The Godbillon-Vey class of codimension one foliations
without holonomy

By Shigeyuki MORITA*) and Takashi TSUBOI

In this note we prove the following result.

THEOREM. Let F be a codimension one C^2-foliation on a
compact smooth manifold M and assume that F is without
holonomy, namely the holonomy group of each leaf is trivial.
Then the Godbillon-Vey characteristic class of F defined in
$H^3(M; \mathbb{R})$ ([3]) vanishes.

For the proof of the above result, the argument of Herman
used in [4] to prove the triviality of the Godbillon-Vey invariant
of foliations by planes of T^3 and also the work of Novikov [7]
and Imanishi [5] on codimension one foliations without holonomy
play very important roles.

1. Codimension one foliations without holonomy.

Let M be a compact connected smooth manifold and let F
be a codimension one C^2-foliation without holonomy on M. We fix
a base point x_0, a flow $\Phi: M \times \mathbb{R} \to M$ whose orbits are transverse to leaves of F and we denote $\varphi(t)$ for $\Phi(x_0, t)$
($t \in \mathbb{R}$). Following Novikov [7] (also see Imanishi [5]), we define
a homomorphism

$\chi: \pi_1(M, x_0) \to \text{Diff}^2_+(\mathbb{R})$

as follows, where $\text{Diff}^2_+(\mathbb{R})$ is the group of orientation preserving diffeomorphisms of class C^2 of \mathbb{R}. Let ω be an element
of $\pi_1(M, x_0)$ represented by a closed curve $p: (I, \hat{I}) \to (M, x_0)$

*) Supported in part by the Sakkokai Foundation.
and let \(t \) be a point of \(\mathbb{R} \). Then \(\chi'(\omega)(t) \) is defined to be a point \(t_1 \) of \(\mathbb{R} \) such that there is a leaf curve \(\ell : (I, 0, 1) \rightarrow (L, g(t_1), g(t)) \) (\(L \) is the leaf passing through \(g(t) \)) satisfying the condition: two curves \(p_+ \) and \(\ell_+ \) are homotopic, where \(p_+ \) is the product of two curves \(p \) and \(\varphi([0, t]) \) (if \(t \geq 0 \)) or \(\varphi([t, 0]) \) (if \(t < 0 \)), while \(\ell_- \) is the product of two curves \(\varphi([0, t_1]) \) (or \(\varphi([t_1, 0]) \)) and \(\ell \).

\(\chi \) is a well defined homomorphism (we define the product of two elements \(f \) and \(g \) of \(\text{Diff}^2_+(\mathbb{R}) \) to be \(f \circ g \)) and it is known that \(\text{Image}(\chi) \) is abelian (see [5] [7]). Now using the homomorphism \(\chi \), we can construct a locally trivial foliated \(\mathbb{R} \)-bundle (or the suspension foliation) \(E \) over \(M \) as follows.

Let \(\widetilde{M} \) be the universal covering space of \(M \). Then \(\pi_1(M, x_0) \) acts on \(\tilde{M} \times \mathbb{R} \) by the deck transformation on the first factor and through the homomorphism \(\chi \) on the second. This action is free and preserves the trivial foliation on \(\tilde{M} \times \mathbb{R} \) defined by \(\{ t = \text{constant} \} \). Therefore the quotient manifold \(E = \tilde{M} \times \mathbb{R} / \pi_1(M, x_0) \) has the structure of a locally trivial foliated \(\mathbb{R} \)-bundle over \(M \).

Now our first important step is the following.

Proposition 1. Let \(E \) be the locally trivial foliated \(\mathbb{R} \)-bundle over \(M \) defined by the homomorphism \(\chi \). Then there is a cross-section \(\sigma : M \rightarrow E \) such that \(\text{Image}(\sigma) \) is transverse to the codimension one foliation on \(E \) and the induced foliation on \(M \) is the same as the original one \(F \).

Proof. We define a mapping \(\psi : \tilde{M} \rightarrow \mathbb{R} \) as follows. Let \(\tilde{q} \) be a point of \(\tilde{M} \) represented by a path \(q : (I, 0) \rightarrow (M, x_0) \). Then \(\psi(\tilde{q}) \) is defined to be a point of \(\mathbb{R} \) such that there is a leaf curve \(\ell : (I, 0, 1) \rightarrow (M, g \circ \psi(\tilde{q}), q(1)) \), so that two curves \(q \) and \(\ell_- \) are homotopic where \(\ell_- \) is the product
of two curves \(\varphi([0, \eta([\xi])), 0]) \) and \(l \). Now we define an imbedding \(\varphi: \tilde{M} \to \tilde{M} \times \mathbb{R} \) by \(\varphi(\tilde{e}) = (\tilde{e}, \varphi(\xi)) \). Then it can be checked that \(\varphi \) is equivariant with respect to the \(\pi_1(M, x_0) \)-actions. Moreover \(\varphi \) is transverse to the trivial foliation on \(\tilde{M} \times \mathbb{R} \) defined by \(\{t = \text{constant}\} \) and the induced codimension one foliation on \(\tilde{M} \) coincides with the lift to \(\tilde{M} \) of the original foliation \(F \). Therefore the induced mapping \(\sigma: M \to E \) satisfies the required conditions.

q.e.d.

Remark 2. In the construction above, suppose that the orbit \(\text{Image}(\varphi) \) is periodic, namely for some \(k \) the equality \(\varphi(t + k) = \varphi(t) \) holds for every \(t \in \mathbb{R} \). Then for any element \(\omega \) of \(\pi_1(M, x_0) \), \(\chi(\omega) \) is a periodic diffeomorphism of \(M \); \(\chi(\omega)(t + k) = \chi(\omega)(t) \). Thus \(\chi \) induces a homomorphism \(\chi': \pi_1(M, x_0) \to \text{Diff}^2(S^1) \) where we identify \(\mathbb{R} \mod k \mathbb{Z} \) with \(S^1 \). Imamishi \([5]\) has proved, among other things, that \(\text{Image}(\chi') \) is topologically conjugate to rotations. Now the same proof as that of Proposition 1 gives the following.

Proposition 1'. Let \(E' \) be the foliated \(S^1 \)-bundle over \(M \) defined by the homomorphism \(\chi' \). Then there is a cross-section \(\sigma': M \to E' \) such that \(\text{Image}(\sigma') \) is transverse to the codimension one foliation on \(E' \) and the induced foliation on \(M \) is the same as the original one \(F \).

2. The Godbillon-Vey class of foliated \(S^1 \) and \(\mathbb{R} \)-bundles.

Let \(E \) be a foliated \(S^1 \)-bundle of class \(C^2 \) over a smooth manifold \(M \) defined by a homomorphism \(\pi_1(M) \to \text{Diff}^2(S^1) \). For such object, the Godbillon-Vey class (integrated over the fibres)
is defined as an element of $H^2(\text{Diff}_+^2(S^1); \mathbb{R})$ (the 2-dimensional cohomology group with trivial coefficients \mathbb{R} of $\text{Diff}_+^2(S^1)$ considered as an abstract group). According to Thurston (cf. [1] [4]), this element is represented by the following cocycle $\alpha \in C^2(\text{Diff}_+^2(S^1); \mathbb{R})$.

DEFINITION 3. Let u, v be elements of $\text{Diff}_+^2(S^1)$. Then

$$\alpha(u, v) = \int_{S^1} \log Dv(t) \, D \log D(u)(v(t)) \, dt.$$

Now let E be a locally trivial foliated \mathbb{R}-bundle over a smooth manifold M defined by a homomorphism $\pi_1(M) \to \text{Diff}_+^2(\mathbb{R})$. Then similarly as above, the Godbillon-Vey class for such objects is defined as an element of $H^3(\text{Diff}_+^2(\mathbb{R}); \mathbb{R})$ as follows.

Let f, g, h be elements of $\text{Diff}_+^2(\mathbb{R})$ and we set

$$A = \log Df^{-1}(t),$$
$$B = \log Dg^{-1}(f^{-1}(t)),$$
$$C = \log Dh^{-1}(g^{-1}f^{-1}(t)).$$

Let $\Delta^3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3; x_1, x_2, x_3 \geq 0, x_1 + x_2 + x_3 \leq 1\}$ be the 3-simplex and let $s: \Delta^3 \to \mathbb{R}$ be a function defined by

$$s(x_1, x_2, x_3) = \begin{cases}
(x_1 + x_2 + x_3) \frac{x_2 + x_3}{x_1 + x_2 + x_3} g\left(\frac{x_3}{x_2 + x_3} h(0)\right), & x_2 + x_3 \neq 0 \\
x_1 f(0), & x_2 + x_3 = 0.
\end{cases}$$

s is C^∞ on the interior of Δ^3, $\partial \Delta^3$, and continuous on Δ^3.

Let $S: \Delta^3 \to \Delta^3 \times \mathbb{R}$ be defined by $S(x_1, x_2, x_3) = (x_1, x_2, x_3, s(x_1, x_2, x_3))$. Now we define a cochain $\beta \in C^3(\text{Diff}_+^2(\mathbb{R}); \mathbb{R})$ by the formula
DEFINITION 4.

\[\beta(f, g, h) = \int_{\Delta^3} s^* \left\{ \left[A \, dx_1 + (A + B) \, dx_2 + (A + B + C) \, dx_3 \right] \left[A' \, dtdx_1 + (A' + B') \, dtdx_2 + (A' + B' + C') \, dtdx_3 \right] \right\}. \]

Since the derivatives \(\frac{\partial s}{\partial x_1}, \frac{\partial s}{\partial x_2}, \frac{\partial s}{\partial x_3} \) are bounded over \(\Delta^3 \), the integral exists. We can show

PROPOSITION 5. The cochain \(\beta \) is a cocycle.

Thus \(\beta \) defines an element \([\beta] \in H^3(\text{Diff}^2_+(\mathbb{R}); \mathbb{R}) \).

A proof of Proposition 5 together with related topics will be given in [6]. This is because, for a proof of our THEOREM, the form of the cocycle \(\beta \) is not essential. We need only the fact that the Godbillon-Vey class of a locally trivial foliated \(\mathbb{R} \)-bundle can be calculated by group cohomology argument. More precisely, let \(\rho : \pi_1(T^3) = \mathbb{Z} \rightarrow \text{Diff}^2_+(\mathbb{R}) \) be a homomorphism defined by three mutually commuting diffeomorphisms \(f, g, h \) of \(\mathbb{R} \) and let \(E \) be the locally trivial foliated \(\mathbb{R} \)-bundle over \(T^3 \) defined by \(\rho \). Then the Godbillon-Vey class of this foliation on \(E \) is an element of \(H^3(E; \mathbb{R}) \) \(\otimes H^3(T^3; \mathbb{R}) \otimes \mathbb{R} \). Let us denote \(GV(f, g, h) \) for the corresponding real number. Under these situation, we have

PROPOSITION 6. Let \(f, g, h \) be mutually commuting elements of \(\text{Diff}^2_+(\mathbb{R}) \). Then \(z = (f, g, h) - (f, h, g) + (g, h, f) - (g, f, h) + (h, f, g) - (h, g, f) \) is a cycle (of the group \(\text{Diff}^2_+(\mathbb{R}) \)) and the equality

\[GV(f, g, h) = \beta(z) \]

holds.

A proof of this Proposition will also be given in [6].
3. Foliated S^1 and \mathbb{R}-bundles over tori.

In [4], Herman has proved the following

THEOREM 7. Let E be a foliated S^1-bundle of class C^2 over T^2. Then the Godbillon-Vey invariant of the codimension one foliation on E is zero.

In this section, we prove the following results which can be considered as generalizations of Theorem 7.

THEOREM 8. Let E be a foliated S^1-bundle of class C^2 over a torus T^k ($k \geq 2$). Then the Godbillon-Vey class of the codimension one foliation on E vanishes.

THEOREM 9. Let E be a locally trivial foliated \mathbb{R}-bundle over a torus T^k ($k \geq 3$). Then the Godbillon-Vey class of the codimension one foliation on E vanishes.

Before proving the above Theorems, let us recall the argument of Herman [4] briefly. Let E be a foliated S^1-bundle over T^2 defined by commuting diffeomorphisms $u, v \in \text{Diff}_+^2(S^1)$. Then $c = (u, v) - (v, u)$ is a cycle of the group $\text{Diff}_+^2(S^1)$ and by Thurston (cf. [1] [4]), the Godbillon-Vey invariant of E, denoted by $Gv(u, v)$, is given by

$$Gv(u, v) = \alpha(c).$$

Herman has proved $\alpha(c) = 0$ by an elegant argument using known properties of elements of $\text{Diff}_+^2(S^1)$. Now we prove Theorems 8 and 9.

Proof of Theorem 9. Since the cohomology group $H^3(T^k; \mathbb{R})$ ($k \geq 3$) is generated by 3-dimensional cohomologies of various 3-dimensional subtori of T^k, we have only to prove the case $k = 3$. Thus let $f, g, h \in \text{Diff}_+^2(\mathbb{R})$ be mutually commuting diffeomorphisms and let E be the locally trivial foliated
A-bundle over T^3 defined by them. We have to prove $GV(f, g, h) = 0$. We consider two cases.

Case 1. All of f, g, h have fixed points.

In this case it can be proved that f, g, h have a common fixed point. In fact this follows from the following general statement.

Proposition 10. Let f_1, \ldots, f_r be mutually commuting homeomorphisms of \mathbb{R} and assume that all of f_i have fixed points. Then there is a common fixed point of f_1, \ldots, f_r.

Proof. If f is an orientation reversing homeomorphism of \mathbb{R}, then f has a unique fixed point p and for any homeomorphism g of \mathbb{R} such that $f \circ g = g \circ f$, clearly $g(p) = p$ holds. Therefore if at least one of f_1, \ldots, f_r reverses the orientation, then the assertion is clear. Hence we assume that all of f_1, \ldots, f_r preserve the orientation. Now first assume that at least one of f_1, \ldots, f_r, say f_1, has a maximum (or minimum) fixed point p. Then since any f_j ($j = 1, \ldots, r$) leaves the fixed point set of f_1, $F(f_1)$, invariant, we have $f_j(p) = p$. So p is a common fixed point. Next assume the contrary and let (a, b) be a maximal open interval contained in $\mathbb{R} - F(f_1)$, thus $a, b \in F(f_1)$. Let (a_1, b_1) be the maximal open interval containing (a, b) such that (a_1, b_1) is contained in $\mathbb{R} - F(f_i)$ for some i. We claim that a_1 and b_1 are common fixed points of f_1, \ldots, f_r. For from the definition, either $(a_1, b_1) \subset \mathbb{R} - F(f_j)$ or f_j has a fixed point on (a_1, b_1). But in either case we should have $f_j(a_1) = a_1$ and $f_j(b_1) = b_1$. This completes the proof of Proposition 10.

Remark 11. In Proposition 10, if we assume that f_1, \ldots, f_r are orientation preserving diffeomorphisms of class C^2, then
we can obtain a stronger statement that if \((a, b)\) is a maximal open interval contained in \(\mathbb{R} - F(f_1)\), then \(a\) and \(b\) are common fixed points of \(f_1, \ldots, f_r\) (cf. [4] Lemma 1).

Now we go back to the proof of Theorem 9, Case 1.

We have just proved that \(f, g, h\) have a common fixed point \(p\). Then this fixed point defines a cross-section \(\sigma: T^2 \to E\) such that \(\text{Image}(\sigma)\) is a compact leaf of the foliation on \(E\). Since the restriction of the Godbillon-Vey class to any leaf is trivial and since \(\text{Image}(\sigma)\) generates the 3-dimensional homology group of \(E\), we conclude that \(GV(f, g, h) = 0\).

Case 2. At least one of \(f, g, h\) has no fixed point.

First we claim that

\[GV(f, g, h) = GV(g, h, f) = GV(h, f, g). \]

This follows from the definition of \(GV\). It also follows from Proposition 6. Therefore to prove our assertion \(GV(f, g, h) = 0\), we may assume that \(h\) has no fixed points. Now let us define a \(\mathbb{Z}\)-action on \(\mathbb{R}\) by \(n(t) = h^n(t) (n \in \mathbb{Z}, t \in \mathbb{R})\). Then since \(h\) has no fixed points, this action is free and the quotient manifold can be identified with \(S^1\) by an orientation preserving diffeomorphism \(k: \mathbb{R}/\{h^n\} \cong S^1\). Let \(\tilde{k}: \mathbb{R} \to \mathbb{R}\) be the lift of \(k\) such that \(\tilde{k}(0) = 0\). It is a diffeomorphism of class \(C^2\).

Now we set \(f_1 = \tilde{k}^{-1}fk, g_1 = \tilde{k}^{-1}gk, h_1 = \tilde{k}^{-1}hk\). Then \(f_1, g_1, h_1\) are mutually commuting diffeomorphisms of class \(C^2\) of \(\mathbb{R}\).

Let \(\gamma = (f, g, h) - (f, h, g) + (g, h, f) - (g, f, h) + (h, f, g) - (h, g, f)\) and \(\gamma_1 = (f_1, g_1, h_1) - (f_1, h_1, g_1) + (g_1, h_1, f_1) - (g_1, f_1, h_1) + (h_1, f_1, g_1) - (h_1, g_1, f_1)\). Then the cycle \(\gamma_1\) is conjugate to \(\tilde{k}^{-1}\gamma k\). Since inner automorphisms of a group induce the
identity on the homology groups ([2]), we have

$$\beta(g_1) = \beta(g).$$

Therefore from Proposition 6, we obtain

$$GV(f, g, h) = GV(f_1, g_1, h_1).$$

Now from the construction, \(h_1 \) is the translation of \(R \) by \(1 \) (denoted by \(T \)) or by \(-1\) according as \(h(0) > 0 \) or \(h(0) < 0 \) respectively. By the definition of GV, clearly we have

$$GV(f_1, g_1, h_1) = - GV(f_1, g_1, h_1^{-1}).$$

Therefore we may assume that \(h_1 = T \). Since \(f_1 \) and \(g_1 \) commute with \(h_1 = T \), \(f_1 \) and \(g_1 \) are lifts of some diffeomorphisms \(f_1 \) and \(g_1 \) of \(S^1 \). Now we claim

PROPOSITION 12. Let \(u, v \) be mutually commuting elements of \(\text{Diff}_+^2(S^1) \) and let \(\tilde{u}, \tilde{v} \) be their arbitrary lifts to \(R \).

Then we have

$$GV(\tilde{u}, \tilde{v}, T) = GV(u, v).$$

Proof. We consider \(R^2 \times R = \{(x_1, x_2, t); x_1, t \in R\} \),

\(R^3 \times R = \{(x_1, x_2, x_3, t); x_1, t \in R\} \) and let

$$\lambda(x_1, x_2, t) = (x_1+1, x_2, \tilde{u}(t)), \quad \lambda_1(x_1, x_2, x_3, t) = (x_1+1, x_2, x_3, \tilde{u}(t))$$

$$\mu(x_1, x_2, t) = (x_1, x_2+1, \tilde{v}(t)), \quad \mu_1(x_1, x_2, x_3, t) = (x_1, x_2+1, x_3, \tilde{v}(t))$$

$$\nu(x_1, x_2, t) = (x_1, x_2, t+1), \quad \nu_1(x_1, x_2, x_3, t) = (x_1, x_2, x_3+1, t+1).$$

Then \(\lambda, \mu, \nu \) and \(\lambda_1, \mu_1, \nu_1 \) generate free \(\mathbb{R}^2 \)-actions on \(R^2 \times R \) and \(R^3 \times R \) respectively. These actions preserve the trivial foliations defined by \(\{t = \text{constant}\} \). The quotient manifolds \(E \) and \(E_1 \) carry the structures of foliated \(S^1 \)-bundle over \(T^2 \) defined by \(u \) and \(v \) and locally trivial foliated
\mathbb{R}-bundle over T^3 defined by $\tilde{\nu}, \tilde{\gamma}, T$ respectively. Now define a mapping $\pi: \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}^2 \times \mathbb{R}$ by $\pi(x_1, x_2, x_3, t) = (x_1, x_2, t)$. Then π is equivariant with respect to the \mathbb{Z}^2-actions. Therefore it induces a mapping $\pi': E_1 \to E$. Moreover it is easy to see that the pull back of the foliation on E by the submersion π' coincides with the given foliation on E_1. Therefore from the naturality of the Godbillon-Vey class, we obtain

$$(\pi')^*(\text{gv}(E)) = \text{gv}(E_1),$$

where $\text{gv}(E)$ (resp. $\text{gv}(E_1)$) is the Godbillon-Vey class of the foliation on E (resp. E_1). Now since $(\pi')^*$ gives an isomorphism $H^3(E; \mathbb{R}) \cong H^3(E_1; \mathbb{R}) \cong \mathbb{R}$, we obtain

$$\text{GV}(\tilde{\nu}, \tilde{\gamma}, T_1) = \text{Gv}(u, v).$$

This completes the proof of Proposition 11.

Now by the above Proposition and the argument before it, we have

$$\text{GV}(f, g, h) = \text{Gv}(f_1', g_1').$$

But Herman's result (Theorem 7) implies

$$\text{Gv}(f_1', g_1') = 0.$$

Hence $\text{GV}(f, g, h) = 0$. This completes the proof of Case 2 and hence Theorem 9.

q.e.d.

Next we prove Theorem 8.

Proof of Theorem 8. Since the case $k = 2$ is just Theorem 7, we assume that $k \geq 3$ and let E be a foliated S^1-bundle of class C^2 over T^k defined by mutually commuting diffeomorphisms $u_1, \ldots, u_k \in \text{Diff}_+(S^1)$. Since E is a trivial bundle as a differentiable S^1-bundle, there is a cross-section $\sigma: T^k \to E$.

- 10 -
\(\sigma \) defines an isomorphism \(E \cong T^k \times S^1 \). Now the Godbillon-Vey class of the foliation on \(E \), \(gv(E) \), lies in \(H^3(E; \mathbb{R}) \cong H^3(T^k; \mathbb{R}) \oplus H^2(T^k; \mathbb{R}) \oplus H^1(S^1; \mathbb{R}) \). However Herman's result (Theorem 7) implies that the second component of \(gv(E) \) is zero. Now let \(\tilde{E} = T^k \times R \) be the covering space of \(E = T^k \times S^1 \) corresponding to the subgroup \(\pi_1(T^k) \subset \pi_1(E) \). Then the projection \(\pi : \tilde{E} \to E \) induces a codimension one foliation on \(E \). In fact \(\tilde{E} \) has the structure of locally trivial foliated \(R \)-bundle over \(T^k \) defined by mutually commuting diffeomorphisms \(\tilde{u}_1, \ldots, \tilde{u}_k \in \text{Diff}^2_+(R) \), where \(\tilde{u}_1 \) is a suitable lift of \(u_1 \) to \(R \) defined by the cross-section \(\sigma \). Hence \(gv(\tilde{E}) = 0 \) by Theorem 9. Therefore we obtain \(\pi^*(gv(E)) = gv(\tilde{E}) = 0 \). Now since \(gv(E) \) lies in \(H^3(T^k; \mathbb{R}) \subset H^3(E; \mathbb{R}) \) as remarked before, we conclude \(gv(E) = 0 \).

q.e.d.

5. Proof of THEOREM.

Let \(M \) be a compact smooth manifold, \(F \) a codimension one foliation of class \(C^2 \) over \(M \) and assume that \(F \) is without holonomy. Then by Proposition 1, there is a locally trivial foliated \(R \)-bundle \(E \) over \(M \) defined by a homomorphism \(\chi : \pi_1(M) \to \text{Diff}^2_+(R) \) and an imbedding of \(M \) in \(E \) transverse to the codimension one foliation on \(E \) such that the induced foliation on \(M \) coincides with the original one \(F \). Moreover \(\text{Image}(\chi) \) is abelian. Therefore by Theorem 9, we conclude that \(gv(E) = 0 \). Then by the naturality of the Godbillon-Vey class, we obtain \(gv(F) = 0 \). This completes the proof of THEOREM. We could also use Proposition 1' and Theorem 8 instead of Proposition 1 and Theorem 9.

q.e.d.
REFERENCES

Department of Mathematics
College of General Education
University of Tokyo

Department of Mathematics
Faculty of Science
University of Tokyo