ON REDUCIBLE PLANE CURVES

Makoto Yamamoto Waseda university

§1. Introduction.

Let $f: \mathbb{C}^2 \to \mathbb{C}$ be a polynomial function such that f(0)=0 and fhas an isolated critical point at the origin, and let L be the intersection of $V=f^{-1}(0)$ with a small sphere S_{ε}^{3} . If f is analytically irreducible, then L is an iterated torus knot whose type is determined by the Puisex characteristic pairs associated If f is reducible and factored by irreducible components f_i as $f=f_1 \cdots f_r$, then L is a link of r components whose components are associated knots for fi. Let Ki be the intersection of $V_i = f_i^{-1}(0)$ with a small sphere S_{ϵ}^3 for $i=1,\dots,r$. For the complement X of L (in S^3), $H_1(X;Z)$ is a free abelian multiplicative group G on the symbols $\{t_i\}_{i=1}^r$, where each t_i is geometrically carried by a meridian circle with homological linking number $\delta_{i,j}$ with the component K of L. Let Λ_r be the integral group ring ZG, and let $\widetilde{\mathbf{X}}$ be the universal abelian covering of X. Then $H_1(\widetilde{X};Z)$ is a Λ_r -module. The Alexander polynomial of L is defined to be the characteristic polynomial of $H_1(X;\mathbf{Z})$ and it is topological invariant of L (up to units in Λ_r).

Lê [1] showed that algebraic knots having the same Alexander Polynomial (mod. unit) are of the same knot type. In this paper we shall show the following; let L be an algebraic link of $r(\ge 2)$ components whose components have distinct tangent cones each

other.

THEOREM A. Let L and L' be as above. If L and L' have the same Alexander polynomial (mod. units), then They are of the same link type.

§ 2. Algebraic links and Alexander polynomials.

First of all, we review algebraic knots and associated Puiseux expansions. We mainly refer to F. Pham [3].

Let $f: \mathbb{C}^2 \to \mathbb{C}$ be an analytically irreducible polynomial such that f(0)=0 and f has an isolated critical points at the origin. Then f can be written as

$$f(x,y) = \prod_{\xi^{m}=1} (y-y(\xi x))$$

in a small neiborhood of the origin, where m is the order of y and ζ 's are all m-th roots of unity, and

$$y(\zeta x) = \sum_{n=1}^{+\infty} a_n \zeta^n x^{n/m} \qquad a_n \epsilon C.$$

Let $\mu=n_0/m$ be the exponent of the first term of $y(\zeta x)$ which has a non-zero coefficient. By $in(y-y(\zeta x))$, we denote the terms of $y-y(\zeta x)$ which have the smallest degree; that is,

DEFINITION. The tangent cone C(V,0) of V at the origin is

the limit of the tangents at \mathbf{v}_j , where \mathbf{v}_j are the points of V tending to the origin.

Since
$$\operatorname{in}(f) = \operatorname{in}(\underbrace{\nabla}_{S}^{m} = 1}(y - y(\xi x)) = \underbrace{\nabla}_{S}^{m} = 1 \quad \operatorname{in}(y - y(\xi x)), \text{ then}$$

$$\operatorname{in}(f) = \begin{cases} y^{m} & \mu > 1, \\ (y - a_{n_{0}} x)^{m} & \mu = 1, \end{cases}$$

$$\begin{cases} \eta(-a_{n_{0}})^{m} x^{n_{0}} & \mu < 1, \text{ where } \eta = \underbrace{\nabla}_{S}^{m} = 1, \end{cases}$$

Then the tangent cone C(V,0) is the line defined by in(f)=0.

By changing coordinates linearly, we take the x-axis as $\mathcal{C}(V,0)$. Then, assuming that $\mathcal{C}(V,0)$ is the x-axis and by taking $\xi=1$, we have the Puiseux expansion of f

$$y=p(x)+a_{1}x^{n_{1}/m_{1}}+\sum_{j=1}^{\ell_{i}}a_{1,j}x^{n_{1}+j/m_{1}}+a_{2}x^{n_{2}/m_{1}m_{2}}+\sum_{j=1}^{\ell_{i}}a_{2,j}x^{n_{2}+j/m_{1}m_{2}}$$

$$+\cdots+a_{q}x^{n_{q}/m_{1}\cdots m_{q}}+\sum_{j=1}^{+\infty}a_{q},jx^{n_{q}+j/m_{1}\cdots m_{q}},$$

where p(x) is a polynomial of x. We call the sequence of pairs of relatively prime positive numbers $\{(n_j,m_j)\}_{j=1}^q$ the Puiseux characteristic pairs of f.

Let K be the associated knot $V \cap S_{\epsilon}^{3}$ for f. Then K is the iterated torus knot of type $\{(m_{j}, \lambda_{j})\}_{j=1}^{q}$ inductively constructed as follows; let K^{0} be the unknotted circle $C(V, 0) \cap S_{\epsilon'}^{3}$, where ϵ' is the positive number such that $\epsilon' < \epsilon$ and ϵ' is sufficiently close to ϵ . We call K^{0} the primitive core of K. Let K^{1} be the torus knot of type (m_{1}, n_{1}) in a small tubular neiborhood of K^{0} , where the first coordinate m_{1} and the second coordinate n_{1} are

the longitudinal winding number and the meridianal winding number respectively. This notation is opposite to that of Lê [1] and Sumners and Woods [4]. We suppose that the (q-1)-st iteration K^{q-1} has been constructed. Let T and T_{q-1} be an unknotted torus and a small tubular neiborhood of K^{q-1} respectively. Let $\textbf{\textit{Y}}:T\to T_{q-1}$ be the orientation preserving diffeomorphism from T to T_{q-1} which carries the longitude to the longitude. Then K is defined to be the image $K^q=\textbf{\textit{Y}}(k)$ of a torus knot k of type (m_q, λ_q) in T, where

(2.1)
$$\lambda_{\underline{1}} = n_{\underline{1}}$$

$$\lambda_{\underline{j}} = n_{\underline{j}} - n_{\underline{j}} + \lambda_{\underline{j}} + \lambda_{\underline{j}} + \lambda_{\underline{j}} - \underline{1}^{\underline{m}} \underline{j} \qquad \underline{j} = 2, \dots, q.$$

Next, we consider the case that f is reducible. Let $f:\mathfrak{C}^2\to \mathfrak{C}$ be a polynomial such that f(0)=0 and f has an isolated critical point at the origin. We suppose that f is factored by irreducble components f_i as $f=f_1\cdots f_r$ $(r^{\geq}2)$. Let the Puiseux characteristic pairs of f_j be $\{(n_{i,j},m_{i,j})\}_{j=1}^{q_i}$, and let K_i be the associated iterated torus knot of type $\{(m_{i,j},\lambda_{i,j})\}_{j=1}^{q_i}$ for f_i . In this paper, we consider the case that all tangent cones (V,0) $(V_i=f_i^{-1}(0))$ are distinct each other. For the general case, refer to Sumners and Woods [4] and Yamamoto [6]. We denote the associated link for f by L. Then L is the disjoint union of K_1 , \cdots , K_r constructed as follows; let L^0 be the link consisting of all $K_i^0=C(V_i,0)\cap S_{\mathfrak{C}}^3$ (i=1,...,r). We note that L^0 has the same link type of the torus link of type $\{(m_{i,j},\lambda_{i,j})\}_{j=1}^{q_i}$ on each K_i^0 for i=

1,, r.

Let $l = k_1 \cup \cdots \cup k_r$ be a link of r components in S^3 , and l' be the link obtained from l by iteration of type (m,λ) on a component k_r , where m > 1. Let $\Delta(l; t_1, \cdots, t_r)$ and $\Delta(l'; t_1, \cdots, t_r)$ be the Alexander polynomials of l and l' respectively. Summers and Woods [4] proved the following useful theorem.

THEOREM (Sumners and Woods [4] 5.1.) Let ℓ and ℓ' be as above. Then we have

(2.2)
$$\Delta(\ell'; t_1, \dots, t_r) = \Delta(\ell; t_1, \dots, t_r^m) Q(t_r, y:m, \lambda),$$

where $y = \sum_{i=1}^{r-1} t_i^{\langle k_i, k_r \rangle}$, $\langle k_i, k_r \rangle$ is the linking number of k_i and k_r

and $Q(t,s;m,\lambda)$ is the Alexanderpolynomial of two components formed by the torus knot k of type (m,λ) and the unknotted meridian curve on the boundary torus containing k,

(2.3)
$$Q(t,s;m,\lambda)=((t^{\lambda}s)^{m}-1)/(t^{\lambda}s-1).$$

Let L be the algebraic link associated for a reducible polynomial $f=f_1\cdots f_r$ whose tangent cones are distinkt each other. Since L^0 has the same link type of the torus link of type (r,r), we have

$$\Delta(L^{\circ}; t_{1}, \dots, t_{r}) = (t_{1} \dots t_{r} - 1)^{r-2}.$$

Then we can compute the Alexander polynomial $\Delta(L;t_1,\cdots,t_r)$ of L by (2.2). Let $\nu_{i;j,k}$ and $y_{i;j}$ be

$$\nu_{i;j,k} = \begin{cases} m_{i,j} & \cdots & m_{i,k} \end{cases}$$

$$1 \leq j \leq k \leq q_{i}$$

$$j > k,$$

and

$$y_{i,j} = \prod_{\substack{k=1\\k\neq i}}^{r} t_{\ell}^{\nu_{k;l,q}}$$

respectively for i=1, --, q. Then we have

LEMMA 2.1. The Alexander polynomial of L is

$$(2.4) \qquad \Delta(\mathbf{L}; \mathbf{t}_{1}, \dots, \mathbf{t}_{r})$$

$$= (\prod_{i=1}^{r} \mathbf{t}_{i}^{\boldsymbol{\nu}_{i;1}, q_{i}} - 1)^{r-2} \prod_{i=1}^{r} \prod_{j=1}^{q_{r}} Q(\mathbf{t}_{i}^{\boldsymbol{\nu}_{i;j+1}, q_{i}}, \mathbf{y}_{i;j}; \mathbf{m}_{i;j}, \lambda_{i;j})$$

§3. Proof of THEOREM A.

Let $\Phi(t;m)$ be a polynomial of the form

(3.1)
$$\underline{\Phi}(t;m) = t^{m-1} + t^{m-2} + \cdots + t+1$$
,

where m is a positive integer. We call a polynomial of the form (3.1) Φ -polynomial. Then a plynomial $Q(t,s;m,\lambda)$ is a Φ -polynomial

$$Q(t,s;m,\lambda) = \underline{\Phi}(t^{\lambda}s;m).$$

Therefore the Alexander polynomial $\Delta(L;t_1,\cdots,t_r)$ of the link L can be written as

(3.2)
$$\Delta(L;t_1,...,t_r) = (\prod_{i=1}^r t_i^{i-1})^{r-2} \Phi(\prod_{i=1}^r t_i^{i};g)$$

$$\prod_{i=1}^r \prod_{j=1}^{q_i} \Phi(t_i^{\lambda_i j})^{\nu_i;j+1,q_i} y_{ij}; m_{ij},$$

where g=g.c.m. $\{\nu_{i;1,q_i}\}_{i=1}^r$ and $\xi_i = \nu_{i;1,q_i}/g$ for $i=1,\cdots,r$.

Before proceeding the proof of THEOREM A, we preparate several lemmas. Let $\mathbf{Y}_1 = \underline{\Phi}(\mathbf{t}_1^{\omega_1} - \mathbf{t}_r^{\omega_r}; \mathbf{m})$ and $\mathbf{Y}_2 = (\mathbf{t}_1^{\omega_1} - \mathbf{t}_r^{\omega_r}; \mathbf{m}')$ for integers m and m'\geq 2. The following LEMMA 3.1 and LEMMA 3.2 are showed directly.

Let $\mathbf{Y}_i = \mathbf{Y}_{i,1} \cdots \mathbf{Y}_{i,u_i}$ (i=1,2) be a decomposition of \mathbf{Y}_i by $\mathbf{\Phi}$ -polynomials $\mathbf{Y}_{i,j}$. We say that \mathbf{Y}_1 and \mathbf{Y}_2 are relatively prime if a product $\mathbf{Y}_{1,j}\mathbf{Y}_{2,j}$, is not a $\mathbf{\Phi}$ -polynomial for any j=1,..., \mathbf{u}_1 and any j'=1,..., \mathbf{u}_2 .

We suppose that m is factored by prime integers as ${\rm m=a_1\cdots a_u}$. Then we have

<u>LEMMA</u> 3.2. <u>A</u> Φ -polynomial Φ (t;m) is factored by (irreductible) Φ -polynomials as

$$\underline{\Phi}(t;m) = \prod_{j=1}^{u} \underline{\Phi}(t^{\alpha j};a_{j}),$$

where $\alpha_{j=1}$ and $\alpha_{j=a_1}$ and $\alpha_{j=a_1}$ for $j=2,\cdots,u+1$.

We note that an iterated torus knot K of type $\{(m_j, \lambda_j)\}_{j=1}^q$ is algebraic if and only if $n_{j-1}m_j < n_j$ for all $j=2,\cdots,q$, where n_j are given by (2.1). Therefore, for all j and k such that $1 \le j < k \le q$, we have

$$(3.3)$$
 $\lambda_{k} \lambda_{j} m_{j} - m_{k}$

To prove THEOREM A, it is sufficient to show that we can determine the knot types of components K_i (i=1,--,r) of L from the Alexander polynomial $\Delta(L;t_1,--,t_r)$ of L.

LEMMA 3.3. Let $\mathbf{Y}_{ij} = (\mathbf{t}_{i}^{\lambda_{i}, j^{\nu_{i}; j+1, q_{i}}} \mathbf{y}_{ij}; \mathbf{m}_{ij})$ and $\mathbf{Y}_{ik} = (\mathbf{t}_{i}^{\lambda_{i}, k^{\nu_{i}; k+1, q_{i}}} \mathbf{y}_{ik}; \mathbf{m}_{ik})$. Then \mathbf{Y}_{ij} and \mathbf{Y}_{ik} are relatively prime for i=1,---,r and $1 \leq j \leq k \leq q_{i}$.

Proof. By (3.3), for all j and k such that $l=j k=q_i$,

$$\lambda_{ik}\nu_{i;k+l,q_i}>\lambda_{ij}\nu_{i;j+l,q_i}.$$

Then by LFMMA 3.1, $\boldsymbol{\varphi}_{\text{i,j}}$ and $\boldsymbol{\varphi}_{\text{ik}}$ are relatively prime.

LEMMA 3.4. φ_{ij} and φ_{lk} are relatively prime for i, l=1,--,r, i\neq l, j=1,--,q, and k=1,--,q.

Proof. We suppose that m_{ij} and $m_{\ell k}$ are factored by prime integers as $m_{ij} = a_1 - a_u$ and $m_{\ell k} = b_1 - b_v$ respectively. Let α_p and β_s be $\alpha_l = 1$, $\alpha_p = a_1 - a_{p-1}$ ($2 \le p \le u + 1$), $\beta_l = 1$ and $\beta_s = b_1 - b_{s-1}$ ($2 \le p \le v + 1$). We suppose that β_i and β_k are not relatively prime.

Then there are $p(1 \le p \le u)$ and $s(1 \le s \le v+1)$ such that

(3.4)
$$\lambda_{ij} \nu_{i;j+1,q_i} \alpha_{p} = \nu_{i;1,q_i} \nu_{k;1,k-1} \beta_{s}$$

or there are $p(1 \le p \le u+1)$ and $s(1 \le s \le v)$ such that

(3.5)
$$\nu_{;1,q_{\ell}}\nu_{1;1,j-1}\alpha_{p} = \lambda_{\ell k}\nu_{\ell;k+1,q_{\ell}}\beta_{s}$$

Since $\alpha_p < m_{ij}$ for $l \le p \le u$ and $\beta_s < m_{lk}$ for $l \le s \le v$, $\overline{\alpha}_p = m_{ij}/\alpha_p > l$ and $\overline{\beta}_s = m_{lk}/\beta_s > l$. Then by (3.4),

$$\lambda_{ij} = \overline{\alpha}_{p} \nu_{l;l,k-l} \beta_{s}$$

or by (3.5),

$$\lambda_{lk} = \overline{\beta}_{s} \nu_{i;1,j-1} \alpha_{p}$$

These contradict that g.c.d.(m_{ij}, λ_{ij})=1 or g.c.d.(m_{lk}, λ_{lk})=1. Then by LEMMA 3.1, φ_{ij} and φ_{lk} are relatively prime.

<u>LEMMA</u> 3.5. \mathcal{G}_{ij} and $\Phi(\prod_{i=1}^{r} t_{i}^{3};g)$ are relatively prime for $i=1,\cdots,r,$ and $j=1,\cdots,q_{i}.$

Proof. By (3.3) and since $m_{i,1} < \lambda_{i,1}$, for any i and any j,

$$\nu_{i;1,q} < \lambda_{ij} \nu_{i;j+1,q}$$

Then by LEMMA 3.1, Ψ_{ij} and $\Phi(\prod_{i=1}^r t_i^{\frac{3}{3}i}; \epsilon)$ are relatively prime.

By lemmas 3.3, 3.4 and 3.5, the Alexander polynomial $\Delta(L;t_1,\cdots,t_r)$ of L is uniquely represented by the form (3.2). Therefore we can uniquely determine the knot types of compo-

nents K_i of L from the exponents of t_i in (3.2). This completes the proof.

§4. Reduced Alexander polynomials.

Let \boldsymbol{l} be a link of r components. Then the reduced Alexander polynomial $\Delta(\boldsymbol{l};t)$ is given by the equation $\Delta(\boldsymbol{l};t)=(t-1)\Delta(\boldsymbol{l};t,---,t)$ (see Milnor [3]). The following example shows that algebraic links can not be classified by reduced Alexander polynomials.

EXAMPLE 4.1. Let $f(z_0, z_1) = z_0(z_0^5 - z_1^6)$ and $f'(z_0, z_1) = (z_0^3 - z_1^2)(z_0^3 - z_1^{10})$. Then associated links L and L' (for f and f' respectively) have the same reduced Alexander polynomial (L;t) = $\Delta(L';t) = (t-1)(t^6 + 1)$. But L and L' are not of the same link type.

Let Γ and Γ' be the Seifert matrices of L and L' respectively. From Amida-diagrams of L and L' (see [5]), we can compute Γ and Γ' . Then by computations with a computer, we have that the signatures $\sigma(L)$ of L and $\sigma(L')$ of L' are $\sigma(L)$ =19 and $\sigma(L')$ =23.

EXAMPLE 4.2. Let $g(z_0, \cdots, z_n) = z_0(z_0^5 - z_1^6) + z_2^2 + \cdots + z_n^2$ and $g'(z_0, \cdots, z_n) = (z_0^3 - z_1^2)(z_0^3 + z_1^{10}) + z_2^2 + \cdots + z_n^2$. Let K and K' be associated knots for g and g' respectively. Then Alexander polynomial $\Delta(K;t)$ and $\Delta(K';t)$ are also equal to $(t-1)(t^6 + 1)$. But K and K' are not of the same knot type because signatures $\sigma(K) = 19$ and $\sigma(K') = 23$. Therefore algebraic knots K^{2n-1} can not be classified by Alexander polynomials.

The author wishes to thank Professors K. Nakajima and M. Takada for computation of signatures.

105

T' = \begin{align*}
\

References

- [1] Lê Dũng Tráng; Sur les noeds algebriques. Comp. Math. 25, 281-321 (1972).
- [2] J. Milnor: Singular points of complex hypersurfaces. Ann. of Math. Study 61, Princeton Univ. Press (1968).
- [3] F. Pham: Cours de 3ème cycle, Dep. Math. de la Faculté des Sciences de Paris, â paraître au Centre de Math. de l'Ecole Polytechnique.
- [4] D. W. Sumners and J. M. Woods: The monodromy of reducible plane curves, Inventiones Math. 40, 107+141 (1977).
- [5] M. Yamamoto: Amida-diagrams and Seifert matrices of positive iterated torus knots, (to appear).
- [6] : A topological classification of algebraic links, (to appear).

Department of Mthematics
School of Science and Engineering
Waseda University