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1. INTRODUCTION

Shallow structures like arches and spherical shells
subjected to static loadings have load-deflection curves of the
type shown in Fig.l. Governing egquations of these curves con-
tain quadratic terms, together with cubic ones. These quadratic
terms make the nonlinear characteristic unsymmetrical and cause
snap~through or direct snapping phenomena in the static and
dynamic buckling problems. Therefore, it is the first step for
treating the stability of shallow structures to examine the
characteristic,e.qg., backbone curve and response curve, of the
nonlinear equations of motion with the gradratic and cubic terms.
We have many analytical methods of nonlinear equations of motion
and are often puzzled to select the suitable method for the
problem to be analyzed. This is one of the reasons that we
compared, in section three of the present paper, five kinds of
analytical methods by numerically constructing backbone curves.

It is well known that t@e dynamic buckling loads of shallow
structures are considerably lower than the static values, though
exceptional cases exist [1], and considerable attention has been
paid to determine the reliable critical values. As for the

analytical methods for the dynamic buckling loads, the following

(1)



100

three kinds of methods have usually been in use: (1) Numerical
Integration Method [2], (2) Infinitesimal Stability Analysis [1]
and (3) Energy Criterion, including a Lyapunov type of approach
[3]. The next section deals with the third method to determine
the dynamic buckling loads of the shallow structures due to

rectangular pulse.

2. DYNAMIC BUCKLING LOADS DUE TO RECTANGULAR PULSE

Energy criteria, based on the observation of the total
potential energy surfaces, have been used to determine the lower
bound of the dynamic buckling load under impulse and step load-
ings. Here let us apply the above energy criterion to the dynamic
buckling problem of shallow structure under a rectangular pulse
and make a relation between the critical load level and time du-
ration of the rectangular loading.

Let us consider the nonlinear equations of motion:

MdAd+Kd+3Fd) =9 (1)

where M, K., d , ﬂ(d) and CI are mass matrix, stiffness matrix,

displacement vector, nonlinear terms and load vector, respectively.

~ If we introduce the function

V=dMd+dkd+20M), Womga) o

av

=5 along the

which is proportional to the total energy, \

solution of Eqg.(l) takes the form

Vv=124d"9. | | 3

From the schwartz inequality,
" ‘. - - A * T . 4
AL=AMML < {TMU{d"Md}>
< P V) (4)

!
with }A(t)::{cl;rm"‘ 1}?. Inserting Eq. (3) into Eq.(4) leads to

(2)
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V) £ aut) V’i‘ct) ) (5)

Integration of Eq. (5) yields
td4

VER) € VEo)+ g MCE) dt (6)

o
If the total energy at t =1, does not exceed the minimum
value of the relative maximum points or sadalie points near the
initial state on the strain energy curve of %:: O , the system
is stable [4]. Therefore, when d* represents the displacement
vector which gives the minimum value of the relative maximum
points or saddle points, the sufficient condition for stability

can be written as
t4

V'=(0) + S prdt = [dT Kk A +20WN]E @

[

Since d* corresponds to the first critical equilibrium point in

the vicinity of the initial state, the components of d*can be

numerically obtained by using the static load-deflection curves.
In the case of the rectangular pulse with the time duration

of t4 , Eg.(7) becomes

i
T * =
wos [4TKE 20134, (8)
which gives the relation between the critical load level and

time duration, as the critical load level %. is determined from

Mao=1{19"M" g }L’*, (9)

For the illustrative example, let us consider the shallow
arch as shown in Fig.2[5]. Fig.3 and 4 show the relation between
the dynamic critical load level §¢ and the time duration param-
eter ta/y, ( t, :the natural period) for the shape parameter

H= Y4 and H=@ , respectively. The present results are good
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agreement with the numerical integration results by means of the
Runge~Kutta-Gill method. Fig.5 and 6 represent the wave forms
at the positions of m and a in Fig.3 and 4, respectively.

These numerical results first appeared in the reference of [5].

3. COMPARISON OF NUMERICAL ANALYSIS OF THE NONLINEAR
EQUATION OF MOTION

The purpose of this section is to examine the characteristics
of five analytical methods of the nonlinear equation of motion,
comparing the numerical results for the backbone curves.

As an illustrative model for the nonlinear equation of motion,
we adopt a shallow sinusoidal arch supported with hinges (Fig.2.).
Restricting the deformation to the first characteristic mode with

<

no damping, we get the equation of motion with the quadratic term:

iy . H* 3H = I 3
x+(\+?)x—4_x+4x=o (10)

where F{ is the same shape parameter as used in section 2.

Introducing the nondimensional parameters, T and g , as

T=l1+3H t X=2/1+lH§

we obtain the nondimensionalized equation of motion:

%+§+e§‘+§3=o (12)
in which €& =-3+—V2/_‘__,___I;F{.
In the numerical calculation, we adopt two cases of H=3 and
H= % , which correspoﬁd to the shallow and deep arch, respec-
tively, from the standpoint of the static buckling problem.

As five approximate methods, we adopt (1) Averaging method

and its improved first order approximation, (2) Bogoliuboff-

Mitropolsky's asymptotic method, (3) Perturbation method,

(4)
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(4) Duffing's iteration method and (5) Harmonic balance method.
For the perturbation method, we deal with four types of power
series expansion, that is in the neighborhood of w, and wjy , and
in the vicinity of w and uf'.\ The notations w, and w denote the
linea: eigen frequency and the unknown frequency in the nonlinear
system, respectively.

In order to compare the numerical results from each method, it is
necessary to conform the correct solution. However, as it is
impossible to derive the rigorous solution of Eg.(1l2), the results
by the harmonic balance method will be used for the comparative
study. In the numerical calculation by using the harmonic balance
method for Eg. (12), it is found that the Fourier series converges
very rapidly and sufficient accuracy is obtained by taking only

up to second term (see Figs.7 and 14). Here ten waves approxi-
mation is used and the resulted backbone curve is depicted in

Fig. 7

Fig.8 through 14 show the results by the asymptotic method,
perturbation methods of four types, Duffing's iteration method
and harmonic balance method of two waves approximation, respec-
tively. The result by the averaging method is not shown because
of its unusual error. From these figures, the following comments
will be given.

Every method Possesses a relatively good precision in the
neighborhood of the linear oscillation, that is 095 < w< .0 .
The equation of motion (Eg.10) with quadratic terms has both the
softening and hardening properties. The present results show
that the numerical methods which can reflect the above combined
properties are only the Duffing's method and the harmonic balance

method. And for the case with a large quadratic terms of H=§,

(5)
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the harmonic balance method only catches the nonlinear charac-
teristics of the very large amplitude oscillation.
In a concluding remark, the numerical results explain that when
we apply the perturbation method, asymptotic method, etc. to the
‘nonlinear equation of motion with both the quadratic and cubic
terms, it is necessary to introduce a technique which can express
the shift between the hardening and softening properties.

The detailed procedures and discussions will appear to
“Bulletin of Earthquake Resistant Structure Research Center , the
Institute of Industrial Science, University of Tokyo, No.12,

Dec., 1978".
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Fig.2: Shallow Arch
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Fig.5: Waveform in H=4
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Fig.6: Waveform in H=8
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Fig.3: Critical Load for H=4 Fig.4: Critical Load for H=8
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Fig.7: Backbone Curves by Harmonic Balance Method (Cosine 10 Waves App.)
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