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Some Generalized Toeplitz Operators
Mg L ) F3
45 BLAX SN

l.Introd;ction
Let L2 be the Hilﬁert space of all square Lebesgﬁe integrable
‘unbﬁidns defined on thé unit circle,and L” the Banach algebra of all
ssentially bounded functions defined on the unit circle. We denote

2 and H respecti-

he Hardy spaces corresponding to L2 and L by H
ely. If h 1is a function in some Hardy space,then by the Poisson
ntegral formula h is extended to an analytic function in the open

nit disc.

Given ¢ in Leo slet M¢ be the operator on L2Adefined by

My h=¢h  for h in1?
et P' be the projection from L2 onto Hz. Then an operator on H2
efined by
2
T, =P'M H
¢ ¢l

.s called a Toeplitz operator with symbol ¢.In¥particular,if ¢ is
‘he identity function, then T¢ is called the shift operator. From
leurling's theorem, each invariant subspace for the shift operator
.s of the form ¢H2 with some inner function ¢ (i.e., ¥ is in H
nd |t =1 a.e.)

For an inner function well known Hilbert space H(y) is determinéd
Y

H(p) = HZ @ yH.

’rom now we fix an inner function y and hence Hilbert. space H(w).

We denote the projection from H2 onto H(Yy) by P.
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Definition. For $ in L” , we define the general Toeplitz operator

$(S(p)) in the sense of [1] by’ , ¢(S(\p))=PT¢|H(xp).

If ¢ belongs to H , then ¢(S(p)) was defined . in‘t3]_and [4] , and
its properties aie well known. Sarason showed that if ¢ is in H°° ¢
thenA d{sS()) is compact if and only if V¢ belongs to H + C,wheré~
Cc is‘the'Banach'algebfa of all continuous functions defined on the unit:

circle. In this paper we extend this result to ¢ in H+ C.

2. Trivial Reéults
We denote the inner product in H(y), H2 and L2 by (, ), (., )'.
and ( . )" respectively. Let B(H(y)) be the Banach algebra of all
bounded operatorson . H(y), and x a mépping from L= to B(H(yp)) defined

by x{p)= ¢(S(¥)).
Proposition 1. x is a contractive star linear.mapping.

Proof. For £ and g in H(Yy), we have
(3 (S (W) £,9)=(PT5E,9) = (T5E,9) '=(£,Ty9) '=(EPT 9 '=(£,4 (S(¥))g) -
Thus x(¢)=¢(S(P))*. The rest is trivial.

Proposition 2. If ¢ is an invertible function in L” whose essen-
tial range is contained in the open right half plane, then V¢(S(w))‘is

invertible.

Proof. There exists an "¢ > 0 such that |le ¢ -1]] <1 (c.£.[2]). From
proposition 1, it follows that
leo (st¥))~ I]| <1,

which implies that ¢(S(y¢)) 1is invertible.

U
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From this proposition, we can obtain the next proposition by the

same techniques as the proof of 7.19 of [2].Therefore-we omit the proof.

Proposition 3. g{d(S@®))) is included in the closed covex hull

of essential range of ¢ .

' . ©
Proposition 4. If ¢ is a real valued function in L , then

o(d(s)))Co(Ty).

Proof. Hartmann-Wintner showed that
0(T¢)=[ess inf ¢, ess sup ¢1,
which is a closed convex hull of the essential range of ¢ . Thus the

assertion follows from proposition 3.

3. Main Results

We denote the identity operators on H(IP),H2 and L2 by I, I' and I".

Lemma 1. For ¢ in H + c, (I"- P‘)M¢ P' is a compact operator

on L2.

o1+ 92 be a decomposition of ¢ such that ¢! is

Il

Proof. Let ¢

in H- and ¢® is in C. Then it follows that

. n_pt S n_p? .pt

(I"-P )M¢ P (I"-P )MéLP .
Take trigonometric polynomials qn(n=l,2,;..) whose sequence uniformly 
converges to ¢>. Then ,since

n_ope L I n_p? i< - <‘ - 2 —)— 3
L e L Il=Iqun Mgellzllg - ¢* 1l >0 (s,

finiteness of the rank of, (I"—P')Mq P' implies that (I'-P')M¢2P'

n
is compact.



Lemma 2. For ¢ in H + c, PT (I'-P) is a compact operator.

¢

Proof. This lemma follows from Lemma 1 and next relations;

PT¢(I'—P)=PP'M¢(I'—P)=PP'M¢Mwa(I'—P)=PP'MwM¢M$(I'—P)=

=PP'M¢(I"—Pf)M¢P'M$(I'-P).

Proposition.5. If ¢ is in C and n is in L’ ,then
d(S@)In(S()) - (¢n) (S(¥))
and n(s@) e (s@)) - (¢n) (s(¥))

are compact.

Proof. Since T Tn - T is compact, we have

9 én

PT,PT P - PT, P = PT.PT P - PT, T P + compact =
" "n én ¢ "n $™n pact

= PT¢(I'—P)TnP + compact.

Thus ,by Lemma 2, ¢é(S(¥))In(s(yp)) - (¢n)(3(w)) is compact. Since

NS (SW)) = (nd) (S 1*=¢ (SW)IN(S(YP))-(Fn) (S(Y)),

we can conclude the proof.

Set Hg ={ feHP; £(0)=0 } . It is well known that if f belongs

to Hé then there exist fl

_ 2 2
and [£] = [£,17 = |£,]7 a.e. .

. 2 . 2 _
in H and f2 in H0 such that f—flf2

Lemma 3. If ¢ is in H + C, then there exists a compact operat-

or X from H2 to ﬁg (conjugate space-of Hg) such that.

27
1 — _ " -
5 S ¢p £ dt = (RE;,£,)" + (¢(S(Y)IPE,,P'YE,)

27 0
for every £ in H: , £, in H2 and £, in H> such that £ = f,f
Y o’ *1 2 0 172 -
. 2 2
Remark. It is not assumed that |£]| = [£,|7 = [£,[" .
Proof. Since wfz is orthogonal to sz, P'wfz belongs to H(Y).
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27
__.1 I = ( F w_ v = "

+(P'$(1'-P) £, yE, )" + ((I"-P*)¢£,,pE,) "7

(P'¢Pfl,1>"pfz)" + ($pp'¢(1'-1>)fl,'f'2)" + (Tp‘(I"—p')q;fl,‘fz)"

= (¢ (s(y))PE,,P'YE,) + (’q?p'r¢(I'—P)fl,fz)"+($(1"—p'm¢fl,'fz)" »_
Thus K= MﬁPT¢(I'-P) + ME-(I"-P')M¢ Iﬁz satisfies the conditions of this

lemma.

The proof of next theorem is deeply depend to [3].

Theorem 1. Let ¢ be a function in H + C. Then ¢ (S(Y)) is compact

if and only if ¢ belongs to H + C .

Proof. Suppose first that y¢ is in H + C. Then there exist n in
H G and ¢ in C such that ¢= ¥ (n + z). Since {yn) (s(yv))=0,
it follows that ${S(y)) ; (vz) (S(y)) ,which is compact [3].
Suppose next that ¢(S(y)) is compact . We wish to show tha£ the

kernel of functional of Yo+ H on Hé is sequentially weak star

closed. Let fn be a sequence in the kernel of it which converges weak

star to £. Let: fn=flnf2n be the factorization of fn such that £ and

2 2 . o 2
f,, belong to H® and H; ,respectively, and that [fn[—lflnl —len

Then , since each of sequences of {fln} and ‘{on} is bounded in L2,

1n
l2

we may assume that each of sequences above weakly converges to fl and

f, respectively in L2, and f=f,f, [3]. It is clear that f;is in 2 and

is in Hz. From lemma 3, there is a compact operator K such that

£, 0

2T -
1 — _ - " I
5f;~f0 ¢FE, At =(KEy E, 0"+ (9(SWIRE) LPWE, )

27
1 I — F n v, F
and 7—;-50 $9E at =(Rf; ,E, )" + (0(SW)IPE, ,P'YE, ).

Since both K and ¢ (S(y)) are compact,it follows that

(RE, ,» £, )" — (R ,E,)" as n—

-
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and (¢(S(¢))Pfln,p'¢E2n) — (¢(S(¢))Pfl,9'wf2) as n—o ® .

Thus we have
1 27 _
i——_ﬂ_S ¢p £ dt = o0,
0

Thus we can conclude the proof .

4 .Miscellaneous Results

Let K be the ideal of all compact operators of B(H(y)).

Corollary-1l. {¢$(S(y)) + K ; ¢in H +C} is an algebra and the nat-

ural mapping from it onto {¢ + w(H°+C); ¢ in H +C} is an isomorphism.

Proof. From . Proposition 5, {¢(S(y)) + K} is an algebra. From

Theorem 1, the natural mapping is well defined and one to one.

Corollary 2. If ¢ is in H  +C and ¢ (H +C)+y (H +C)=H +C,

then ¢(S(y)) 1is a Fredholm operator.

Proof. There exists n in H +C such that én +w(Hw+C)=1+¢(Hm+C).
Therefore we have
p(sP)In(s@))+ K= (¢n)(S(P)) + K = I + K.
Consequently ¢ (S(y)) i;‘a Fredholm operator.

Corollary 3. If ¢ is in H +C and T, is a Fredholm operator, then

9
$(S(¥P)) is a Fredholm operator.

Proof. Since ¢ is invertible in H +C [2], this corollary follows

from Corollary 2.

If ¢ is in H , then we showd that $(S(y)) is a Fredholm operator
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if and only if there is a factorization ¢ = ¢1¢%> , where ¢'{S(y)) is

invertible and ¢?is a finite Blaschke function [5].

Theorem 2. If ¢ is in H , then next conditions are equivalent ;
(a) ¢(S(y)) is a Fredholm operator,
(b) there are >0 and 1>8>0 such that l¢(z)|+|¢(zy];e foril>|z]>s ,

() ¢(H+C) + ¢(H“+c) = B°+C.

Proof. First assume (a). Let ¢=¢'¢9> be the factorization given
above. Then there is an - € >0 such that
o2 (z)]| + |w(z)|>¢€ for |z]|<1 ,
because $'(s{y)) 1is invertible. And there are ¢'>0 and 1> § >0
such that |42 (z)| > &' for 1> |z|>5 ,
because ¢2 is a finite Blaschke funcfion. Therefore we have
o (2)| + [v(z)|2]9* (z) [{|o? (2) | + |y (2)|}zee’ for 1>]z[>5 .
Thus we have (b).
MNext assume (b). Let n be the greatest common inner divisor of ¢
and y.Then it is obvious that there isan €'> 0 such that
In(z) |>e'" for 1> |z|28.
Consequently 1/n belongs to H O +C [2]. Sset ¢$'=¢/n and ¢'=y/n.Then
it is clear that there is an €">0 such that
| [¢'(2)| + |p'(2)|>e" for |[z]|<l.
Hence ,by corona theorem ,we have ¢'H°° + w'Hm= Hm, which yields
¢ (B +C) +P (H +C)= H +C.

Last, by Corollary 2, (c) implies (a).
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