} f_n dt = (Kf_{1n}, \overline{f}_{2n}) + (\phi(S(\psi))Pf_{1n}, P'\psi \overline{f}_{2n})$$
and
$$\frac{1}{2\pi} \int_0^{2\pi} \phi \overline{\psi} f dt = (Kf_{1n}, \overline{f}_{2n}) + (\phi(S(\psi))Pf_{1n}, P'\psi \overline{f}_{2n}).$$

Since both K and $\phi(S(\psi))$ are compact, it follows that

$$(\mathrm{Kf}_{1n}, \overline{\mathrm{f}}_{2n})$$
" $\longrightarrow (\mathrm{Kf}_{1}, \overline{\mathrm{f}}_{2})$ " as $n \longrightarrow \infty$

and $(\phi(S(\psi))Pf_{1n},P'\psi\overline{f}_{2n}) \longrightarrow (\phi(S(\psi))Pf_{1},P'\psi\overline{f}_{2})$ as $n\to\infty$. Thus we have

$$\frac{1}{2\pi} \int_0^{2\pi} \phi \overline{\psi} f dt = 0.$$

Thus we can conclude the proof .

4.Miscellaneous Results

Let K be the ideal of all compact operators of $B(H(\psi))$.

Corollary 1. $\{\phi(S(\psi)) + \underline{K}; \phi \text{ in } H^{\infty} + C\}$ is an algebra and the natural mapping from it onto $\{\phi + \psi(H^{\infty} + C); \phi \text{ in } H^{\infty} + C\}$ is an isomorphism.

Proof. From Proposition 5, $\{\phi(S(\psi)) + \underline{K}\}$ is an algebra. From Theorem 1, the natural mapping is well defined and one to one.

Corollary 2. If ϕ is in H^{∞} +C and $\phi(H^{\infty}+C)+\psi(H^{\infty}+C)=H^{\infty}+C$, then $\phi(S(\psi))$ is a Fredholm operator.

Proof. There exists η in $\text{H}^\infty+C$ such that $\phi\eta \ +\psi \ (\text{H}^\infty+C)=1+\psi \ (\text{H}^\infty+C) \ .$ Therefore we have

$$\phi(S(\psi))\eta(S(\psi)) + \underline{K} = (\phi\eta)(S(\psi)) + \underline{K} = I + \underline{K}.$$

Consequently $\phi(S(\psi))$ is a Fredholm operator.

Corollary 3. If ϕ is in $H^\infty+C$ and $T_{\dot{\varphi}}$ is a Fredholm operator, then $\phi(S(\psi))$ is a Fredholm operator.

Proof. Since ϕ is invertible in $H^{\infty}+C$ [2], this corollary follows from Corollary 2.

If φ is in \mbox{H}^{∞} , then we showd that $\quad \varphi\left(S\left(\psi\right)\right)\quad \mbox{is a Fredholm operator}$

if and only if there is a factorization $\phi = \phi^1 \phi^2$, where $\phi^1 (S(\psi))$ is invertible and ϕ^2 is a finite Blaschke function [5].

Theorem 2. If ϕ is in H^{∞} , then next conditions are equivalent;

- (a) $\phi(S(\psi))$ is a Fredholm operator,
- (b) there are $\varepsilon>0$ and $1>\delta\geq 0$ such that $|\phi(z)|+|\psi(z)|\geq \varepsilon$ for $1>|z|\geq \delta$,
- (c) $\phi(H^{\infty}+C) + \psi(H^{\infty}+C) = H^{\infty}+C$.

Proof. First assume (a). Let $\phi=\phi^1\phi^2$ be the factorization given above. Then there is an $<\epsilon>0$ such that

$$|\phi^{1}(z)| + |\psi(z)| \ge \varepsilon$$
 for $|z| < 1$,

because $\phi^1(S(\psi))$ is invertible. And there are $\epsilon'>0$ and $1>\delta\geq 0$ such that $|\phi^2(z)|\geq \epsilon'$ for $1>|z|\geq \delta$,

because ϕ^2 is a finite Blaschke function. Therefore we have

$$|\phi(z)| + |\psi(z)| \ge |\phi^2(z)| \{ |\phi^1(z)| + |\psi(z)| \} \ge \varepsilon \varepsilon' \text{ for } 1 > |z| \ge \delta$$
.

Thus we have (b).

Next assume (b). Let η be the greatest common inner divisor of φ and $\psi. Then it is obvious that there is an <math display="inline">\epsilon' \geq 0$ such that

$$|\eta(z)| \ge \varepsilon'$$
 for $|z| \ge \delta$.

Consequently $1/\eta$ belongs to $H^\infty+C$ [2]. Set $\phi'=\phi/\eta$ and $\psi'=\psi/\eta$. Then it is clear that there is an $\epsilon''>0$ such that

$$|\phi'(z)| + |\psi'(z)| \ge \varepsilon''$$
 for $|z| < 1$.

Hence ,by corona theorem ,we have $\phi'H^{\infty} + \psi'H^{\infty} = H^{\infty}$, which yields $\phi(H^{\infty}+C) + \psi(H^{\infty}+C) = H^{\infty}+C.$

Last, by Corollary 2, (c) implies (a).

References

- [1] A.Devinatz and M.Shinbrot, General Wiener-Hopf operators, Trans.Amer. Math.Soc. 145(1969),467-494.
- [2] R.G.Douglas, Banach algebra techniques in operator theory, Academic Press, New York, (1972).

- [3] D.E.Sarason, Generalized interpolation on H[®], Trans. Amer. Math. Soc. 127(1967), 179-203.
- [4] B.Sz,-Nagy and C.Foias, Harmonic analysis of operators on Hilbert space, Academiai Kiado, Budapest, (1970).
 - [5] M.Uchiyama, C., contraction and interpolation of operators, to appear.