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Pamilies of Linear Systems on

Projective Manifolds

Makoto Namba
(Tohoku University)

1. By a complex space, we mean a reduced Hausdorff complex
analytic space. Let X and‘ S  be complex spaces and T : X «—>
S a surjective proper holomorphic map. The triple (X,%,S) is

called a family of compact complex manifolds if (1) every fiber

'711"1(s) = V, is connected and (2) there are an open covering
{Xi} of X, open subsets Ui of (Cd, open subsets Si of
S and holomorphic isomorphisms ’T[i: Xi———> Uix Si such that

the diagram

——-’Z’—%UXS
R ,/pro:.l

commutes. We write

/7i7Z£1 (zk,s) = (gik(zk,s),s).

We write {Vs}seS instead of (X,7,S). A family of holomorphic
vector bundles is, by definition, a holomorphic vector bundle

H on X. Put P, = ‘}IIVS and write {FS, stgs instead of
F. Let H”(VS, @(FS)) be the Y-th cohomology group of the
sheaf G’(FS) over VS of germs of holomorphic sections of Fs‘
We may assume that 4 is trivial on X,. Let {fik(zk,s)} be
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the transition matrices of 3: . Then, for o0€S, we define a

bilinear map T: HO(VO, @(Fo))xToS——? H (Vo, @(Fo)) by
T8, 28)y (ay) = Gry/en)(, o) Kxlm)
- (agi/azi)zi(agik/as)(Zk,o),

0,
where § = {Si(zi)} € BV, 6(1?0)), 9/0s €T S and z_ = g ;(z;,0).
Put 'Cg(@/as) = T(§,%/ms).

Using Kuranishi's idea of the proof of the existence of

complete familieé of complex structures (Kuranishi[7]), we get

Theorem 1. .Let {FS,VS}SEs be a family of holomorphic
vector bundles. Then, for any point o0 €S, there are an open

neighborhood U of o in S and a vector bundle homomorphism
u: BV, 0(F ))xUu—> B (V_, O(F )X T

such that the (disjoint) union \JHC(Vg, &(Fg)) is identified
’ seU '
with the Ker u. Moreover, we have

0o T
(du)(§_’o) N (o 1§)’ tor  § 10V, 6(F,)).

Pathing up the local data, we have the following theorem

which is considered as a special case of Schuster[11].

Theorem 2., Let {FS’VS}SQS be as above. Then the disjoint
union ﬂ-—l = LJSHO(VS, @(FS)) admits a complex space structure
s€ c .
so that (!H,?\,S),- is a linear fiber space in the sense of

Grauert[1], where A: H —>S 1is the canonical projection.
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For a complex vector space A and a non-,neyga’c_ive integer
r, we denote by G (A) the Grassmamn variety of all (r+1)-

dimentional linear subspaces of A. (If dim A € r, then G°(A)

is empty.)

Theorem 3. Let {FS,VS}Ses be as above. Then the disjoint
union Gr' = UGr(HO(V G(F ))) admits a complex space
s€S :
structure so tha‘l: the canonical pro;;ectlon /1 (QF——)S is

a proper holomorphlc map.

Sufficient conditions for the non-singularity of the spaces
[H' and Gr are given in the next theorem, which is easily

proved by using Theorem 1.

Theorem 4. ILet {FS,VS}Ses be as above. Let o be a non-
singular point of S, |
(1) FPor §e HO(VO, G(Fo)), assume that 'C’§ is surjective. Then

[H is non-singular at. § and
i .0 1 i
aimH = 022 )-n"(r )+ain s,

where hv(Fo) = dim Hv(Vo,‘@'(Fo)).

/.0
(2) Let LeG"(H (V , O(F)))) and let {,§O,' : ‘,Sr} be a
basis of L. Assume that the linear map

3/55 €15 —>( Ty (/e8),0 -+, Tp (3/98))€XN(T,, O(F, )T
is surjective. Then (B—r is non-singular at L and

ainy G = (r+1)(h% )-h1 (F)-r-1) + dim .
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2. DNext, we apply the theorems in §1 to the case of line
v ive
pundles on a projective manifold. Let V be a project manifold,

A\
For a line bundle F on V, let

T : BV, §@)x B (v, &) —>H(V, 6(F))
be the bilinear map defined by
T(E ,h)ik(zi) = Ei(zi)hik(zi),

mere 5= 1§l e ©0,0@) and n= {n, ()} € 1, 6).
Put  Tg(n) = ©(§,0). |
For a cohomology class c€H2(V,Z) of type (1,1), we put

PicC(V) = {F ‘ P is a line bundle on V with c(F) = c}‘ .

" ( ¢(F) is the Chern class of F). Then Pic®(V) is an abelian
variety of dimension gq = dim g (V, @), the irregularity of 7,

and is called the c~th Picard variety of V.

For s €Pic®(V), we denote by FS the line bundle on V

Séﬁc‘(\lﬁ a family of 1line

bundles. For r =20, we denote by Gg(V) the complex space G—r

corresponding to s. Then {FS,V}

in Theorem 3 with respect to {FS,V} s ePicC(V)* It is regarded
as the set of all linear systems gg on V with "degree" ¢
(i.e., c(I[D]) = ¢ for Degﬁ) and of dimension r; In pafticular,
G—g(V) is the set of all effective divisors D on V such

that c¢([D]) =.c. This is canonically isomorphic to the space
introduced by Weil[13] and Kodaira[5]. The map AL: D EG?:(V)
F—> [D]€Pic®(V) is called the Jacobi map. )
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Definition. A linear system gg on V is said to be

sémi-regular if there are independent DO,- s, Dreg‘z such

that the linear map
new (v, 3)—>( T, (), ==, Ty (n))€BV, OCDI))TH
§O §r

is surjective, where Dégg and Dy = (,gy), the zero divisor

of §, € BV, &(I1])), ogvgr.

Theorem 5. Let gggﬂ;g(v) be semi-regular. Then it is

a non-singular point of Gg(v) and
. 0
aimgrGR(V) = (2e1) (0 ()-n'(D)-z-1) + g,
where Dégg and n¥(D) = dim E¥(V, Q([D])).

Remark, If we put r = O, then we get the usual semi-

regularity theorem of Kodaira-Spencer[6].

The following two theorems concerning the Jacobi map are

easy consequences of Theorem 1.

Theorem 6. Assume that there is D E(E‘rg(v) such that
hO(D)>h1 (D). Then the Jacobi map M GS(V)~—'> Pic®(V) is
surjective and each fiber of M has dimension at least

1 (D)-n'(D)-1.

Theorem 7. For DG(E}S(V), assume that ho(D)éh1 (D).
Then there are an open'neighborhood U of x= A(D) in Pic®(V)
and a n% (D) xn’ (D)-matrix valued holomorphic function A(y), yeU,
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on U such that M(GO(V))N\U is the set of zeros of all

19 (D)X n°(D)-minors of A(y).

Remark. If V is a compact Riemann surface, then Theorem 6
is the Jacobi inversion and Theorem 7 is known as Kempf's

theorem (see Mumford[9]).
Put

ﬂ:g(v) = {ggéﬁ—g(V) i g‘g "has a fixed component or a

base point} .

Then, we can easily show that &:ﬁ(V) is a closed complex

subspace of (E‘_i(V),. Put

(Err(’V) = \C/GE.W)" ‘FT(V) = \Z‘F:g(v),, (disjoint unions).

A holomorphic map f ¢ V —> [Pr is said to be non-degenerate

if the image f(V) 4is not contained in any hyperplane. Let
HOlnon-deg(v’ IPr) v,be the set of all non-degenerate holomorphic
maps of V into Ipr. Then, it is an open subspace of the

Douady space Hol(V, ’[Pr); Note that Aut(?r) acts freely on

HOlnon_deg(V, ﬂ:’r) by the composition of maps.
1 r (DT
Ineoren 8. The orbif space Holyy, go0(V, P¥)/Aut(PP™)

has a complex space structure such that (1) it is biholomorphic

to G.r(v), - u:r(V) and (2) the projection

Hol (v, P¥) ——> Hol (v, PY)/aut(PT)

non~deg non-deg

is a principal Aut([P¥)-bundle.
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At(PT) x Aut(V) acts on Hol (v,PY) by the composition

~“non-deg
of maps. By Holmann's theorem[2],

Cor'ollarx. Assume that 4ut(V) is compact. Then

ry -
mv, p) = HOlnon-—deg

(v, PY)/(aut(PT) x aut(V))

admits a complex space structure such that (1) it is biholomorphic
to (GF(V) - FF(V))/aut(V) and (2) if h is alAut(PT)X Aut(V)-
invariant holomorphic function on an open subset W of

Hol (V, PT), then there is a holomorphic function & on

non-~deg
A — e T ’ r
o (W) such that 0o = h, where & : HOlnon—deg(V’ P)—>

M(V, ]Pr) is the projection.

Example. Let V = G:/(ZZH»)Z) be a complex 1-torus. Let
O be the zero of the group V and nO = O+-++« +0 be the -
divisor on V. Let @Inol: V—— ]Pn—1 be the meromorphic map
associated with |nO|., It is in fact a holomorphic imbedding for.
n23. Pat O = P o (V). Tet 8T (1grgn-2) be the open
subspace of the Grassmann variety of all (n-2-r)-dimensional
linear subspaces of n)n-1 which do not interse}ct with Cn.
Let Ty ¢ vyeVi—> x+y eV be the translation of V by
x€V, Let G be the finite subgroup of -Aut(V) generated by
t, with nx =0 (the summation in the group V) and by
(1) S_4 ¢ yeV—> -yeV, if V is neither biholomorphic to
C/z+ N=TZZ) nor %o (E/CZM’Z),( §= (1+ 4-3)/2),
(2) s,—q : yeV—>4=Ty €V, if v = CAz+ =770,
(3) se P yeVi——%yel, if V= (E/(ZZ+§’Z).
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Then every element of G can be extended to be a projective
N _ I

n-1

transformation of '[P mapping Cn onto itself. Thus G

acts on /gfl
Now, M(V, P*) is, in this case, divided into comnected

compognents as follows:

M(V, P¥) = M (V, IPI‘)UMNZ(V, P\,

r+1
where

Mr+1(V,IPr) = one point,
Mn(V,ﬂ)r) = )i;g /[G, for n =r+2.

Mn(V, PT) is considered as the moduli space of non-degenerate

holomorphic maps f : V———)]Pr such that
n = (ord £)(deg £(V)),

where ord f is the mapping order of f : V——=>1(V),

3. Next, we consider the case of compact Riemann surfaces.
Let V ©be a compact Riemann surface of genus g. In this case,
v . . T _ T .
GC(V) is written as (3,(V), where n = fVC. Gn(V) is the
set of all linear systems on V of degree n and dimension r.
(Erg(V) is oanonically isomorphic to _SnV, the n-th symmetric

product of V. For rx1, put as before

ﬂ:fl(v) = {giéﬁ—i(v) [ gg has a fixed point},
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ry . T
HOlnon-deg(v’ P )n - {f GHLoj‘non-deg(v’ P \
n = {oxd f)(deg f(v))};

In particular, we put

|

1
Rn(v) H°lnon—deg(v’ TP )n

{f l‘f is a meromorphic function on V of order n

]

By Theorem 8,

: H°1non-deg(v’ IPI‘)H/Aut(‘ﬂDI')g:, (ﬁ,i(v) - H:fl(V).
In particular,

R (M /aus(PH= Gl - Flv.

It is a difficult problem to determine n with non-empty
HOlnon-deg(V’ ]Pr)n and to determine the structure of it for
such n. Even for Rn(V), it seems difficult. Note that Rn(V)
is non-empty for mnx>g+l. Rg(V) is non-empty unless V is
hyperelliptic and g is odd. If mnxg, then Rn(V) is non-

singular and of dimension 2n+1-g.

Example. Let V be a non-singular model (of the closure
in IPZ) of the curve y3 = x8-1. It has the genus 7. By some
-calculations, we can show that (1)'33(‘/‘) o2 Aut(ﬁ;1), (2) R4(V)
and RS(V) are empty and (3) R.(V) is of dimension 6 and
singular at £ = %%, In fact, the tangent cone to R6(V) at

f is given by {(21,---,27)6([:'7{ z1z2=0}.
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VWe give here a simple theorem.

Theorem 9. ILet V De a compact Riemann surface of genus
g. Let m and n be positive integei‘s such that (1) m and
n are relatively prime and (2) (m-1)(n-1) £ g-1. Then, at least
one of R (V) and Rn(V) is empty.

Corollary. Let p be a prime number such that RP(V) is
non-empty. Let n be a positive integer such that (p-1)(n-1)<
g-1. Then |

= empty, if ngE O (mod p)

Rn<v>{

an/p( IP1), if n=0 (mod p)..

Now, using Serre duality, the semi-regularity condition is

expressed in this case as follows.

Theorem 10. A linear system gflerl(V) is semi-regular
if and only if, for a basis {.%O, e ,,§r} of 4'che linear
subspace of HO(V, 6(ro1)), (Dégi), corresponding to gg and
for "ZO, « .=, NTe HO(V, Q(KV(Z) C-01)), (Ky = the canonical

bundle of V), the equality
EO70 4+ oo ou §7T = 0€HO(V, O(ky))
implies
0] T
’r( = e ® & (7{ = O,

Corollary. (1) Every divisor DESTV is semi-regular,
(2) g ¢ Gi(V) is semi-regular if and only if h'(2D-D.) = 0,
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where ‘Deg;l and DO is the fixed part of g;.

(3) If n'(D) £ 1 for DEgi, then gfl is semi-regular.

By Theorem 5, if gie&i_(V) is semi-regular, then gfl
-is a non-singular point of (E'II;(V): and

dimg;r;Gi(V) = (r+1)(n-r) - rg.

Remark. Severi[12] says that, for a general V linear

systems gfl on V depends ((r+1)(n-r) - rg)-parameters.

Next, let g=2 and Tg be the Teichmiiller space of
compact Riemann surfaces of genus g. For teTg, we denote by
V_E the compact Riemann surface corresponding to t. For m >0,
let J (V.) be the Jacobi variety of degree =n, i.e., the set
of all line bundles on VJc of degree mn. It is well known that
(Jn,x,Tg) = {Jn(vt)}te‘l‘g is a family of abelian varieties.

For s eJn, put V = V~( ) Let F, be the line bundle
of degree n on VS corresponding to s. Then {F }seJn
is a family of line bundles.

We denote by Gfl the complex space (H—r in Theorem 3

with respect to the family {FS’VS}SGIn. Then
U(E-r(V (disjoint unien).
In fact, Gi(vt) is a fiber of
T : (3T Mg A g
Tn n g*

We rewrite the condition of (2) of Theorem 4 in this case
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as follows.

Tema. For §= {E(z)}e’(v, 0(7) ana -
{q?f(zi)}éHO(V, G(KV®F"1)), 0L V<« r, assume that yioél’?”
= 0, Then -

{Jé: O7Zi(d §§/dzi)} e 89(v, O(K%Z)),

where z; 1is a coordinate on Ui and -{Ui} is an open

covering of 'V,

NP . r r . .
Definition. A linear system g, e(EFn is said to be

weak semi-regular if, for a basis {go, .. "gr} of the linear

subspace of HO(V G(r ), = [D], D€gy), and for '770: T

’ere HO(VO, G(Kvo® F;1)), the equalltles

T Y, o
= 0€H(V
,)2;‘0%’7 cCen (V, G(Kvo)),
{”Z? va(dgii)/dzi)} - 0 €H(T,, 6:7))
imply q?o = e & ® = QZI‘ = ‘O. '

Of course, semi-regularity implies weak semi-regularity.

By Theorem 4,

Theorem 11. If gie Gi is weak semi-regular,.then gxxl'

is a non-singular i)oint of (E—fl and
. r _
dlmgiﬁ-n = (r+1)(n-—r') - Tg + 3g - 3.

An interesting fact is
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Theorem 12. Every element of (E—; . is weak semi-regular.

Hence 0}; is non-singular and of dimension 2n+2g-5.

Now, we consider the projection

» rMs 7'\&\
J7t’ n /Jn ’Tgo

It is a proper holomorphic map. Note that

P ry _ . . . r

7':((E‘rn) = {t GTg I there is a linear system g, on Vt}‘
A famous known fact is

Theorem (Kleimenn-Laksov[4d, Kempf[31). If (zr+1){n-r) - rg

=0, then 7(Gy) = T,

Assertion., The theorem can be proved if one finds a compact
Riemann surface V and a semi~-regular linear system gi on
V, where n = g+r-[g/(r+1)].

In fact, if gi is semi-regular, then %-1(7£(gf1)) = (Erg(V)

I
and G; are non-singular arfd

N

{(r+1)(n-—r) - rg + 3g - 3}
- {(r+1)(n-—r) - rg}
38 = 3.

L]

. -1 T
COdlmgfl T (VC(gn))

Hence, by the proper mapping theorem, 7r: Gi_"")Tg is

is surjective, then T : GX

surjective. (If 7r: Gi-—-—)T -

g
—————>Tg is also surjective for m >n.)

This is actually what Meis[8] did for r = 1. In fact, he
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found such V and g; as follows :

Case 1.t g is even. In this case, n = (g+2)/2. Ve may

assume that g = 4. Let V be a non-singular model (of the

closure in ﬂDz) of the curve
7% = (x=1) (x=2) (x-3) (x-4)" 1 (x-5)2" (x-6)7T,

Then V has the genus g. The pencil g; determined by the

meromorphic function x satisfies n'(2Dw(x)) = O. Hence, by

1
n

Case 2 : g is odd. In this case, n = (g+3)/2. Let V be
in P2
a non-singular model (of the closur%Q of the curve :

(2) of Corollary to Theorem 10, g is semi-regular.

3 n 2n-2 :
yo = J] (x-1)/ T (x-1i).
i=1 i=n+1

1

n determined by the

Then V has the genus g. The pencil g
meromorphic function y satisfies h1(2Da(y)) = 0, so that it

is semi-regular.

Theorem 13. Assume that 2n > g+2. Then 9r: (Er:l' » Tg

is of maximél rank at g;<sd}; if and only if g; is semi-regular.
Finally, put
Tg(n) = '{tGETg ‘ V., has a meromorphic function of order n}.
Applying Corollary to Theorem 9, we get

Theorem 14. Let g=2 and let p be a prime number such

that (p-1)2§; g-1. Then,
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(1) Tg(p) is an open subspace of a closed complex subspace of
Tg' and is of dimension 2p+2g-5. 2
(2) Tg(p) is singular at t if and only if ho}{)«,(f)) >3,

where f 1is a meromorphic function of order p on Vt.

Corollary.
(1) (Rauch[101) If g > 2, then Tg(z), the hyperelliptic locus,

is a non-singular closed complex subspace of Tg of dimension
2g~1.

(2) If g>=5, then Tg(3), the locus of trigonal compact
Riemann surfaces, is nén-singular and of dimension 2g+1.

(3) If p>5 be a prime number such that (p-1)(2p-3)< g-1,

“then Tg(p) is non-singular.
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