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SOML: OPEN PROBLiMS IN Tils STUDY OF

HONCOMPACT KAHLLR MAHIFOLDS
by
i, Wu

In this short note, I wish to discuss several open problems in com~
plex analysis. Although they are specifically phrased in fhe language
of Kdhler geomeﬁry, the circle of ideas surroﬁnding tyem seems to have
wider ramifications. Most of these ideas were inspired by the recent
papers [SY] and [GW1]. I may also poinﬁ out that all the problems be-~
low, after suitable modifications, become problems concerning harmonic
functions on noncompact Riemannian manifolds.

(I wish to express my sincere thanks to K. Yagi>for pointing oﬁt 8
distressing errbr in the original‘formulation of Problem 1 below, Its
present. formulation is due to him.)

The first half of this discussion will be centered around two well-

known theorems of H, Grauert, The first is his solution of the Levi

Lecture presented at the Kyoto Conference on Geometric Function
Theory, September 8, 1978,

dork partially suppbrted by the National Science Foundation.
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" problem: a complex manifold carrying a c” strictly psh (abbreviation
for plurisubharmonic) function is a Stein manifold. Intuitively, if

" more is knpwn about the exhaustion function, then more could be said

about the Stein manifold. It i1s worthwhile to try to convert this

vague statement into real mathematics because among Stein manifolds,

one should be able to distinguish betwéén (say) bounded domains of holo-

morphy and ¢ . So let me begin by addressing myself to these two ex-

treme cases, First consider a noncompact K#hler manifold M with a

pole o€ M, i.e,, exp: Mo + M is a diffeomorphism, and let p de-

note the distanqe function relative to o , i.e., p(x) = distance from

x to o, Then p2 is a C° exhaustion funétion on M . Let

¢ =1

5 j Gij dzldiJ be the Kdhler metric of M and let Lp2
, .
3%% i3 - 2 2
=), . =L dz'daz’ be the Levi form of p° . Write L~ ¢ if the
t0d 52%93
eigenvalues of L;? with respect to G uniformly approach 1 as

p ™« , Such is obviously the case if M = ¢ s © = the origin, and

G =}, az' agt

Problem 1. Let M be a K#hler manifold with & pole o &and let
G and o be as sbove. If Ip-~C , is M biholomorphic to €% 2

As background information, one has the following two theorems;

Theorem 1, Let M Dbe a Kihler manifold with a pole and let G
and p Uve as sbove, Then Lp2 ~ (G if for some continuous functions

K, k; [0, ») > [0, ») , the (sectional) curvature of M satisfies:
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,

-k(p) < curvature < K(p) ,

«Q

(#) : ) J s K(s)as< 1,

J s k(s)ds < = ,
) 0

Theorem 2. Let M be a n-dimensional completé simply connected

Kdhler manifold whose (sectional) curvature satisfies the following con-~

dition:
~k(p) S curvature < 0 ,
N o
(##) $ J s k(s)ds < =,
0
[ k is monotone decreasing on [6, =) for some 6 > O .

Then M is biholomorphic to C° .

Theorem 1 fo;lows from Theorem A together with the proofs of Lemmas
4,5 and 4.6 in [GW1] while Theorem 2 is the theorem of Siu-Yau ([SY])
with a technical improvement due to Greene-Wu([GW1], Theorem J).
If Problem 1 has an affirmative solution, then as a corollafy, one
would obtain a far-reaching generalization of Theorem 2, namely a
K¥hler manifold satisfyiﬁg the assumption of Theorem 1 is biholomorphic
to ¢ . I should emphasize that this generalization involves more than
the superficial comparison between the two sets of curvature assumptions

(#) and (##), as the following discussion will hopefully bear this out.

The proof of Theorem 2 as given in [SY] and closely followed in [GW1]
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makes strong use of the fact that every point of M is a pole, ard the
main weight of the analysis lies'in obtaining good L2 estimates for the
solution of the 3 equation on (n, 1) forms. Since each point of M
is a pole, gub—mean-Value theorems then convert these L2 estimates into
pointwise estimates of the holomorphic n~forms -so produced, and taking
quotients of suitable holomorphic n-forms yields the global coordinate
functions on M . The main point about the proposed generalization of
Theorem 2, and hence about Problem 1, is that faced with the existence

of possibly onlyone pole o&€ M, one will have to dispense with this

approach and will have to extract holomorphic functions of linear growth

from the 3 equation on (0, 1) forms using only the fact that there

. , . 2 s .
exists one good exhaustion function o . This would seem to necessitate

a deeper L2 understanding of 5-, particularly as regards the influ-
ence of p2 in its réle as a weight factor on the functiongl solution
u of du=¢f (cf. [H)). Such an understanding would be in the spirit
that Problem 1 is being posed and would ultimately be essential for a
better understanding of Theorem 2 itgelf.

In the opposite extreme of Problem 1, consider the following., De~

fine a function ¢ ; M-~ [0, 1) on a manifold M bto be a bounded exhaus-

tion function iff for every te€ [0, 1) , ¢'l([0, t]) 1is compact. For

exemple, the functioen lzl2 on the unit ball in C€° is a c” strictly
psh bounded exhaustion function. A less obvious fact is that every

bounded domain of holomorphy.with dn boundary possesses & c” stricte
ly psh bounded exhaustion function ([DFl]). On the other hand, there

are bounded domains of holomorphy without any psh bounded exhaustion
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‘ functions’(cf. [DF2])., One would like to know in general how far the
existence of & C” strictly psk bounded exhaustion function ¢ goes
towards controlling the function theory on a manifold M ., First of all,
such an M ,must be Stein because if x: [0, 1)+ [0,«) is & strict-
ly increasing, strictly convex C - function such that X * ©» 4, then
x{(¢) is a strictly psh exhaustion function on M and Grauert's theo-

rem applies, Now consider:

Problem 2. Suppose a noncompact. complex manifold M possesses &
C°° strictly ‘psh bounded exhaustion function. Is it complete hyper-
bolic (in the sense of Kobayashi [K])?

-Again as background information, the following theorem was proved

_in [GW1] (Theorems F and G).

Theorem 3. Let M be a complete, simply connected, Kfhler mani-

fold whose curvature satisfies:

(+) curvature outside & compact set,

*
l+p2

where A is arpositive constant and P 1is the distance function rela-
tive to a fixed o€ M . Then: (i) M possesses a C°° strictly psh
bounded exhaustion function, and (ii) M is complete hyperbolic,

In [GW1], (ii1) was proved by meking use of (i) and the curvature as=
sumption (1), The thinking behind Problem 2 is that it may be possible

to deduce (ii) directly from (i). But beyond that the two preceding
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problems should bhe viewed as sample gquestions in a guantitative study of
Grauert's theorem, More refined questions in this study can be asked
once these crude ones are ansvered,

The second theorem of Grauert's to be discussed is a corollary to
his generalized Oka principle: a holomerphic vector bundle on a Stein
manifold is holomorphically trivial if it is topologically tfivial ([el).
In a concrete geometric context, it is natural and sometimes importent

to ask for the "best possible"

holomorphic trivialization. As an ex-
emple, let M be a complete, simply connected, K#hler manifold whose
curva§ure satisfies (+) above. It was already remarked above that M
is Stein. Since M 1is diffeomorphic to euclidean space by the Cartan-
Hadamard theorem, the canonical bundle K of M is topologically and
hence holomorphically trivel. In other words, M has & nowhere zero
holomorphic n-form ( n = dim@ M ) . On the other hand, Theorem G of

[GW1] implies that M possesses many i holomorphic n-forms, It is

then natural to ask:

Provlem 3. If M is a complete, simply-connected Kéhler manifold
whose curvature satisfies (t) , does M possess & nowhere zero L2

holomorphic n-form?

It is plausible that starting with an arbitrary nowhere zero holo-
morphic n-form on such an M, one can deform it in a canonical way to
one that is also in L2 . However, there are as yet no availsble tools
for this construction, For a discussion of Problem 3 from a different

point of view, see the end of §8 in [GW1].
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Suppose M is a complete, simply-connected, n-dimensional K#hler
menifold with nonpositive curvature, It hgs béen known for a long time
that M is & Stein manifold ([W1]; see also Proposition 1,17 in [GW1]).
But M being diffecmorphic to € (Cartan-Hadamerd again), its holo-
morphiC*cofangent bundle T™M is topologically and hence holomorphically
triviel. Let Wiy «ees w  be holomorphic 1-forms which trivialize ™M .

low we ask:
Problem b4, Can Wys +sey @  be chosen to be closed l-forms?

If so, then there exist holomerphic funcitons f fn such

1 e
that w, = dfi for all 1 and hence the fi's give a holomorphic im=
mersion of M into Cn . Nothing resembling this has been proved yet,
but it makes sense to reflect on this problem & little. For, what is
being asked is in esseunce whether the topology, or at least the geometry,
of a Stein mahifold hes & direct bearing on the imbedding and immersion
quesitons, In topology, questions of this type are standard and are
dealt with extensively, viz, simplicity of the topology of a manifold
(such as parallelizability) always assures its being imbeddable or im~
mersible in & euclidean space of very low dimension. In the theory of
Stein manifolds, basically nothing is known beyond the Remmert-Bishop-
Narasimhan-Forster imbeddihg theorem, which is valid for all Stein mani-
folds (see [Fl]), and a few other scattered results (cf, [F2], [FR]).
For example, if an n-dimensional Stein manifold is homeomorphic to ¢” ’

there is no result on the value of the smallest integer k such that M

‘can be properly imbedding or immersed in @k . Problem b4 is therefore
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an easier question along the same direction (insofar as a curvature as-
sumption has been added). This whole area seems to deserve a ;ystematic
study, In any case, I hope the preceding discussion has at leagst demon-
strated that the idea of looking for "best possible" trivializations will
generete many problems,

The next problem to be discussed is in a sense the "finite form" of
Theorem 2, To make this vague idea & bit clearer, recall that in classi-
cal complex function theory many theorems about entire functions were
later discovered to be consequences of a corresponding statement about
holomorphic functions defined on the unit disc., For example, Liocuville's
theorem that bounded entire functions are constant is an immediate con-
sequence of the Schwarz lemma about bounds feor a holomorphic function on
the unit dise, Similarly, the small Picard theorem follows from the
Schottky~Landau type theorems on holomorphic functions on the unit disc
which omit three values, With this in mind, it is natural to ask if
Theorem 2 cannot be deduced from some statement concerning the finite

geodesic balls of M . To be specific:

Problem 5. Let M be & complete, simply-connected n—diménsional
K8hler manifold of nonpositive curvature, Is every finite geodesic ball

biholomorphic to & bounded domein in ¢ 2

Now in addition to Theorem 2 (and the related Problen l), there is also the
open question of whether a Kihler manifold M satisfying the hypothesis
n

of Theorem 3 would be biholomorphic with & bounded domain in € ([cw2],

Question %), One is thus tempted to put forth thé following speculation.
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Let M be as in Problem 5, fix an o €M and let B(r) be the open
geodesic ball of radius r around o , If Problem 5 can be affirmative-
ly solved, one hopes that when condition (##) is added one can string
together these bounded domains B(r) as r-> » to fill up all of ¢,
and ﬁhat when condition (t) is added instead, one can string together
thésé 'B(r)'s to fill up & hounded domain., Exactly how these technical
PrOﬁlemS cﬁn be overcome will depend on the exact nature of the solu-
tion to Problem 5, However, if all thegé turn out to be mathematically
valid, then one would have & unified framework to understand the diverse
phenomena (such as Theorems 2 and 3) on simply connected K¥hler manifolds
of nonpositive curvature,

The last problem I wish to discuss requires some definitions. Let
M Ybe & complete, noncompact Kfhler manifold and let p: M~> [0, *®) %be
the distance function relative to a fixed point ° € M as usual, For

each holomorphic function f on M, define M(f, r) = mex|f| , where

the meximum is taken over the geodesic sphere S(r) = {p € M: o(p) = r} .
As usual (cf. [L], p. 373), define the order y(f) of f  by:
N o log M(f, r)
y(f) = lim sup Tog * .
r+
Thus 0 S y(f) S« , From the maximum principle for holomorphic func-

tions, it is straightforward to show that the definition is independent
of the choice of o€ M , Fix M and let [ vary over all nonconstant
holeomorphic functions f ; +the question is: what is the smallest value

of y(f) ? To this end, define the function class k(M) of M by:
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k(M) = inf y(£) ,

where the infimum 1s teken over all nonconstant holomorphic function5.
Ir ¢ is eguipped Wwith the usual flat metric dz dz , then x(C) = 1.
If A denotes the unit disc in € equipped with the Poincaré metric,
then «(A) = 0 . In general, «(M) can assume any value in [0, ®] ;
this can be seen by choosing suitable functions h(r) on [0, =) and
constructing complete Hermitian metrics {exp h(|z|)}dzdz on € (note
that if h(r) is convex then these metrics have nonpositiﬁe curvature

and «(M) € [0, 1]). Now the first question concerning «(M) is:

Protlem 6. Let M, 4 he complete KBhler manifolds with poles
X, y respectively. Suppose the curvatures of M and N do not change
sign, i.e., the curvature of M 1is either nonpositive or nonnegative
everywhere, and the same for N . If for all x' € M and for all

y' € N which satisfy dM(x, x') = Y. v )
curvatureM(x') < curvaturem(y') ,
then is it true that ®(M) < K(N) ? When does strict inequality hold?
One‘should note that in Problem 6, the assumpticn thal the curvatures

of both M and N keep & sign i1s necessary as there are easy counter-

examples otherwise, However, the need for the existence of pcles for M
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and N is less clear, but I wi:l assume it to facilitate the discussion
Lelow., How the pinilosophy beuind this protlem is that "the more positive
the curvature, the faster each holomorphic function must grow." Let me
present tne=supportihg evidence for this, First of all, if the curvature
of M is guite negative, say, M satisfies the hypotnesis of Theorem 3
and in particular (+), then there is prevalent belief that M will carry
nonconstant vowided holomorphic functions (see discussion after Problem
5). 'hus most likely, x(M) = 0 in this case, Nowv let the curvature
of M get less negative, e.g., M satisfies the hypothesis of Theorem 2
and in particular (##); then the proofs of [GY] end [GWl] yield nolomerphic
functions that are "almost" of linear growth, in the following sense,
Given € > 0 , there exists a holomor:hic function f on M such that

£l < ¢+ 6)**€  for some constant C . Thus «(4) = 1 , and the

function class does increase with . less negé£ive curvature, (It is
actualily conjectured that there are funclions of linear growth in this
case; see [GW1l], §9.) Wdext, suppose M has everywhere nonnegative
curvature (in addition to possessing & pole); then indeed (M) 2 1 as
expected, Tue latter assertion is implied by a theorem of S.T. Yau ([Y],
Co:ollary to Theorem h') on the growth ¢f harmonic functions on manifolds
of nonnegative Riccil curvature, lere, we are making use of the fact that
a holomorphic function on & K¥hler manifold is narmonic (cf., e.g., [GW1],
§1) so that Yau's theorem is epplicable., Without entering into a detailed
discussion, I wish to interpose a remark at this point that it is actually
more natural to repurase Problem 6 in the context of harmonic functions

on Riemannian manifolds. Consider finally, the case where M has everye

where positive curvature, then it is likely that (M) > 1 . One piece
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of evidence for thig comes from an observation due to R. Schoen. lie
showed with & simple argument that if & 2-dimensional Riemannian mani-
fold M with positive curvature satisfies the addition assumptions that

(i) every point of M 1is a pole, and (ii) along each geodesic ray

o
yi [0, ») » M, the curvature function satisfies J s K(s)das <1,

0
then every nonconstent harmonic function must nave faster~than~linear

growth. (There are manifolds satisfying these assumptions.) The proof
makes use of Theorem 1, |

In any case, I hope that the foregoing array of facts and con-
Jjectures has been shown tc¢ form a pattern consistent with Problem 6, If
one of the chief aims of geometric function theory is to understand the
interplay bhetween curvature and holomorphic functions, Problem 6 should
be one of the questions that must be answered. Let me close with the
remark that if Problem 6 has an affirmative answer, then it follows that
any simply connected, complete K¥hler manifold M satisfying curvature
S -c (¢ is a positive constant) must have (M) = O ; for one can
cocmpare M with the unit ball whose Bergman metric has bheen normalized
to satisfy - ¢/b > curvature > - ¢ . This is not gquite as strong as
sgying that M possesses bounded nonconstant holomorphic functions, yet
even this much is not known, It Las been more than twelve years since 1
first posedlthe questioﬁ of whether or not such an M possesses noncon-
stant bounded holomorphic functions ([W2]). IkbelieVe it does, but I am
sorry to say that, after so much work in the meantime, I ém still no

closer to the solution.
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