<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>栗</td>
<td>視覚の保護と無限次元多様体の不変性についての研究。</td>
</tr>
<tr>
<td>作者</td>
<td>FUKAISHI, HIROO</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 1979年2月 342番号 33-38</td>
</tr>
<tr>
<td>発行日</td>
<td>1979-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/104289</td>
</tr>
<tr>
<td>種類</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版社</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
On certain non-continuous functions and shape

Hiroo Fukaishi

In the shape category of topological spaces a shape morphism is constructed by a system of maps (= continuous functions); it is, in general, not generated by a single map. Hence we have the following questions:

Question 1. Is it possible that a kind of non-continuous function induces a shape morphism?

Question 2. Can a shape equivalence be generated by a certain non-continuous function?

Definition 1. Let X and Y be topological spaces. A function $f : X \to Y$ is a connectivity function if for any connected $C \subseteq X$, the graph $G(f|C)$ of $f|C$ is connected.

Definition 2. A function $f : X \to Y$ is almost continuous if for any open set $N \subseteq X \times Y$ containing $G(f)$ there is a continuous function $g : X \to Y$ such that $G(g) \subseteq N$.

These notions have been considered to generalize Brouwer's fixed point theorem (cf. Stallings[10]).

Each of the following is intermediate to answer the questions.
Proposition 1. Let $f : X + Y$ be an almost continuous function between compact metric spaces. Then there are ANR-sequences $X = \{X_i, p_{ij}\}$ and $Y = \{Y_i, q_{ij}\}$ with limits X and Y, respectively, and a system $f : X + Y$ of almost continuous functions $f_i : X_i \to Y_i$ such that $f_ip_{ij} = q_{ij}f_j$ for $i \leq j$.

Proof. There are ANR-sequences X and Y with limits X and Y, respectively, and each projection p_i, q_i surjective, since both X and Y are compact metric. Define a function $f_i : X_i \to Y_i$ for each i, by the formula $f_ip_i = q_if$. The almost continuity of f implies that of f_i.

Proposition 2. A bijective connectivity function with connectivity inverse function does not induce a shape equivalence.

Proof. By the example of Stallings [10,p.262].
Let X be the circle represented as the real numbers mod 1.
Define a function $f : X \to X \times X$ by the formula
$$f(x \text{ mod } 1) = 1/x \text{ mod } 1, \text{ where } 0 < x \leq 1.$$ Let Y be the graph of f and $f^* : X \to Y$ such that
$$f^*(x) = (x,f(x)).$$ Then f^* is a bijection, and both f^* and f^{*-1} are connectivity functions, but $\text{Sh}(X) \neq \text{Sh}(Y)$, because their 1-dimensional Čech cohomology groups are different.

-2-
REFERENCES ON NON-CONTINUOUS FUNCTIONS

