Note on shape theory II: Problems

Yukihiro Kodama

Department of Mathematics, University of Tsukuba

Let \bigodot be the class consisting of metrizable spaces. We define a shape category in M called a fine shape category as follows. Let M and N be spaces in \bigodot and let X and Y be closed sets in M and N respectively. According to [7] a continuous map $f: M-X \longrightarrow N$ is said to be a fine map from M-X into N rel.X,Y if for every neighborhood V of Y in N there is a neighborhood U of X in M such that $f(U-X) \subset V$. Two fine maps $f,g: M-X \longrightarrow N$ rel. X,Y are fine homotopic (notation: $f \cong_F g$ rel.X,Y) if there is a homotopy $H: (M-X) \times I \longrightarrow N$ satisfying the following condition: H(x,0) = f(x), H(x,1) = g(x) for $x \in M-X$, and for every neighborhood V of Y in N there is a neighborhood U of X in M such that $H((U-X) \times I) \subset V$. The following lemmas are obvious.

Lemma 1. If Y is an unstable closed set of N and f: M-X \rightarrow N is a fine map rel.X,Y, then there is a fine map f': M-X \rightarrow N rel.X,Y such that f'(M-X) \subset N-Y and f $\stackrel{\sim}{=}$ f' rel.X,Y.

Lemma 2. Let $L \in \mathbb{M}$ and Z a closed set of L. If $f: M-X \longrightarrow \mathbb{N}$ is a fine map rel.X,Y such that $f(M-X) \subset \mathbb{N}-Y$ and $g: \mathbb{N}-Y \longrightarrow L$ is a fine map rel.Y,Z, then $gf: M-X \longrightarrow L$ is a fine map rel.X,Z.

A fine map $f: M-X \rightarrow N \text{ rel.} X, Y \text{ is said to be a } \underline{\text{fine }} \underline{\text{equi-}} \underline{\text{valence}}$ if there are fine maps $f': M-X \rightarrow N \text{ rel.} X, Y \text{ and } g: N-Y \rightarrow M \text{ rel.} Y, X \text{ such that } f'(M-X) \subset N-Y, f' \xrightarrow{F} f \text{ rel.} X, Y, \text{ and}$ $(1) \qquad gf' \xrightarrow{F} 1_{M-X} \text{ rel.} X, X ,$

(2)
$$f'g \stackrel{\sim}{=} 1_{N-Y}$$
 rel.Y,Y ,

where \mathbf{l}_{M-X} and \mathbf{l}_{N-Y} are the identity fine maps in M-X and N-y respectively. If only (1) is satisfied, then f is said to be a fine domination.

For X,Y $\mbox{\ensuremath{\mathfrak{E}}}$ W, let M and N be AR's containing X,Y as unstable closed sets respectively. If there is a fine equivalence f: M-X \longrightarrow N rel.X,Y, then we say that X and Y are fine shape equivalent or have the same fine shape and write $Sh_F(X) = Sh_F(Y)$. If there is a fine domination f: M-X \longrightarrow N, then X fine shape dominates Y and we write $Sh_F(X) \geq Sh_F(Y)$. By Lemmas 1 and 2, it is easy to see that there is a shape category consisting of spaces in M whose morphisms are the fine homotopy equivalence classes of fine maps. We call it a fine shape category. If spaces are compact then the fine shape defined here is the same as one defined in [9].

Problem 1. For X ϵ M, what relation is there between $\operatorname{Sh}(X)$ and $\operatorname{Sh}_F(X)$ or $\operatorname{Sh}_W(X)$ and $\operatorname{Sh}_F(X)$? If X and Y are locally compact and $\operatorname{Sh}(X) \geq \operatorname{Sh}(Y)$ or $\operatorname{Sh}_W(X) \geq \operatorname{Sh}_W(Y)$, is $\operatorname{Sh}_F(X) \geq \operatorname{Sh}_F(Y)$ true? Here $\operatorname{Sh}(X)$ is the shape of X in the sense of Fox [4] and $\operatorname{Sh}_W(X)$ is the weak shape in the sense of Borsuk [1].

Problem 2. Characterize the space X such that $Sh_F(X) = 1$, that is, X is fine shape equivalent with a one point space.

The following are problems concerning the shape Sh(X) however many of them are interesting one's concerning the fine shape $Sh_{_{\rm F}}(X)$ too.

Problem 3. Let $X,Y,X',Y' \in \mathbb{M}$ and let Y,Y' be locally compact. If Sh(X) = Sh(X') and Sh(Y) = Sh(Y'), is $Sh(X \times Y) = Sh(X' \times Y')$ true?

Problem 4. Are there $X \in \mathbb{M}$ and a locally compact space $Y \in \mathbb{M}$ such that $Fd(X \times Y) < Fd(X) + Fd(Y)$? Here $Fd(X) = Min \{ dim Y : Y \in \mathbb{M} \text{ and } Sh(X) \leq Sh(Y) \}$.

Cf. [5] and [6].

Problem 5. (S.Mardešić) Let $X \in M$ and let Y be a locally finite simplicial polytope.

- (1) Is there the product $Sh(X) \times Sh(Y)$?
- (2) If $Sh(X) \times Sh(Y)$ exists, is $Sh(X) \times Sh(Y) = Sh(X \times Y)$?

Problem 6. Let $X,Y \in M$ and $f: X \to Y$. If there is a locally finite open cover $U = \{U_{\alpha} : \alpha \in \Lambda\}$ such that for any finite set $\{\alpha_0,\dots,\alpha_n\} \subset \Lambda$ f $\int f^{-1}(U_{\alpha_0} \cap \dots \cap U_{\alpha_n}) : f^{-1}(U_{\alpha_0} \cap \dots \cap U_{\alpha_n}) \longrightarrow U_{\alpha_0} \cap \dots \cap U_{\alpha_n}$ is a shape equivalence, is f a shape equivalence?

By the same way as in the proof of [8], the problem is solved affirmatively for the fine shape Sh_{F} .

Problem 7. If X is a compactum which is a 1-1 continuous image of a locally compact ANR, then:

- (1) Is X an FANR ?
- (2) Is X movable ?

Problem 8. Let X be a locally compact space in M. If X is movable in the sense of Kozlowski and Segal [10], is every metrizable compactification of X movable?

Problem 9. Let X be a compactum. If there is a countable

number of movable compacta X_i , $i=1,2,\ldots$, such that $X=\bigcup_{i=1}^{\infty}X_i$, is X movable ? (Here X; and X;, $i \neq j$, are not necessarily disjoint.)

Problem 10. Let (X, X_0) and (Y, Y_0) be pointed compacta. If $\underline{\mathbf{f}}$: $(X, X_0) \longrightarrow (Y, Y_0)$ is a shaping such that $\underline{\mathbf{f}}_*$: $\underline{\mathbf{T}}_n(X, X_0) \stackrel{2}{\Longrightarrow}$ $\underline{\underline{\pi}}_n$ (Y, Y_0) for n = 0, 1, 2, ..., is $Sh_F(X, X_0) = Sh_F(Y, Y_0)$ true ? Here T is the shape group defined by Quigley [11].

Is every weak proper homotopy equi-Problem 11. (Chapman) valence a proper homotopy equivalence ?

If Problem 11 has an affirmative solution, the second part of Problem 1 is so. Cf. [2] and [3].

References

- [1] K.Borsuk, Theory of shape, Warszawa 1975.
- T.A.Chapman, On some applications of infinite dimensional manifolds to the theory of shape, Fund.Math.76(1972), 181-
- [3] D.A.Edwards and H.M.Hastings, Every weak proper homotopy equivalence is weakly properly homotpic to a proper homotopy equivalence, Trans.A.M.S. 221(1976), 239-248.

 R.H.Fox,On shape, Fund.Math. 74(1972), 47-71.

 Y.Kodama, On shape of product spaces, General Top.Appli.
- [4]
- 8(1978), 141-150.
- -, On product of shape and a question of Sher, Paci-[6] fic J.Math. 72(1977), 115-134.
- [7] - , A characterization property of a finite dimensional pointed FANR, to appear in Japanese J. Math.
- ·, On tom Dieck's theorem on shape theory, to appear [8] in Bull.Acad.Polon.Sci.
- Y.Kodama and J.Ono, On fine shape theory, to appear in Fund. [9] Math.
- G.Kozlowski and J.Segal, Locally well-behaved paracompacta [10] in shape theory, Fund.Math. 95(1977), 55-71.
- [11] J.B.Quigley, An exact sequence from the nth to the (n-1)-st fundamental group, Fund.Math. 77(1973), 195-210.