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On Unorientable Surfaces in 33

by Masayuki Yamasaki (Tokyo Univ.)

81. 2/4-quadratic spaces.

We recall the definition of 32/4-quadratic spaées. Let V
be a finite dimensional vector space over 2%/2 provided with
a non-singular symmetric bilinear form (x, y)— x.y € 2/2,
and let $ be a function : V—>32/4 satisfying 9(x + y) =
?(x) + $(y) + 2(x.y) for all x, y € V. ¢ is called a 2/4-
quadratic function and X = (V, *,9 ) is called a Z/4-quadratic
space.
Definition. A Z/4-quadratic space (V,* ,$ ) is even, if
®(x) = 0 mod 2 for all x e V,

A Z/4-quadratic space (V,-,%) 1is odd, if P(x) =1
mod 2 for some x € V,

(Even 2Z/4-quadratic spaces are usually called Z/2-quadratic
spaces. )
Example. Let F be a smoothly imbedded (not necessarily
orientable) surface in S3 whose boundary gF is homeomorphic
to Sl. Then we can define a Z/4-quadratic function ¢: Hl(F;Z/2)
—> 72/4 as follows:

Let C be an immersed circle in PF., The normal bundle VC

of C in 83 has a unique trivialization VC = Slx R2 such
1

that the linking number of C = S'x0 and S'x* (* e R%, £ 0)
is zero. Since the normal bundle of C in F defines a sub-

bundle V of y,, we can count the number n(C) of right-handed
-1 -
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half twists of V, using the trivialization above. Now the
required function @ is defined by

¢(c) = n(c) + 2 Self(C) mod 4,
where Self(C) is the number of the self-intersectioh points’

of C on PF.

Proposition 1. ([5], Lemma 5.1) ®(c) € 2z/4 depends only
on the Z/2-homology class of C. The function.?: Hl(F;Z/Z)——% zZ/4
is 2/4-quadratic with respect to the Z/2-intersection pairing
of Hy(F;2/2).

Remark. Let X, denote the Z/4-quadratic space (Hl(F;Z/Z),

F
'y ?)above. Then XF is even, if F 1is orientable, and XF is

odd, if F is unorientable.

In [2], E. H. Brown defined a generalized Z/8 Arf invariant,
called Brown's invariant, of Z/4-quadratic spaces. The Witt
group W is isomorphic to 2/8 by Brown's invariant. (See [5]
for the definition of the Witt group;) The definition of Brown's
invariant is as follows:

Let X be a Z/4-quadrétic space (V, * , ?). We set

AX) = E o F 1T e
Then the complex number A (X) has the property that X&X)Se RY,
and the integer m modulo 8 is well-defined. It is called

Brown's invariant and is denoted by (3(X) € 7/8.
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Proposition 2.4 (2.B). The isomorphism classes of even (odd)
Z/4-quadratic spaces can be completely classified by the dimension
of V over 2Z/2 and Brown's invariant ﬁ(X)o

For the proof, see [1], [2], and [5].

§2. Unorientable surfaces in S°.

Let us consider smoothly imbedded surfaces in SB. Two

surfaces F and G are regular homotopic, if there is a contin-

uous family {F.} 4 <tg1 OF smoothly immersed surfaces in s>

such that F, = F, F, = G. In [6], the author has classified

o) 1
orientable surfaces with boundary in 83 by regular homotopy.
(See also [4].) In this section we classify unorientable surfaces
in S3 whose boundaries are homeomorphic to S1 by regular

homotopy. See also [2] Example (1.28).

Theorem. Two smoothly imbedded (not necessarily orientable)
surfaces F, G in S3 whose boundaries are homeomorphic to Sl
are regular homotopic if and only if the associated Z/4-quadratic

spaces X and X are isomorphic.
F G

Corollarx A (B). Two smoothly imbedded orientable (unorienta-
ble) surfaces F, G in 83 whose boundaries are homeomorphic to
S1 are regular homotopic if and only if dimZ/ZHl(f;Z/Z) =
dimzlaﬂl(G;Z/z) and p(xF) = @(XG).
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We prove Theorem for unorientable surfaces. See [6] for
the proof of orientable surfaces, Let F and G be smoothly

imbedded unorientable surfaces in 83 whose boundaries are

1

homeomorphic to S such that Xp and X, are isomorphic.

Lemma 1. Suppose that {el,.oc,er} is a basis of Hl(F;Z/z)
satisfying the condition (*);
(*) ei‘ejzo ( 1#3)-

Then €15 eeey €, cCan be represented by mutually disjoint

imbedded circles Cisesesy Cre

Remark. By the non-singularity of the intersection pairing
of Hl(F;Z/Z), the condition (*) implies e;ce; = 1 ez/2
for all i =1,..., r, and therefore ?(ei) =+1 € 2/4.

(proof of Lemma 1) Bach Z/2-homology class e, can be
represented by a generic immersion of Sl. Using the method
illustrated in Figure 1, we may assume that the class e is

represented by an imbedded circle Cye
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Since we can prove this lemma by an induction on r, we
shall prove in the case r = 2, Let C1s Cp be imbedded
circles representing the elements el,'ez. As e,-e, = 0 €2/2
CyNCy = {DPyy DPpseces Pop_qs Poyle If k # 0, we modify the curve
c, as the dotted line in Figure 2. This can be done, because
the regular neighborhood of the circle cq is a Mgobius band.
(See‘Remark above.) The new curve, also denoted by Cos has no
intersection points with ¢, and representis the same %/2-homology
class e, as before, but it has some self-intersection points.

Using the method illustrated in Figure 1 again, we kill these

double points, and the lemma is proved.

-~

- em - e e T e m em e e -

-——n e - o e - =
B e Rt

From the classification of unorientable surfaces, the
Z/2-vector space Hl(F;Z/Z) has a basis {e;,...,e.} which
satisfies the condition (*). Let cy be the imbedded circle in
Lemma 1, and Ni. be a regular neighborhood of Cy» for 1 =1,
«esy T« Let N denote the boundary-connected-sum of Ni's in
F. Since the boundary aNi of Ni is homeomorphic to Sl, for
i=1l..., ry, the boundary 9N of N 1is also homeomorphic to

1

S°, and 9(F - int N) is homeomorphic to st v Sl(disjoint

union),
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From the following Mayer-Vietoris exact sequence;

.70

0—> Hl(ag‘;z)————?Hl(N;Z)@Hl(F-intN;Z)———* Hl(I:;z)’—'—
il W
2 ri rZ
—>»H.(8N;2)—> H.(N;2)eH . (F-intN;2) ——> H.( F;2)— 0
70T LA 0 0 Sh
Z i/ - Z

e

O/

we obtain Hi(F - int N;2) = 2 (i=0,1), and therefore F - int N
is homeomorphic to Slx {0, 11, and

Lemma 2. F 1is regular homotopic to N,

Since the Z/4-quadratic space XG is isomorphic to XF’
there is a basis {fl,o.o,fr} of Hl(G;Z/z) such that

ej-ey = fi'fj (i, J = 1,e0e,1)

T(ei) = ‘5’(1‘1) (i =1,ie.,7)e
Let di's be mutually disjoint imbedded circles on G representing
fi's as in Lemma 1, and let M denote the boundary-connected-
sum of regular neighborhoods of di's in G. Now from the
equality ?(ei) = ?(f&), it is easy to construct a regular
homotopy between N and M ([3]), and therefore F and G
are regular homotopic by Lemma 2., The converse is quite trivial

and Theorem is proved.
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