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Proper maps modulo CE-maps between ANR's
Tokyo Gakugei Univ. Hiroshi Hosokawsa
1. Introduction and notations. In 1970, L.C.Siebenmann exten-

ded the simple homotopy theory for locally finite simplicial
complexes. On the other hand, T.A.Chapman defined simple homo-
topy type for compact ANR in 1977. We can analogously extend
the Siebenman's theory to locally compact separable metric ANR.
A1l spaces here are locally compact separable metric ANR's,
and“mabs are proper maps 1if otherewise are not stated. Hence
homotopic, homotopy equivalence etc. are all in the category of
proper maps. Subspaces are closed subspaces. Hence inclusions
are in fact (proper) maps. If f and g are homotopic, then we
denote it by £~ g. A CE-map f: X——%Y_is a map f such that
f_1(y) has trivial shape for each y in Y. Note that a CE-map
is onto and the composition of two CE-maps is also a CE-map.
Hilbert cube is denoted by Q, Q ='ﬂ;2,1i, where Ii = [O, 1].

2. Semi-group P(X). TILet f: X—>Y and f': X—Y' be maps. We

identify f and f' if there is a homeomorphism h: Y—Y' such

that £f' = hef., £ and f' are equivalent X f! > v
modulo CE-maps if there are CE-maps

a: Z2—Y and a': Z—>Y' for some space y o
Z and there is a map h: Y—Y' such Y¢—Fn 7

that hef~= f' and hea=>=a', In this cace, h is necessarily
a homotopy equivalence. We can see, by using the following
Edwards and Chapman's theorems, that this relation is an equi-

valence relation.
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Theorem(R.D.Edwards). A locally compact separable metric ANR
is a Q-manifold factor.

X is a Q-manifold factor if X xXQ is a Q-manifold, where Q-
manifold is a separable metric manifold modeled on the Hilbert
cube Q.

Theorem(T.A.Chapman). Let f: M -—N be a CE-map between Q-
manifolds. Then'f is a near homeomorphism. Hence in parti-
cularly, £ is homotopic to a homeomorphism.

~ The following diagram show that the relation modulo CE-maps

is transitive;.

Y"(—ED' Z'(—-:Q—I.)Z'XQ X—f'—'——-——)Y"
!
£'] N;\,, 15 =| fl n'eh ﬁopidﬂ
XI—E 5 v« v xqQ |
E A R R T - b

Y2 — 7 «PL 7xqQ

where ¥, V' are homeomorphism homotopic to Bxid, a'x id resp;

For any map f: X—Y, let {(f) be the equivalence class of f
modulo CE-maps.
(i) Let f and f' be maps from X to Y, If fo=f', then (f) =
(f'). The converse is not true,

Let P(X) be the set of the equivalence classes of maps from
X. For any f: X—7Y, let f': X—>Yx QxI be a map defined by
f1(x) = (f(%), a(x), 0), where a: X-—;Qhény embedding (not nec-
essary proper). Then f' is a Z-embedding equivalent to f.
(ii) TFor any (f), there is a Z-embedding f' in (f).

Addition in P(X). If X is a Z-set in a space Y, then XX Q

is also a Z-set in Q-manifold YXx Q.
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Theorem(Anderson-Chapman). Let foy Tit A—M be & proper
homotopic Z—embeddings from a locally compact separable metric
space A to a Q-manifold M. Then there is an isotopy h,: M — N
such that ho = id and hffo = fT'

We use this theorem to define an addition in P(X) as follows.
Let f,: XA—aYi be Z-embeddings, i = 1, 2. Then the quotient
space W = Y, “%%Y,, identifying fW(X) =X = fZ(X)’ is an ANR, and
the inclusion map g: X— W is proper. Define <f1> + <f2> = (g).

This addition is well defined(see the diagrams below).

X_.fi_;yie&-ﬁqxq x —&1 5w P W'x Q
n, e . /
f i o! !
i
Ti¢; 23 B, | /
i &qm ! Wé————WXQf—U———_M
pr S pr B B2 '
Yix Q « (&8 Zix Q

where BfB;1= id on fi(X)x'Q =XxQ = fi(X)><Q, B, and B! are
homeomorphisms, M = (Z1x Q)L/(Z2X‘Q) identifying-8?1(X><Q) and
85 (XxQ).
(iii) P(X) is an abelian semi-group with unit.

Homomorphism. Let f: X— 7 be a Z-embedding and let
g: X—Y be a map. The quotient spage % é?—T Y containes Y as
é closed subspace. Define g*(f> = (f), where T: Y— 72 é%—? Y
is the inclusion map. Then gy is well defined. In the follow-
ing diagrams, 3%6—1 = id on XxQ = f(X) xQ, h = id on f(X)
(change h if necessary by using proper homotopy extention theo-

rem) and W is a quotient space of Vx QUYX Q identifying
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5—1(X, a) to (g(x), q) for x in X.

X —El 5 71 BT gixq Y ! — 2 Y
4 , -
~ /
| Zé——n v =l g ¥ pro(8'Vid)
B
S "p\ o eelea) |
R ) "% Lpr‘o 1
7xQ «—0> VxQ L 4T w

gf
The followj_ng proposition is easy to:prove;
(iv)  gx{idy) = (idy), (idygly = idp(xys (8oF)yx = 8xfy,
g*(<f1> + <f2>) = g*<f1> + g*<f2>,
gpn =8y implies Eox T &%
The last statement is proved as follows. Let ki: X—XxI Dbe

the maps defined by ki(x) = (x, 1) for all x in X, i = 0, 1, and

let f: X——)Z ‘be a Z-embedding.- IxT — f1, ; ZX:}\{M(XX‘I)
In the diagram, h is defined %O-L ’/}L/’/a zTh

— ‘ ; (v id U .
by h(z) =z for z in Z and ZX:XXO(XX I)&— ZX:XX'O<XXI)

h(x, t) = (x, 1-t) for (x, %)
in XxI., Then the diagram shows thet (ko)*<f> = <§O> = <f1> =
(k)£ (E) |
From the proposition (iv), we obtain;
(v) If g is a homotopy equivalence, then g4 is an isomorphism
between semi-groups.

3., Group PE(X). We will show that the subset {(f) ; £ is a

homotopy equivalence} of P(X) is a set of all invertible ele-

ments and hence is an abelian group.
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Tgorem 1. If f: X— Y has a homotopy right inverse, then for
any map g: Y—7Z, f(gef) = £,(f) + (g).

Proof. We may assume that f and g are Z-embeddings
(replace Y and Z by YXQ and ZXQ if necessary). Let Z' and Y'
be copies of Z and 'Y respectively and let k: Z-—372' and
1: Y—>Y' be homeomorphisms. Let W be the quotient space of
7V Y identifying k(x) = 1(x) for all x in X. Then the compo-
gition 1i: Y~l+Y'<;>W represents fy{(gef) and j: Y'cyz-g}2'<:9w
represents f4(f) + {(g). Since Y deforms onto a subset of X in
Y, i and j are‘homotopic, This proves that £ {(gef) = (i) =
(3) = £:(8) + (e).

Note that the map dose not necessary be a homotopy equiva-
lence. But the condition for £ to have a homotopy right inverse
cannot be dropped.

If f: X-—Y 1s a homotopy equivalence with a homotopy inverse
g, then (£) + g,{g) = (idX). Hence we have;

Theorem 2., PE(X) = {(f)e;P(X) ; £ is a homotopy equivalence}
is an abelian group.

The following proposition is clear;

(vi) PE(X) is the maximal group contained in P(X). If
f: X—Y, then f, maps PE(X) into PE(Y). Furthermore if f is a
“homotopy equivalence, f, restrict to PE(X) is an isomorphism
from PE(X) onto PE(Y).

"~ The following theorem is clear from definitions;
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Theorem 3. Let Y = Y1UY X =Y,nY, and let j;: X—7T,

2 i
j: Y,—Y be the inclusions. Then j2*<‘j1) = {(3).

4. Product and sum theorems in P(X).

Theorem 4. Let X be a subset of Y = Y1UY2 and let YO =

o X, =XnY;, 1 =0, 1, 2 (recall that subsets are always

closed). Let f: X—7Y and f;: X, —Y,, 1 =0, 1, 2 be the inc-

S ILnY
lusion maps. If the inclusion maps XQ--% X2U YO and X— XUY1
have homotopy right inverses, then v
e (f) = j{*<f1> + jé*<f2> - j(')*<fo>-
Furthermore, if f is a homotopy equivalence, then
(f) = 31*<f1> + j2*<f2> - jo*<fo>:
where ji’ ji are appropriate inclusions.

Proof. We majf assume that f and fi are Z-embeddings. TFor
any inclusion i: B-—A, we write i = (4, B), (i) = (4, B) and
iy = (A, B)y. Then

f(E) = (¥, X) (¥, X)

= (Y, XUY1)*(XUY1, X) (Y, Xqu)o(XUYw X))
= (Y, XYY ) {(¥, XVY) + (XYY, X),&VY,, 0}

VY,

= (Y, XYY ), (XVY 0’

X,V Y)u(T,, X,

19
+ (v, XVY1)*(XUY1, X) (X, X1)*(Y1, X0
= (Y, XZUYo)*<Y29 XZUY0> + j{*<f1>°
(XZUYO, XZ)*<Y2, X2) = (X2UYO, XZ)*((YE, X2UYO)(X2UYO, X2)>

= (Y,, XVY) + (XYY, X)W (X VY, L)

2

= <Y2, XZUYO) + (X2UYO, XZ)*(XZ, XO)*(YO, XO>
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= <Y2’ XZKJYO>,+ (X2kJYO, XO)*<YO’ XO>.
Hence we have
TeE) = 31(E) + (¥, VY ) (X VT, X504 ()

- (Y, X, VY (VY X)W (L)

Il

(T + 5S8R = 3o(E) e

If £ has a homotopy left inverse g, then
(f) = g*f*<f>

= g*j%*<f1> + g*jé*<f2> - g*jé*<fo>

Il

j1*<f1> + 32*<f2> - jo*<fo>-

Theorem. If the inclusion mab f: X—Y is a homotopy equva-
lence, then for any finite connected complex K,

(idpx ) =X(K)j«({£),

where j: X-— KxX be defined by j(x) = (ko, x) for a fixed
point ko in K.

Proof. The proof is a double induction about dim K and
number of simplexes of K. |

Let s be a maximal dimensional simplex of K such that the
complex L = K - {s} is connected (if such a simplex dose not
exist, then X collapse to a subcomplex with lower number of
simplexes, and this case is easy to prove). We may assume that
ky is in the boundary § of s. Then

(1dpx £) = j xC(idp x ) + j2*<idsxf> - jO*<idéx )

=% (L) Ju{E) + K(8)JulE) = K(8) 35 (£
= X(K) j4{(£).
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By the Q-manifold factor theorem of Edwards and the above
thebrem, - we have

‘Corollary. If f: X—Y is a homotopy equivalence and Z is
conipaét ANR, then (idzxf) ="X(Z) (). ‘

Corollary. Let f, X, Y and % be as above. Then if X(Z) = O,
XX 7ZxQ is homeomorphic to Y XZxQ. - ‘ |

Néte' that Chapman proved that if X and Y afe (not proper)
homotopy equivalent, then X x [O, 1)><Q'is homeoxﬁbrphic to

Yx [0, 1)xQq.



