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Nevanlinna's main theorems on Riemann surfaces
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Introduction

Our interest lies in Nevanlinna's main theorems for an
arbitrary analytic mapping of an open Riemann surface S of parabolic
type into a closed Riemann surface R. We may regard S as a covering

surface of R.

The present paper is originated from the lectures given
at Hiroshima University in 1974-75. The author tried there to
understand the fundamental paper [1] of Ahlfors. As shown in our
Appendix 1 one needs some modification of Ahlfors" discussions.
Aside from this point we follow fairly faithfully his paper. We

start with
h(P'; P, u) = J h(P'; P, Q)du(Q)

instead, as Chern [4] did (see our Appendix 2), of a solution
s of the equation As = Zﬂpz(p: density), where h(P'; P, Q) is
a harmonic function of P' on R with positive (negative resp.)

logarithmic singularity at P (Q resp.).

In §2 we prove the first main theorem for a general non-
negative measure u, which may not have a density. This is the
only essentially new result in our paper. As shown in Theorem 3
the difference of two characteristics T(r) with respect to different
measures is bounded so that it is our disposal which measure we
choose. Evidently there exists a measure with positive density p
on any closed Riemann surface. The choice of such a p simplifies
the matters, although we prove an important identity also for o with
zero points in Appendix 5. There are two ways to obtain such an

identity. In the text we use, as Sario did, a classical relation
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concerning the characteristic of a domain, and in Appendix 4,

as Ahlfors did, we apply Gauss-Bonnet's formula.

As stated in [1; p.10] there are two ways to derive the second
main theorem. In the text we follow like Ahlfors the way which
is not usually chosen. The usual way is presented in Appendix 6.
After discussions on defect relation in §5, a detailed proof of

Ahlfors' disk theorem in [1; 84] is proved in the last sectiomn.
In addition to the appendices mentioned above, we are concerned

Tr
with double integrals f f T(t)dtds, etc. instead of T(r), etc. in
o's

Appendix 7, and give a proof of coarea formula in Appendix 8 to

make our paper self-contained.

Before closing our introduction we indicate some problems.
In our paper it is investigated how isolated points or disks are
covered by the covering surface S. There remains the problem to

see how an arbitrary set in R is covered by S.

Riemann surfaces are naturally two-dimensional. It might be
possible to generalize the first main theorem to mappings of spaces
of higher dimensions which preserve harmonicity like Fuglede's
harmonic morphisms in [5]. It would be of some interest to find,
not only from value distribution theoretic point of view but also
from purely potential theoretic point of view, properties of pull

backs of harmonic and superharmonic functions.

Because of the limited time for preparation of the manuscript
there may be incompleteness in presentation of the paper and in
proofs of theorems. The author hopes nevertheless that this

informal paper serves as a base for further progress of the theory.



21
§1. Function h

Let R be a Riemann surface. It is called hyperbolic if a
Green's function exists on it. Otherwise it is called parabolic.

First we prove

Lemma 1. Let R be a hyperbolic Riemann surface. If Pl,
PZ’ el > PO’ then g(P, Pn) -~ g(P, PO) uniformly outside any open

neighborhood V of PO‘

Proof. Let A: |z| < 1 correspond to a closed disk VgV on

R with center at P,. We may assume that VO contains all Pn in its

0

interior. Let z, be the image of Pn’ We write

1 - z,2
hn(z) = log

1
——2 ' and h(z) = log :
Z Zl’l Z

Denote the harmonic measure of BVO with respect to R —'VO by w.
Let us see that 0 < ¢y < 1. Set m = min g(P, PO) on BVO. Then

0, and since

0

0 <w<1onR- VO'

g (P, PO)/m >won R - V,. Since inf g = 0, inf w

w =1 on BVO,

For a small € > 0 set M = maxl w(P(z)) and

z|=1+¢

max (h(z) - h_(z))
_ lzl=1+e n
n 1 - M

a

Then

a_ - aw>h-nh on 1 < |z|] <1+ ¢
n-. = n = =

by the maximum principle. Denote by V(P) the family of positive
continuous superharmonic functions v on R - {P} such that v + log |z|
is superharmonic on an open disk corresponding to |z| < 1, where P

corresponds to z = 0. For any veiv(PO) the function equal to
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v o+ hn - h + a  on VO and to v + a w on R - V0 belongs tp V(Pn)
so that

vV +aw?z g(-, Pn) on R - VO'

The arbitrariness of v yields

g+, P.) - g+, Py) s aw on R - V.
Similarly
gl-» Pyp) - g(+, P ) < bw on R -V,
with
max (hn(z) - h(z))
b = lz]=1+e
n 1 - M

Since as bn + 0 as n -+ o, g(P, Pn) + g(P, PO) uniformly on R - VO.

This proves our lemma.

Let R be parabolic. For Pl’ PZEER let h = h(P; Pl’

function harmonic on R - {Pl, PZ}, bounded outside any neighborhood

PZ) be a

of P1 and Pz and having singularities of the form -log |z]| and
log |z]| at P, and P, respectively. It is determined up to an
additive constant. As to the existence see, for instance, [9;

Theorem 2.2 and Chap. II, 4].

Lemma 2. Let R be a parabolic Riemann surface and fix P0 on
R. Let z be a local parameter on a disk with center at Poe If
Pl’ PZ’ e, > PO and Ql’ QZ’ el > Q0 # PO’ then h(P; Pk’ Qk) >

h(P; P ) locally uniformly on R - {PO, QO}, where h(P; PO’ QO)

0’ Q

is normalized in such a way that

h(P(z); Py QO) + log |z| = 0 as z + 0
and every h(P; Pk’ Qk) is normalized in such a way that
(1) h(P(z); Pk’ Qk) + log lz - z(Pk)‘ >0 as z > Z(Pk).

Proof. Choose two arbitrarily small open disks U1 and U2 with
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centers at PO and QO respectively, and denote their union by U. We
assume that all Pk and Qk are contained in U1 and U, respectively.

Let V be an arbitrary closed disk lying in the exterior of U. Set
uk(P) = gR"V(P’ Pk) - gR'V(P’ Qk)-

It converges to gR_V(P, PO) - gR_V(P, QO) uniformly on 3U by

Lemma 1. Hence |uk| < a < » on 3U.

We consider
Vk(P) = h(P; Pk’ Qk) - maaUX h(-; Pk’ Qk)

Then max Vi T 0 on 3U. If there were P*ecR - U with v, (P*) > 0, the

k¢
function equal to. max (vk, vk(P*)/Z) on R - U and to vk{P*)/Z on U
would be non-constant subharmonic and bounded above on R. This

contradicts the parabolicity of R. Thus Vi S 0 on R - U. Since

Ve - Uy is bounded harmonic on R - V,
0 = max v, < max (v, - u,) + max u
a0 K7y kKT Ry K

A

max (v, - uy,) + max-u, = max v, + max u,.
oV k K oU k LAY k oU k

Thus MaXqy Vi 2 "MaXan Uy > -a. Since vy S 0 on R - U, there is

a subsequence {Vk } converging to a harmonic function v or to -«
j

locally uniformly on R - ULJBU; The latter case does not happen
because maxyy Vi > -a. If |z| < 1 corresponds to Uy and 2y to Py,

then v, + log [z - z; | is harmonic on lz] <1 + ¢ for small € > 0

J J
and converges uniformly on |z| = 1 + ¢ and hence on UltJaUl. Thus
Vi, converges to a harmonic function also on U; UdU; - {PO}.

J
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Similarly it converges on UZ\JBUZ - {QO}. We denote the limit
by v again. It is equal to h(-; PO’ QO) + const. We note

that the value of vt log |z - Zk.] at z = Zy . is equal to
j j j
h(-; P

-max » Q) and tends to the value of v + log |z| at

U
J

k.
J
z = 0. Hence

h(+; Pys Qy) = v + lim max h(-; Py, Q)
jre 93U J J

lim {Vk + max h(-; P, ij)}

joe Y5 U j
= lim h(+5 Py, Q)
J7ee J J

locally uniformly on R - {PO, QO}. Since from any subsequence of
{h(P; Pk’ Qk)} we can extract a subsequence converging to h(P; PO’
QO) locally uniformly on R - {PO, Qo}, h(P; Py Qk) - h(P; Pys QO)

locally uniformly on R - {PO, QO}. Our lemma is now proved.

Lemma 3. Let R be a closed Riemann surface, and Pb, PO’ QO

3 ] 1 1]
be mutually different. If Pl’ PZ’ el > PO’ Pl’ P2’ ce. PO and
Ql’ QZ’ R QO’ then h(Pi; Pk’ Qk) - h(Pb; PO’ Qo), where every
h(P; Pk’ Qk) is normalized at Pk as (1).

Proof. Take a compact set K which contains P!, Pé, ... but
not {PO, QO}. By Lemma 2 h(P'; Py Qk) - h(P'; PO’ Qo) uniformly

on K. Hence, given € > 0, there exists kO such that

[h(P'5 P, Q) - h(P'; Py, Q)| <5 on K
if k 2 kO. In particular,
. ; . £
Ih(Pi) Pk’ Qk) hcpi’ PO’ QO)I < Z
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if k 2 ko. Since h(P; Py QO) is continuous outside {PO, Qo},

there exists kl > ko such that

Ih(Pi; PO, QO) - h(Pé; PO’ Qo)l <

N[ ™

if k 2 kl. There follows

™

]h(Pi; Pk: Qk) - h(Pb; PO’ Qo)l <

for k > kl' Thus h(Pi; Pk’ Qk) > h(Pb; PO’ QO) as k » o,

§2, First main theorem

Let R be a closed Riemann surface, S be an arbitrary Riemann
surface and f = f(ﬁ) be a non-constant analytic mapping of S into
R. Then S may be regarded as a covering surface of R. Let S0 be
a closed disk in S such that the boundary BSO does not contain any
branch point of S, and G be a relatively compact subdomain of S
which includes So and whose boundary consists of finitely many
analytic closed curves. Let Ua be the harmonic function in G - S0
which is equal to 0 on SSO and to a constant Cq on 3G and for

which J auG/ands = 1. For any te€ [0, cG) denote by Ve the level
BSO
curve u, = t, and by G_ the domain {0 < ug < t}LJSO.

Let P be a point of R, and 51, 52, ... be the inverse images
of P in Gt‘ Denote their numbers, counted with multiplicity, by
T
n(t, P), and set N(r, P) = f n(t, P)dt.
0
Normalize h(P'; P, Q) as (1). By Green's formula we see

easily that h(P'; P, Q) = h(Q; P, P'). Hence it is natural to

define h(P'; P, P) = », We set
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(
h(P'; P, u) = J h(P'; P, Q)du(Q
for a non-negative measure py on R. We assume h(P'; P, p) £ .
Let B be a Borel set on S. If B is contained in a disk on S which
is homeomorphic to its projection, then set (B) = u(£f(B)). If B
consists of a branch point P with multiplicity n, then set n({P}) =

np({f(ﬁ)}). In this way we obtain the pull back u of u on S.
We prove first

Lemma 4. Fix ﬁezG, and let. g(-, ﬁ) be the Green function with

pole P on a domain containing G. Then J g(-, ﬁ)auG/ands ->
Tt

J g(-, P)auG/ands as t + r, where 0 < 1 < Cg-
Yr

Proof. It is sufficient to consider the
case ﬁezyr. Define a conjugate harmonic
function u% in a neighborhood of P so that
ué(ﬁ) = 0. Suppose there are 2p (p > 1)

branches of Yo issuing from P. We find p

arcs such that each arc consists of two
branches and Gr lies on one side of each
arc. Let c be such an arc on which -§ < ué < 8. The shaded part
D in the figure is a domain bounded by c, two arcs on each of which

%
ug is constant and a part of Yto for tO < r., Denote by Ct,s (to <

t < r) the subarc of Ye lying in D. Let € > 0 be given. It

suffices to show that

l %
‘ . g duG < €

t,d
for every t, tg <t <r if § and r - t, are small. Set

. * - =~
ug *+ iug uG(P).
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We may take

W = F1/13

as a local parameter around ﬁ. Then

log T%T + a continuous function G(w)

g(Q, P)

It

- %~10g IF| + G(w).

Let |G] < M < = on Ut0<t<r s for some t, < r. Since

A

[-, rox iy .
-6

S ~
'J log |ug + iuf - ug (P) |du}
-8

< lja lo 1 dg + 0(8) < ¢
=)y B TET

JC gdué
t,d$

H

if 6§ is small. This proves our lemma.

Lemma 5. Let ¢ be a function of class c” with compact

support in a plane. Let U" be a logarithmic potential. Then

U
;;jaD 3UT) a5 = - (o*u) (D)

for any domain D with smooth boundary.

Proof. We have

u - u [ 1
W) (2) = [[ e-nemazan = [[ erdedn] tog tor duw)
_ 1
= J[ log TwT duva d(z-w-w)du(w)
= Jj (¢*n) (z-w)log T%T dudv = U¢*“(z)
and

- 10 -
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K
f), Mt as < - oo

This proves our lemma.

In general, let v be a superharmonic function in a subdomain S
of S. Locally v is expressed as the sum of a logarithmic potential
and a harmonic function. We call the non-negative measure which
gives the logarithmic potential the measure locally associated with
v. We obtain the global measure on S' by means of the measure
locally associated with v, and call it the measure associated

with v.

Lemma 6. Let GcS be as above and 51, ey ﬁq be points of

G. Let v be a subharmonic function on G - {51, ceey ﬁq} which

is harmonic in a punctured disk around each Pi and which has a

logarithmic singularity of the form a; log lz| at ﬁi' Let w be

the measure associated with -v in G - {51, e ey Pq}. Set a(t) =

Zi a; where the summation extends over P; which are contained in
1

Gt’ Then, writing Y. T Y for yrlJYO ,
1 { . T T
7 vduG = f uv(Gt)dt + J a(t)de.
YT—YO 0 0

Proof. Fix any domain GOD GU 3G relatively compact in S.

Consider the Green function g(ﬁ, 6) on GO, and set
ud) = | g, Daw,@.
Then B, = M_pe The function
9 ~

hocfb) = v(P) + U(P) + 121 a g(d, B,

)

is harmonic on G. We have
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Bho
—— * -
JY Y duG 0 for any t, 0 < t < Cqo
t
and hence f‘ hodué =0 for any v, 0 < r < Cq- We have also
Y=Y
r 0
~ -1 if P.
1 Bg(', Pi) if Pl th’
1 =2~ 1" gux =
7)., ot G .
t 0 if Pi éGt U vy
and hence
1 ] - T
Zﬁf D a.g(*, P;)duf = —f a(t)dt
Y.~ i=1 0

if no Pi lies on leJYO. By Lemma 4 one sees that the relation

holds in general.

To completes the proof it is sufficient to establish

T
(2) g?f Udu} = -J M_y(6,)dt.

Yy Yo 0

First we assume that grad'uG does not vanish on the support of e

Take r_ ¥+ r, and consider the Green potential Un of the restriction

n
of U to {r < u, <r _;}; the potential of the restriction of
p
< < i % =
U to {rl < ug CG} is denoted by U;. We have Jy BUn/BtduG 0
t
for any t € (0, r) and hence [ Undué==0. Hence we may assume

Yr—YO
from the beginning that the support of u, is contained in GTLJBGY.
By using a partition of unity we may assume that the support of
. . . . %
M, 1s contained in a domain D of the form {tl < ug < ty, s Cug <
52}. We may assume also that grad ug # 0 on its closure. Fix
PED and take z = ug * iué - uG(ﬁ) with ué(ﬁ) = 0 as a local

parameter on D. Let Wn(T) 2 0 be a non-negative function on 0 2
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T < = such that b, = 0 onl/n g1 < =, ¢n(z) = ¢n(x, y) =

wn(/xz + yZ)ECoo and JJ ¢ndxdy = 1. By Lemma 5

1

2 (U%¢)
L ke

Ja(thD) g 95 = (0 ) (G nD) = (0, % ) (Gy).

Since U is harmonic on 23D, U*¢n = Uon oD if n is large. Therefore

I B(U*¢n) ds = J EEHiiEl du® + J AU gy,
2(G,ND) ~ v,m °f ¢ Jy-p?t €

By integration

QLI U*¢_du* + J;f Udu® = -Jt2(¢ *u ) (G, )dt.
2T (Yt v, )NaD n G 2m (Yt v, )-D G t) n v t

2 1 2 1

Letting n > « we derive

L vaux = - Zu_(c,)dt
2w UG Hytoe )
Yo Ve Y
T2 1
Since U is harmonic on {0 g u, g t;} and {t, s ug s}, it is easy
to see that
1 T
* = - = - -
& vawp e [ aedr on (6 )G - 1)
Yr™ V¢ £ 2
2
and
-1 - tl
—_— * = _ =
zﬂj Udu J u (6)dt (= 0).
Ye. Yo 0
1

Accordingly (2) is derived.

Lastly we consider the case when grad ug vanishes at some

points of the support of e Let 61, ceey Qn be the zero points

of grad ug on G Uy, and assume uv({Ql, cees Qn}) = 0. Suppose

..13_
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Izi‘ < 1 corresponds to a disk on S around ai for each i, 1 ¢ i ¢
n, and denote by ng) the image of {zi| < 1/m on S. Denote by Mo
the restriction of u,, to S - UiD£m), and by U(m) the Green potential

of I We have (2) for U(m). By letting m > « we obtain (2).

suppose 1y ({Qy, «.., Q1) > 0. Set by = w ({Q;}) and Uy = U -

ibig(-, Qi). Evidently p_UO({él, e ﬁn}) = 0. Hence (2) is

true for UO' We have already seen that (2) is true forbg(-, éi).

Thus (2) is true for general U. Our lemma is now proved.
We shall establish the following first main theorem.

Theorem 1. We have

T

: hCEE); P, wdug(P) = [ (6t

() w(RNCT, P) + o
Yr~Yo

Proof. From our assumption h(P'; P, p) Z « it follows that
p({P}) = 0. First we assume PéS11 (= the support of u). Regard
h(f(ﬁ); P, p) as a function on G and denote it by v. Then the
measure associated with v is equal to the pull back u. The
condition in Lemma 6 is satisfied with {P, ..., ﬁq} = {P €G;
f(ﬁ) = P}. The singularity of v at ﬁi has the form ~nip(R)log lz1,
where n, is the multiplicity of f at ﬁi' It follows that Eni =
n(t, P). By Lemma 6 we have

1 -~ ~ T . T

TFJ h(f(P); P, u)dué(P) = J u(Gt)dt - u(R)[ n(t, P)dt.
Yy~ Yo 0 0
Next consider the case P ESU' Suppose |w| < 1 corresponds

to a disk on R with center at P and denote by Dm the image of
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|w| < 1/m. Denote by Mo the restriction of pu to R - D . We have
1 ~ ~ r. r
| nGE@Es p wpa®) - [ e - w ] nce, P
Y."Y 0 0
r '0
By letting m + « we derive the required relation.
Remark. The left hand side of the identity in Theorem 1 does

not depend on the choice of P, while the right hand side of

2

: r . . ~
pONGe, 2y = [ HGgar - g R P, wduge)
. YT_YO

does not depend on the choice of yu.
Next we establish Shimizu-Ahlfors relation.
I‘N
Theorem 2. J N(r, P)du(P) = J U(Gt)dt.
R 0

Proof. First we show that ﬁ(Gt) = f n(t, P)du(P). We
R

decompose Gt into mutually disjoint Borel sets {Bj} and branch
points {ﬁk} with multiplicities {nk} such that f is one-to-one on

each Bj' Then

H6) = [ By * ] muC(EP N = ] [ CIERLIED | e,y

J J

j n(t, PYdu(Pp),
R

where X indicates the characteristic function. Next, we observe
that n(t, P) is lower semicontinuous on (0, cG) x R. Therefore

one can apply Fubini's theorem and has

[ N(r, P)du(P) = j jr n(t, P)dtdu(P)
R R0
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= Jr at | n(t, P)du(P) = Jr n(G,)dt
0 JR ’ : o LT

By integrating (3) with respect to u we obtain
Corollary. f h(£(P); P, u)dug(ﬁ)du(p) = 0.
R Yr Yo
Let p be a non-negative measure on R. We shall say that
locally the logarithmic potential of u is bounded if, on every

closed parametric disk |z]| g 7,
[ teg g aurco)
]Cl-f-ro e
is bounded as a function of z.
We shall prove

Lemma 7. Let p be a non-negative measure on R such that
locally the logarithmic potential of uy is bounded. Let A be a

disk corresponding to |z| < r, and A' correspond to |z |

A
]
<
~
(g}

Then h(P'; P, n) is bounded with respect to (P', P) €A' x (R - A),
and

h(P‘; P’ U) - U(R)log ‘Z(P')l-Z(P)‘

is bounded with respect to (P', P}) €A x A.

Proof. Assume that |h(Pﬁ; P, u)| »=as n >« for Pl,

n’
Pé, ... €EA' and Pl’ PZ’ ... €ER - A. We assume moreover that Pn

converges to PO; this belongs to R - (A - 3A). Take a closed
disk V in R - A' with center at Py. For PeV we divide the

integral I h(P'; P, QQdu(Q) into those on A', V, R - A" - V and
R

denote them by Ii(P', P), 1 =1, 2, 3, respectively. We have
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1,(P', P) = [A‘ (h(P'; P, Q) - log |2(P') - 2(Q)|}du(Q)

+ JA' log |z(P'") - z(Q)}|du(Q).

By our assumption the last integral is bounded. Denote the
integrand of the first integral by k(P', P, Q). Choose g, 0 < g <
r,/2, so that the image A! of |z| < ry/2 + e is disjoint from V.
We see that k is continuous with respect to (P', P, Q) on 3A' x

V x A' on account of Lemma 3. Let |k| < M < = there. Since k

is a harmonic function of P' on A' for every fixed (P, Q) on V x

A", |k(P', P, Q)| < MonA'xV x A'. Thus I, is bounded on A' x V,

Secondly, we write

(P, P) = fv th(P'; P, Q + log [2(P) - £(Q [}du(Q)

- Jv log |z(P) - z(Q)|du(Q),

where |z| < 1 corresponds to V. The last integral is bounded by
our assumption. Denote the integrand of the first integral by
L(P', P, Q). It is continuous on A' x V' x 3V, where V'
corresponds to |z| < 1/2. Since h(P'; P, Q) = h(Q; P, P'),

L(P', P, Q) is a harmonic function of Q on V for every fixed

(P', P) on A' x V', Hence there is M' < « such that |&(P', P, Q)|

M' on A' x V' x V., Thus I2 is bounded on A' x V',

The last integral IS(P', P) being bounded on A' x V by
Lemma 3, it is concluded that h(P'; P, u) is bounded on A' x V',

This contradicts our assumption lim |h(Pﬁ; P, W | = .
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Let us prove the latter half of our lemma. Choose 6§ > 0 so
that |z| ¢ Ty + 6 is still a closed parametric disk. Let W be its

image. For (P', P)eW x A we write
k'(P', P, Q = h(P'; P, Q) + log |z(P'") - z(P)]|

and have

h(P's Py W) - u(R) 10g Torprya(eyT - jR_W kidp + JW K du.

Let W' be the image of |z| < r, + §/2. By Lemma 3 h(P'; P, Q)

0
is continuous with respect to (P', P, Q) on 3W' x A x (R - W)

and hence so is k'. Let |k'| < N there. For any fixed (P, Q) €
Ax (R - W)y, k'(P', P, Q) is a harmonic function of P' on W' so

that |k'| < Non A x A x (R - W). Thus k'dpy is bounded on

Jpew
A x A,

As to the integral on W we write it as

fw K'(P', P, Q - log |z(P") - z(Q)| + log |z(P) - z(Q)|}du(Q)

; fw log |z(P') - z(Q)|du(Q) - fw log [2(P) - z(Q)|du(Q).

By assumption the last two potentials are bounded on W. As above

we see that
&'(P', P, Q = k'(P', P, Q - log |z(P") - z(Q| + log |z(P) - z(Q]|

is bounded on 3dW' X A x 3W. Let |[%'| < N' < « there. Since &' is
a harmonic function of P' on W' for every fixed (P, Q) €A x 23W,
|2'] < N' on A x A x dW. By a similar reasoning we infer that

|2'] < N' on A x A x W. Thus k'dy is bounded on A x A,

w
Accordingly h(P'; P, u) + u(R)log |z(P') - z(P)| is bounded on

- 18 -
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A x A. Our lemma is now completely proved.

The following result was orally suggested to the author in
1976 by Carleson for measures with continuous densities. A proof
was given by Noguchi. We shall use Theorem 1 in the following

proof.

Theorem 3. Suppose that locally the logarithmic potentials
of u and v are both bounded, and that u(R) = v(R). Then there

exists a constant ¢ independent of r, S and G such that

T r o
|JO u(Gt)dt - jo v(Gt)dt < c.
Proof. By Theorem 1
r - 1 - . N
IO {u(Gt) —v(Gt)}dt==7FJ ’ {th(£(P); P, u) -h(£(P); P, v)}dué(P).

-Y-t—’\»'o
On account of lLemma 7 we find a constant c' not depending on (P', P)

such that

[h(P*; P, 1) - h(P'; P, V)| < c'.
The required inequality follows immediately.

Remark. The condition on the boundedness of the logarithmic
potential of u is satisfied if, for instance, du is written locally

as pzdxdy with bounded density pz.

In order to establish an inequality of the form u(R)N(r, P) <

r .
JO u(Gt)dt + C we give

Lemma 8. Suppose that locally the logarithmic potential of

¢ is bounded. Then U h(f(ﬁ); p, u)dué(ﬁ) is dominated by a finite
Y
0
constant which does not depend on P and G.

- 19 -
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Proof. Let §0€5Y0 and P0 = f(ﬁo). Define the conjugate ué

of ug in a neighborhood of P, so that ué(ﬁo) = 0. Since grad ug #
0 on v, and Yo does not contain any branch point of S as assumed

in the beginning of §2, we may take ug * iué as a local parameter
on R. Let |z] < 1, < 1 be

z not only around P but also around P

0 0 0
a closed local parametric disk, and A and A be the corresponding
disks on S and R respectively. By Lemma 7 there exists M < « such
that |h(P'; P, u)| < Mon A" x (R - A) with the image A' of [z]| <

rO/Z on R, and

h(P's 2, w) - w(R)Log ropprygpyy! < M

on A x A. Denote the image of |z] ¢ r0/2 on S by A'. Then

[ needy; v, waug®
YOnA'

<M

if PeR - A and

° lo 1 du#
-5 & ué—z(Pi hate
° log L dux
i [wEl 76

if PeA with some §, 0 < § < 1. Since Yo is covered by finitely

- nads e, waugd
yoﬂA'

A

M+ uR) |

A

M+ u(R)J

many disks 1like &', our lemma is proved.
Next we give

Lemma 9. Fix Gy> S, and let {Gk} be a sequence of domains

such that each G Then there exists a vpositive harmonic

K> GO'
function u in Gy - Sy which vanishes on v, and to which some

subsequence of {u, } converges.

Gy
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Proof. Since each Ug 2z 0 on Gy - Sg» there is a subsequence

k

of {uG,} which tends to a harmonic function u or « locally uniformly
k

in G0 - SO' Denote the subsequence still by {uG }, and assume that
k

© - * = ~- P
u > on G0 SO' Let G {P; ug (P) < Cq /2}, and Wex_g be
k 0 0 0
the harmonic measure of 3G¥* - Yo with respect to G* - SO' Given
any number a > 0, there exists k' such that Ug 2 awgx_g  On G0 -
k'~ 20
SO’ so that aqu'/an > aawG*_so/an on yg- Hence
Bqu‘ BwG*_SO
L=J 3n dS;aJ Td5>0.
Yo Yo
This 1s impossible if a is large. Therefore, Ug > U as k - « on
, k

G0 - SO’ in particular, uniformly on 3G*. We infer that u = 0 on
Yq o and that u is positive because J du/9nds = 1. Our lemma is

Yo
now proved.
Theorem 4. Suppose that locally the logarithmic potential
of ¢ is bounded. Then there is a constant C not depending on r

and P such that

T
HONGE, ) < [ Rcopae + C.

If we fix G, and take only G which includes GO’ then we can choose

0
C so that it does not depend on G.

Proof. Set k(P', P) = h(P'; P, u) - inf h(P'; P, u), where

m = inf h(P'; P, u) on R x R is finite by Lemma 7. We have

hdu% = kdua.
YT_YO Yr—YO
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From Theorem 1 we derive

T
- ~ 1 )
p(R)N(r, P) = JO u(Gt)dt + 7?[ kdué 7—J kdué
Yo Yr
T . 1
el *
< JO u(Gt)dt + ZHJ kduG
Yo
r. 1 m
= JO u(Gt)dt + 7?J hdué - TFJ dué
Yo Yo

T 1 m
JO U(Gt)dt + 7[ hdu#® - oot
Y

By Lemma 8 f hdué is a bounded function of P on R so that its
Yo
maximum M is finite. We conclude our theorem by taking C = (M - m)/

(2m).

To prove the latter part of the theorem, assume that every
G contains G0 and write NG(r, P) and CG to show the dependence on

G. Suppose that there exist {Gj}, each containing G and {Pj} on

O’
R such that J k.dué - »_ where kj = k(f(ﬁ), Pj). By Lemma 9 we
Yo ' i
may suppose that ug converges to a harmonic function u in G0 - SO'
j

Set M' = Maxy o, U with G* in Lemma 9. We have

ou W ou

G. G*-S ! G
j ' 0 2(1+M") 0
o S (WM —r— 2 = on on ¥,
Go
for large j, and hence
oug auG 4ﬂ(1+M')CC
. ] ‘v]
f k. ——3J ds < ziliM;q K. 0 4s < 0
Y j on = < Y j on = e
0 0 0 0

This is a contradiction. It is now proved that there exists C not

r .
depending on G such that u(R)N(r, P) < f u(Gt)dt + C.
0
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§3. An identity

Suppose u has density everywhere on R. Thus du = pidxdy
locally. We call pzldz} a conformal metric on R. 1If ¢ is another
local parameter, then pZ|dZ| = pCId;]. We assume in this section

that pzezcz and 0, is positive everywhere on R and that
JJ pidxdy = 1. Cover R by open disks so that every point of R
R

belongs to only finitely many disks. Let |w| < 1 correspond to
such a disk and assume that |w| < 1 + ¢ corresponds to an open
disk too. Let p_ = p (w) be equal to 1 on lw| < 1, equal to 0
outside of |w| < 1 + ¢/2 and non-negative and of class CZ on |w| <
1 + €. Regard pw[dwl as a kind of conformal metric. We form such
a metric to every disk. The sum is a positive conformal metric of

class C2 on R.

We form the Gaussian curvature

A log p, A, log p,
K=-— ="
e, P,

Let us see that K is invariant under z - z. Actually, we have

2
2 0
_ dzg dg _ z
A, log o, = AC{log(pClg;l)}lggl = (AC log QC) ;7,
C

which yields p;ZAZ log o, = pé b, log p

c
Very often Gauss-Bonnet's formula is derived and applied to

obtain an identity which will follow. We shall choose a different

way. According to [7; p.251] the following relation is basically

due to Poincaré and Bendixson. In proving it we shall follow [7].

As to other proofs see [10; p.35] and [11; 81.3].
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For a harmonic function w in D we call a point at which grad

w = 0 a critical point. Let P e Pm be the critical points,

1’
and n, be the multiplicity of grad w at Pi' Set n(grad w, D) =
m
li=1 i

Lemma 10. Let D be a relatively compact domain on a Riemann
surface bounded by k (2 < k < «) analytic closed curves. Let E #
3D be a non-empty set of closed curves on 3D and w be a harmonic
function on D which is equal to 0 on E and to a positive constant
on 3D - E. Then |

x(D) = n(grad w, D),
where (D) is the characteristic of D.

Proof. We divide D into m (curvilinear)

polygons and o, (curvilinear) rectangles 5 ngég ;‘ £;
such that each side lies on a level k\\\ S
curve or on an orthogonal trajectory

and each polygon surrounds just one A
P. as in the figure. One fourth of \nﬁ/f\\‘”M//i f\;
the number of its corners is equal to 5;%\ > {f
n. + 1. Denote by D' the complement of f‘ ) P;\ \\>
m polygons. We assume that rectangles éi\\w/”wm\\éfi
form a mesh. Let aO,Z be the number A
of corners of D' each of which belongs

just to two rectangles; they lie on 3D. Let uO,S be the number of

.corners on polygons and A5 g be the number of corners lying in the
b

interior of D', Then the number o of corners is equal to Ay 5 *
3

uO,S + u0’4. The number oy of edges is equal to
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and

1
ay = 7(2ag 5 * 3ag 5 * 4ag 4).

Hence

.
x(D') = “ag *tag ta, =7 ap 3 = ) n, +ms= n(grad w, D) + m.

Since x(D) = x(D') - m, x(D) = n(grad w, D). Our lemma is now

proved.

Let |z| < T, correspond to a closed disk on R. Let y be a

smooth curve on 0 < |z| g 1, and form
o log P,
dt = dez + T— dSZ along v,

where 6, is the angle between the tangent and the x-axis. If z is

transformed to ¢, then log pc(c) - log p,(2) = log (ldz/dz|) and

5%2 log ]gél-dsi = d arg %% = de, - dec.
Hence
3 log P, _ 9 log P,
4 deZ + ———gﬁz—— dsZ = dec + ———Sﬁz—— dsg.

Therefore dt is invariant.

We define X on S by K(ﬁ) K(£(P)). We prove

Lemma 11. Let F be a relatively compact subdomain of S with
boundary which consists of finitely many analytic arcs and which
does not contain any branch point of S. Then

1{ .~ ’1[ 1
A Kduy = b(F) - F) - 5= dt - 5= T.,
7], Kav = D) - X(P) - 75 7 LTy
where b(F) is the sum of the orders of the branch points of F and

Tl’ Tys --. are the changes of angles at the corners of O9F.

- 25 -



43

Proof. Let FO be a closed disk contained in F such that FO

does not contain branch points of S. Let w be the harmonic measure

of 9F with respect to F - F Let A ces By be mutuall: disjoint

0" 1’
closed disks with centers at the corners of 3F and Ai,
—eee- Ak around the cirtical

- Aé be
mutually disjoint closed disks in F - Ay
points of w and around the branch points. At every point P of
F - Fy at which grad w # 0, w + iw®* may be taken as a local
3 |
parameter. Denote O prin® simply by P," By Green's formula we
have
3 1lo
g P, is =
on

el L | DY
d(F FO UAi uAj) z F FO UiAi ujAj

A log pwdxdy

= JJ A log pzdxdy
- - - 1
F-Fo-U 8, UjAj

because p, = pwlgradzw| and log [grad w| is harmonic. Let us

compute the limit of J (3 log pm/an)ds as Ai shrinks to its

AL
J

center ﬁO’ We shall treat the case where ﬁO may be at the same
time a critical and branch point. Let n(ﬁo) be the multiplicity
of f at 50 and p be the multiplicity of grad w at ﬁO' Write dsw,

. %, etc. By (4) we have

etc. £
c or dsw+1m

J;J o log o, de
2w SAT anm w
]
3 log p
- %?J an : ds, * g?[ e, - f%j dé,,
f(3Al) z f(aAl) W
J J J
> n(?o) -p -1 as Aj - ﬁO'

As to the integral along aAirWF
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1 3 log I
2m on dsw
BAinF w
9 log p
- LR do, - 7o o,
f(aAinF) z f(aAinP) aAinF
m o _ 1
> (™o T T oo Ty
Accordingly
1f
TFJfF . A log pzdxdy
0
9 log p
1f W 1 }
= 77 ”——35*“—'d52 - b(F'FO) +‘7; Z T4 * n(grad w, F-FO).
3(F-F,)

By Lemma 10 we obtain

1f ~ o 1 1
— Kdu = b(F-F,) - x(F-F,) - ——J dt - = ) 1
2Tl p g 0 0 2w 5(F-F,.) 2w i
0 0
We note that
. d:log o
1 - 1 z - _ 1
ﬁJF Kdu = HJEF —n— ds —szBF dv + 1
0 0 0

and obtain

1 SaN 1 1
7FJF Kdu = b(F) - x(F) 7FJ3F dt - 5= ) T

If F =S = R then we have
Corollary.
(5) | xaw = - xm
2T .
R
We set

T T T
T(r) = JO ﬁ(Gt)dt, E(r) = JO x(G.)dt, B(r) = JO b(G,)dt.
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The main result in this section is

Theorem 5.

B(r) - B(r) + x(NT(r) = A (log o, - waug,
Yr ™Yo

where

D) = 5] RCEB); P WKEIGE).

Proof. By Lemma 11 we have

s
Lo
Sy
(ep]
=i
[a W
=
[a
o+
1

T T 1 (T 3 log Py

- - o -— = *

JO b(G,)dt JO x(G,)dt 2“{0 dt[ Y dut
T

1
B(r) - E(r) - 7;[ log pudua.
Yr Yo

Integrating (3) in Theorem 1 with respect to Kdu, we derive

1

T(r)f Kdy - J Udu# Jr dtJR n(t, P)K(P)du(P)

R Yy Yo 0

LIl

r N

J f Kdudt.
0 Gt

We use (5) and obtain

B(r) - E(r) + x(R)T(r) = %?J (log p, - U)duf.
YT—YO

Our theorem is thus proved.

Remark, If X is constant, then the right hand side of the

identity in the theorem reduces to (2m) log p,duf.

'
Yr™ Yo
We shall extend the identity in Theorem 5. The method is due

to Ahlfors [1]. Take Pl’ cee Pq on R. Let IZv' < 1 correspond

to a disk with center Pv' We assume that they are mutually

- 28 -
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disjoint. Let pz|dz| be a positive conformal metric on R -

2 -
{Pl, cens Pq} such that JJR pzdxdy = 1 and

-2
_ 1 1
(6) pz\) = 'i?\—)—l-' [10g TE'\)T] on ‘Z\)i < I'V,
where Tys ooy T are chosen so that each rv < e—l. We note that

A iog p, = 2 lzvl_z(log(l/lz‘vh)_2 and hence that JR |K|dy < .
v

We prove

Lemma 12. With P, in (6) we have
v

1

1
— log )A log o dx_dy
Z“JJIZv|<rO( z—zvl z, vy

= 2 log log T%T - 2 log log g; + 2 for |z]| < Ty
: 0

Proof. Denote the potential by V(z). With polar coordinates

we have A log p, = Zr_z(log(l/r))z as above. Hence
v

T 27w
V(z) = lj O[J log ———l;fg~ dG} 1 > dr
Tlo Up |z-re™ 7| r(log(l/7))
1 (lzl dr Jro dr
= 2 log J + 2
12Ty r(log 1/r)2 lz|] log 1/

1 1
2 + 2 log log - 2 log log — .
[z] Ty

Let G be a subdomain of S as in §2 and u = Ug be as there.
We shall prove
Lemma 13. f (log oy " U)du®* is a continuous function of t,

Y
where

0 = 7o RED); P, WK

- 29 -
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Proof. Let Eoezyr. It suffices to consider the continuity
at t = r. As in the proof of Lemma 4 we set wP = F = u + iu* -
u(ﬁo). Let z = x + iy be a local parameter on R such that z = 0

corresponds to f(ﬁo), and write

2(£(Bw)) = z(w) = wlg(w) (a 2z 1)
with g(0) # 0. Then

oy = }%% o, = Iw|¥ agw) + wg' () o,
The identity p [d(u + iu*)| = p_[dw| yields

log p, = (1 - p)log |w| + log p - log p

= (a - p)log |w| + log p, + G(wW),
where G is a continuous function.

Suppose f(ﬁo) coincides with none of Pl’ ceny Pq. Let V be
a closed disk on R which contains none of Pl’ ey Pq and which

corresponds to [z| < r Denote by V' the image of |z]| < r,/2.

0"
For P' e V' we have

J h(P'; P, WK(P)du(P) = f h(P'; P, 1WK(P)du(P)
R R-V

+ JV {h(P'; P, u) - log IZ(P'f;Z(P)I}K(P)dU(P)

1
+ JJiZ‘l<r 10g TZ—(P—')_—ZT A 10g pz dXdy.
=70

Since A log p, is continuous on |z| < 1, the last integral is bounded

on V'. The first two integrals are bounded on V' on account of
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Lemma 7. If f(?o) coincides with some Pv’ then let z = z,- This

choice of local parameter gives

log p, = log p, = - log lzvl - 2 log log Tg;T.
v v

By Lemmas 7 and 12 we infer that
log p, - U= - log |z | + ¢(z)

in ]zvl < 1 with a bounded function ¢(Zv)’ and hence

log py - U= (q - p)log |w| - q log |w| - log |g| + ¢(z) * G(w)

[t}

-p log |w| + a bounded function.
The proof of our lemma is completed as in the proof of Lemma 4.

We shall establish

Theorem 6.

q

Zlmr) - N(r, P)) + B(xr) - E(r) + x(R)T(r)

=

(7)
1
= = (log p, - U)du*.

ZNJYT_YO u

Proof. Around each Pv we draw a small closed disk Av(e)

corresponding to lzvl < e <r,. Suppose the projection of G Uy, -

G contains none of Pl’ cee Pq. Choose e so that f(yt) is

-tl
disjoint from uvBAV[a) and. set

G, (e) = G, - £ T(U A (e)).

By Lemma 11
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1J Rdj = b - _ 1
— u (G .(e)) - x(G . (e)) - »= dt.
2m t t 2} -1
Gt(e) f (UvBAv(e))UBGt
if P is not a branch point and f(ﬁ) = Pv’ then
1 1 8 log o, 1
‘z?J -1 dr = ﬁf —n 48 * 77 do,
£ (31, (e)) 34, (€) 108, (e)
2m
_ 1 1 2 1
= - 7?[0 GhE Iag—g]EdG + 1
+ 0 as € = |z_| - 0.
v
The same is true even if P is a branch point and f(E) = Pv' Let

b'(Gt) be the sum of the orders of the branch points of Gt lying

above Py, ..., Pq. Then Xv n(t, P.) - b'(G.) is equal to the

number of branch points of Gt lying above Pl’ cees Pq. We have

b(G, (€)) - X(G,(e)) = b(G,) - b'(6,) - X(6,) - {] n(t, P} -b'(6))
\Y

b(G.) - x(6.) -} n(t, P).

v
Since J Kdy - 0 as € -~ 0,
A, (€)
1 ~ . 1 9 log Py .
ﬁje Kdii = b(6) - x(6y) - [in(t, P) - 7] et .
t Yt
Similarly we derive
L Kdw = - x(R) -
A X q.
R
We obtain
1 t ~ 1
7;[ I Kdpdt" = B(t) - B(t') - E(t) + E(t') - 7—[ log p_du¥*.
1 ™ u
t Gt” Yt-yt'

Integrating (3) with respect to Kdu, we have
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(T(t) - T(t'))JR Kdy - | Udu*
Yt—Yt'

t ~
= - 27(T(t) - T(t"))(x(R) + q) - J- Udu* = f [ Kdudt",
Yt-Yt' Gtvl

and obtain

B(t) - B(t') - E(t) + E(t') + (x(R) + q)(T(t) - T(t'))

q

!

v=1

1
Ne~1,0

N(t, )+ N(t', P)

v=1

_ 1 .
= 7;[ (log Pu U)du*.
Yt_Yt'

Since I (log Pu ~ U)du* is a continuous function of t by Lemma 13,
Y
t

our theorem is concluded.

§4. Second main theorem
We begin with

Lemma 14. Let pZ[dzl be a positive conformal metric which
may have singularities like (6). Fix GOD»SO. Then there exists
a constant c such that

Jfolog_pucdué <c<w
for all G»o GO'

Proof. Suppose there exists {Gk} such that each Gk: G0 and

J 10g-pu dué + o as k » «. For simplicity write u for u
Yo Gk k

By Lemma 9 there exists a positive harmonic function u which

Gk'
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yvanishes on Yo and to which a subsequence of {uk} converges. We

write still {uk} for it. Set
= 1118 = 1u®
Hk Uy + iuf and H u + iu®.

At every point of Yo We may take H as a local parameter. As k » «
Ide/dHI + 1 on Yo and hence

de

-log puk = -log Py log ?ﬁ?'

is bounded from above on y, for k = 1, 2, .... This contradicts
the fact that I 1og_pu duﬁ > o as k » o, OQur lemma is thus proved.
Yo
Lemma 15. Let A be a non-negative measure in a measure
space, and B be a measurable set with A(B) > 0. If ¢ is a non-

negative and A-integrable function on B, then

AlB)fB (log ¢)dX < log {T(l—BTJB ¢dx}.
f

]
Proof. We may assume that J ¢dr > 0. Set c = (1/A(B))J édx,
B

and ¥y = ¢ - ¢. Then J Ydx = 0 and 1 + ¢/c > 0. For every t
B

vy @

log (1 + t) ¢ t. Hence log (1 + y/c) £ ¢/c, and

X%ﬁTJB (1og o)dr = K:%) {JB log Cd% + jB log (1 + %)d)}

{ ¥

| 1 ) ) 1
log c + XTETJB E-dx = log ¢ = log {XTFTIB ¢dx}.

Our lemma is thus proved.

1A

Lemma 16. Let p |dz| be the conformal metric given before

Lemma 12. Then

f ~ -
lJ U(P)du*(P)| < 2q log (T(r)+const.) + const.,
Y

T
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where constants do not depend on r and G.

Proof. Let D be the open disk corresponding to ]zvl < T
For P' ¢ D\) we have
[ neers p, wxeaue = [ R P, wKE)E)
R R-D
o | {h(P‘- P, 1) - 1o ! }K(P)du(P)
Jp WP o) - log ppry ey T

Vv

.
N [Dvlog T T KPS @),

By Lemma 7 the first two integrals are bounded, and by Lemma 12

1 1 = . 1
TTTJD 10g IZ\)(P')‘Z\)(P)‘ K(P)dU(P) = 2 10g 10g m— + 2.

Y

Denote by <, the part of Yy whose projection is contained in Dv'

We observe that

- - q
f |U(P) |du*(P) < 2 ]} J log log ————j;:——- du*(P) + const.
Y, vl Jc |2, (£(P)) |
q : . ~ Y
<2 3 [cvl log(]cv]_lf log --j;:-~ du*(P)] + const.
v=1 c, Iz, (NI |
1 q 1 y
< 2qe +2 § log [ log ——=——— du*(P) + const.
~ov=l Y |z, (£(P)) ]

by Lemma 15, where lcvl is the u*-measure of the set Cy- By the

aid of Lemma 7 and Theorem 1 we infer that

1

————— du*(P)
|z (£(B)) |

log f log
Yr

< log

f ~ ~
J h(£(P); Pv’ wydu*(P)| + const.
Yr .
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< log {ZVIT(r) - N(r, P)| +,§[ h(E(B); P, u)du*(ﬁyl} + const.

Yo
This 1is

< log (T(r) + const.) + const,

on account of Theorem 4 and Lemma 8. Hence

N

lf U(P) du (P)
YI‘

This proves our lemma.
Now Theorem 6, Lemmas 14 and 16 give
Theorem 7. Take Pl’
Lemma 12. Then, for any G containing a fixed GO: SO’

q

)

v=1 Yy
< 2q log (T(r) + const.) + const.
Set w(r) = f log pudu*. By Lemma 15
Yr
2 h!
2w(t) < 1og[J 0 du*J
= u
Yt
and hence
T T
j e2W(t)ge < J J oZdu*dt = §(G.)
= u T
0 0/y
t
so that
T t
(8) [ dtJ e2%(S)gs < ().
0 0 -

By means of Theorem 7 we have

Theorem 8. Take Pl’

Lemma 12. Then, for any G containing a fixed Gy Sy

- 36 -

2q log (T(r) + const.) + const.

. Pq on R, and pZIdzl as before

- Pq on R, and pzldzl as before

(T(r) = N(r, P)) + B(r) - B(r) + x(RAT() - 7| log o du*
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q -
Lam - xe, 2y« 300 - B0+ x®T) - 20 )
’ < 2q log (T(r) + const.) + const.,

where w(r) satisfies (8).

Remark. On account of Theorem 3 this inequality is valid

for any u whose logarithmic potential is locally bounded on R.
To evaluate w from above we give

3 1] 1 1
Lemma 17. Fix G0 and Gé so that So cG0 and GOLJBGochO.
Then there exists a, 0 < a < 1, such that {P; uG(ﬁ) < a} is

contained in Gé for every G<:G0.

Proof. Suppose there exists {G,} such that each G contains

G0 and inf u on 3G! tends to 0 as k = «», By Lemma 9 we may

Gk 0
suppose that {uG } converges to a positive harmonic function u
k
locally uniformly in GO - SO' It follows that inf u on aGb is

zero. This is impossible because u is positive on G0 - SO’ Thus

there exists a} 0 < a' < 1, such that ug > a' on BGb for all G :GO.

By the minimum principle u; > a on G - Gb for all G DGO, where

a = min(a} g /2). Therefore, {P €G; uG(ﬁ) < al is contained in Gb.
0

Next we verify

Lemma 18. Let ¥ be a continuous increasing function on
[rO, r*], and ¥(t) be a positive continuous function defined on

[to, ) with Jdr/?(r) < oo, If w(ro) >t then ry'(r) < ¥(¥(r)) on

0!

[ro, r*) except a measurable subset I with f d log r < Jdr/?(r).

I
Proof. Let I be the subset of [ro, r*) on which r¢'(r) >

Y(¢(r)). 1It is certainly a measurable set, and
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Our lemma is thus proved.
We shall establish the second main theorem.

Theorem 9. Take P Pq arbitrarily on R, and pZIdzl as

12 e
before Lemma 12. Suppose Cg > 1 for Gy > SO‘ Then
0

(TG(r) - NG(T, P\))) + BG(T)

ne~1.0

v=1

(9)
< EG(r) - x(R)TG(r) + b log TG(r) + b!

for any G»> G0 and r€ [1, c - I, where b and b' are finite constants

c)
independent of G and r, and where I is a measurable subset of [1, CG)

such that J d log t is bounded above by a finite constant independent
1

of G and r.
Proof. We shall use Theorem 8. By Theorems 4 and 7 we have

1
7FJY log Pa dué 2 - EG(r) - Ix(R)lTG(r) + const.

r G

Lemma 17 implies that there is a, 0 < a < 1, such that {P; uG(ﬁ) <

T} c G0 for all Go GO

and TG(r) < aﬁ(GO) if Go G, and 0 < r < a. Hence [ log Py
Y

and T € [0, a]. It follows that EG(r) < alx(GO)}

u®
Gd G
T

is bounded below so that there is a finite constant c' such that

w(r) >c' if 0 < r < a.

Tr {g
We apply Lemma 18 to y(r) = J ezw“b)ds on [1, CG} and ¥Y(r) =
0

a

B

2 3 ) .
r°~ with g > 1 on [tO, ©), where ty = J e”w(b)ds. We obtain

0

- 38 -
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t ! 1B
eZW(t) < [J eZW(S)dS] on [1’ CG) ',I,
- 0
where I is a measurable set satisfying
a 1-B
1 2w(s) 1 1
d log r < _..—[J € dS] by » =~ =T <.
JI B-11Jg = B-1 (anC )8 1

T t owis)
Applying Lemma 18 next to y(r) = J dt f e "“ds we :see ‘that
0 0

A

T
J ezw(s)ds

( T t | B
l[ dt [ ezw(suds] on [1, CG) -1,
0

0 0

where I' is a measurable set satisfying

< o,

1 2 (Bl
JI' d log r < ETT[;Tgfng
For re[l, ¢5) - I - I' we obtain
2
w(r)‘é %T~log TG(r).

By Theorem 8 and the relation yﬁ(SO) < T(r) we have

I ~1 .0

(TG(r) - NG(r’ PV)) + BG(r)

v=1

) |
< Bg(r) - x(R)T4(r) + 2q log Ty(r) + &= log Ty(r) + c*,

where c* is a constant independent of G. Our theorem is now proved.

§5. Defect relation
We shall prove

Theorem 10. Let S be a parabolic open Riemann surface, and -
{Gn} be any exhaustion. Then there exists {rn} tending to « such

that 0 < T < cq for each n and
n



07

I~1.0

(10) Y(P)) + b <& - x(R),
v=1 ~
where
| Ng, (Fn> BY) Bg (rp)
y(P.) =1 - limsup , b = limsup T (r) °
v n->e TGn(rn) n-e TGn Tn
EGn(rn)
g€ = limsup T (7 °
n-o TGn rn)
Proof. We note that S is parabolic if and only if g + o
n
as n »~ <, Hence we may assume that all c > 1. For each n we

G

n
choose r_ > cGn/Z satisfying (9) with G = G . Asn > ® 1 >«

and TG (rn) + o so that (9) yields (10).
n

Remark '1. The existence of the following function p on any
parabolic open Riemann surface is known (cf. Chap. IV of [11]):
(1) p 1is harmonic outside a point P0 of R,

(ii) p has a logarithmic singularity at PO, i.e.,

p(P(z)) - log |z]

is harmonic in a neighborhood of z = 0, where z is a local
parameter around PO and z = 0 corresponds to PO’

(iii) p(P) » = as P tends to the ideal boundary of R.

Set Gr = {PeR; p(P) < r} and

(T r
| e, Ppat f b(G,)dt
: o : o
Y*(P)) = 1 - limsup T , b* = limsup T
T deyat ] EGeyar
To Yo
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T
| xtepae
£* = limsup rO
r=e fi(G,)dt
t
To

for a fixed T. From Theorem 10 we obtain
q
(11) L Y*(P.) + b* < g% - x(R).
v=1 v
Remark 2. If £ = «», (10) is meaningless. On account of
Theorem 3 the values of y, b and §& do not depend on the choice

of u. Thus to compute them we may choose one particular y.
The following result was obtained by S. Chern [4]:

Theorem 11. Let S be an open Riemann surface which is obtained
from a closed Riemann surface by the deletion of a finite number of
points, and let f be a non-constant analytic mapping of S into a

closed Riemann surface R. If x(S) < 0 or 1imn+

°°rn/TGn(rn) = 0 for
{Gn} and {rn} considered in Theorem 10, then

q
(12) Y

Y(P)) + b g -x (R)
Vv

1

so that R must be a sphere or torus.

Proof. We see that EG (rn) < X(S)rn if n is large. Hence
n

£ < 0 under our assumption, and (12) follows from (10). Theorem 4
implies Y(Pv) > 0 for each v so that the left hand side of (12)
is non-negative. Hence x(R) ‘< 0 which shows that R is a sphere

or a torus.

Remark. If x(S) = 0 (-1 resp.), then S is conformally equivalent

to the surface obtained from a Riemann sphere by the deletion of two

(one resp.) points.
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We shall study the condition 1lim rn/TG (rn) = 0. If this 1is
n

not true, then there are a finite constant M and a subsequence {nk}

of {n} such that T (rn ) < Mrn , OT TG (rn ) = O(rn ). We shall

G
ny k k ny k k

prove

Theorem 12. Let S be an open Riemann surface which is obtained
from a closed Riemann surface S* by the deletion of a closed set K
of logarithmic capacity zero, and let f be a non-constant analytic

mapping of S into a closed Riemann surface R. If TG (rn) = O(rn)
n

for an exhaustion {Gn} of S and a sequence of values T (< g )
n
tending to «, then f can be extended to an analytic mapping of S¥

into R.
Proof. By Theorem 4 we have

T

n

JO n. (t, P)dt < TG (rn) + k < Mrn + k
n n

for any PeR with constants k and M which do not depend on n. We

may assume that k < Mr It follows that

1°
T T T

n n
ZMrn > J n. (t, P)dt > - Dg (TT’

rn/z n n

and hence n. (rn/z, P} < 4M. Lemma 9 shows that every subsequence
n
of {uG } contains a subsequence which converges to a harmonic
n

function locally uniformly on S - SO‘ Accordingly, given any

point P of S - S0 there exists n, such that ug (ﬁ) < rn/Z for
n

every n » mng. Therefore P is covered only finitely often by S.
If the cluster set C(f) of f at K contained an open set, then there
would be a point of R which is covered infinitely often by S. Hence

C(£f) is nowhere dense in R.
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In case R is an extended plane, by performing a linear trans-
formation, we may assume that f is bounded near K. Taking for
granted that every bounded harmonic function defined near a closed
set of logarithmic capacity zero can be defined to be harmonic on
this set too, we conclude that f can be defined to be an analytic

mapping of S* into R. We shall say that K is removable for f.

In case the genus of R is positive, let w = g be a non-constant
meromorphic function on R; the existence of such a function is
assured by the Riemann-Roch theorem. Then the cluster set of gof at
K is nowhere dense in the w-plane. It follows that K is removable
for gof. Around each point of K there is an open disk Dc S* such
that the image of D - K by f is contained in a disk on R. We infer
that DNK is removable for f. Thus K is removable for f. Our

theorem is now proved.

A non-constant analytic mapping of S into R is called trans-

cendental if rn/TG (rn) + 0 for any exhaustion {Gn} of S and any
n

sequence of values r (< g ) tending to .
n

Remark 1. If f is the restriction to S of a non-constant

analytic mapping of S* into R, then always Tg (rn) = O(rn).
n

Remark 2. There exists a parabolic Riemann surface S of
infinite genus such that every non-constant analytic mapping of

S into a closed Riemann surface is transcendental. See M. Heins

[6].

Remark 3. If f cannot be extended to be analytic on S*, then

R must be a sphere or a torus. This follows from Théoréme I ofb[8].
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Let us observe some consequence of Theorem 11. First let S be
|z| < @ or 0 < |z] < », and f be a non-constant analytic mapping of
§ into a closed Riemann surface R. On account of (12) the genus of
R is £ 1. If R is an extended plane or a Riemann sphere (torus
resp.), then (12) yields Xy(PV) +b <2 (=0 res?.). The (big)
picard theorem follows from this. Let S be an open Riemann surface
which is obtained from a closed Riemann surface S*¥ of positive
genus by the deletion of a finite number of points. If f is
transcendental, then R must be a sphere or a torus. If f is not
transcendental, then f is extended to be an analytic mapping of S*

into R by Theorem 12.
From Theorem 9 we derive also

Theorem 13. Let S be a parabolic open Riemann surface such

that every point of S above P, is a branch point with multiplicity

v

mv,and {Gn} be any exhaustion. Then there exists {rn} tending to

8

such that 0 < r, < g for each n and
n

1 1
Y (1 - ﬁ—) <& - x(R).
v=]1 v
Proof. From (9) we obtain
q _
L (T - No(rs P) 5 Bg(r) - x(R)Tg(r) + 0(log Tg(r)),
where

— ro_
NG(r, Pv) = JO n(t, Pv)dt

with the number (without counting multiplicity) n(t, Pv) of points

on Gt at which £ = Pv' We have

- 44 -
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mvNG(r, Pv) < NG(r, Pv)

so that by Theorem 4

E.(1) log T.(r) q N.(r, P.)
G _ (R)"’O G 21__1__G Vv
TGiri X TGiri = v=1l m, TGIri
q T.(r)+k
32[1——1———T—TG ]
T ov=1 m, Tglr
We derive the required relation easily.
§6. Disk theorem
Let D,, ..., D, be open disks in R whose closures are mutuall
1 q Y
disjoint, and denote by R' the domain outside D1 U---lJDq,.
Evidently x(R') = x(R) + q'. Set & = aDllJ--- uaDq,. Consider

a conformal metric pzldz] with positive p, ECZ on R. We assume

f
that u(R) = JJR pidxdy = 1.

Let D be an arbitrary domain in R whose boundary consists
of finitely many analytic closed curves. We set D' = DNR'. We
define x(D') as before although D' may not be connected. By

Lemma 11 we have

Dl

e
9DNR? LND

where zTi means the sum of the outer angles at the points of

intersection of 3D and &. 1In particular,

(13) Kdu = -27(x(R) + q') - jg dt.

J
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Let F be a finite covering surface of R such that the projection

of 3F intersects £ only finitely often. We have

(14) J Kdy = 2m{b(F') - x(F")} - [J dt + ZT.},
F' SF! .

where F' is the part of F lying over R'.

We define a Radon measure A on R starting from a set function

defined on the class of open sets EcR:

1 1
A(E) = _—J Kdp + = dr.
2T EnR" 27 40k
We note that
(15) AR) = =  Kdp + -=| drT = -(x(R) + q')
A R K 2T ) X q

by (13). 1Integrating (3) with respect to X we have

~ ~ r ~
AR)T(T) + o h(£(P); P, p)du*(P)dr(P) + | A(G,)dt,
Zm Ry -y : 0 t
) .

where A is the pull back of X to S. By (15)

' - . L t A - 1 r
(x(R) + q")T(r) ZWJOJG%Kdudt ZWJOJQthdt
(16)
- ;Lf J h(f(ﬁ)' P u)du*(ﬁ)dX(P)
ZﬂJR > ?

™Yo
where Rt is the part of Gt lying above %. We shall evaluate each

integral on the right hand side.

Let Q@ be a component of the inverse image f_l(Di). If it is
relatively compact in S, it is called an island. Otherwise, it is
called a peninsula. When we exclude a simply connected island,

the characteristic increases by one. When we exclude a peninsula

- 46 -
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or a non-simply connected island, then the characteristic is
invariant or decreases. Denote by m(v)(Gt) the number of simply

connected islands lying above Dv and included in Gt' Then

5w
x(GL) 2 x(G) + vzlm (G.)-

Denote by k(Gt) the number of intersections of 2 and the projection

of e Then, for F = G the sum ETi is not greater than nk(Gt).

t,
Next we are concerned‘with
T T 9 log Py
dt dt = dt ———— du¥,
0 ' 0 ' ot
Yt Y

where y% is the part of Ye lying above R'. Choose 0 < ry <1y <
*rr < TP ST SO that grad u # 0 on the part Bi = {5; r, < u(ﬁ) <
ri+1}. On each Bi we can define u* so that (u, u*) gives a kind
of coordinates. Set yY(u, u*) = 3 log pu/au if f(ﬁ(u, u*)) € R' and

= 0 if £(P(u, u*)) ¢R'. We have

T, 9 log o 1 T,

J J ——— du*dt = f J Y(t, u*)dtdu*
1

T Y 0 Ty

|

1]

1
* -
[0 z{log pu(ti’ u ) ]-Og pu(ti—l’ u*) }du*,

where Ui(t ti) coincides with the part of the u*-level set

i-1°

in R'. The last side is equal to

* - * *
J ' log pudu J ' log pudu + f log pudu R
Yr Yr ber
2 1 1°°2
where 2 is the part of G -G lying above 2. By summation
TsT, T, T

we obtain
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log pudu* + f log pudu*,

T
J dtj dt = f log pudu* - f
0 e Yy Y0 ir

where %; is the part of Gr - S, lying abouve 2.

0

r (v) T
Setting B'(r) = [ b(G%)dt and M (r) = f m (Gt)dt, we
0 0

A

T - q T
—f f Kdidt < 27{E(r) + ]} M(v)(r) - B'(r)} + ﬁj k(Gt)dt
0/Gt v=1 0

+ 1 du#® - 1 du* + f lo du*
!Y' og o, du JY' og p du iy g o,

T 0 T

by (14). Let us show that the last integral on the right hand

side of (16) is bounded. Actually

Jr R(P'; P, w)Kdu(P) + —1{ h(P'; P, wdr(P).
R! 2

,
J BB WANE) = oo =

By the aid of Lemma 7 we see easily that h(P'; P, w)XKdu(P) is

Jro
a bounded function of P' on R. Secondly
9 log o,
[ ners o waeey = [ ones v, w2 as(e).
on

L L p
Fix any P,€ %, and let |z] < 1 correspond to a disk D, with center
at P, such that D n4& corresponds to the diameter on the x-axis.
Let D; correspond to |z| < 1/2. By Lemma 7 h(P'; P, u) is bounded

on Dé x (R - DZ) and

1 . 1
h(P'; P, u) - log [z(P)-z(P)]

is bounded on DZ X Dz' We note also that

WA

1/2 . 1 1/2 1 _
°g T3 dx < log 3 dx = 1 + log 2.
-1/2 -1/2
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Since 9 log pz/an is bounded, we conclude that J hdt is bounded
L

provided P' ED;- Since 2 is covered by finitely many disks like

D; and f hdt is bounded if P' stays away from 2, its boundedness
L

on R follows. Thus the last integral in (16) is bounded with

respect to r.

Using the fact that Lemma 14 shows the boundedness from below

of J ' log pudu*, we obtain
Y

0
' v oy (V) ' 11‘
(x(R) + q")T(r) ¢ E(xr) + ] M7/ (r) - B'(r) + 5 . k(G )dt
v=1
(17)
+ iL{J log p, du* + J log o du*} + const.
’]Tky u 2! u
Yy T
We set
w.(r) = log o du*, w.(r) = L[ k(cydt, wo(r) = L[ 1og o du
1 uttt W2 2}y 0 s 2m) g0 08 Pyttt

'
YI‘

We shall evaluate them from above.

f
For r with positive u*(y]) = J du* Lemma 15 yields
Y'

T
wl(r) < 1 1o 1 Zdu*
WD £ 718 WD), Pu

T

and hence

Jz u*(yé) exp {é;%éi;}ds

S

t 2 -
< J J oldutds < 1(G,),
- 0 Y' u = t

where we define the integrand on the left hand side to be zero for

s with vanishing u*(yé). We infer that
T t 2w, (s) T o
dt *(vy! ds < G, )dt = .
Jo Jo u*(yg) exp [m} s £ Jo p(Gdt = T(r)
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Fix B > 1. We apply Lemmas 17 and 18 as in the proof of Theorem 9
and have
Zwl(r) BZ
* t
u®(y.) exp [GITVTT] < (T(r))

M =

outside a certain set with bounded logarithmic length. Accordingly

wi(r) < 3 u*(y)g’log T(r) - 3 u*(y!)log u*(yl)
g 1
$ 5 |log T(D)| + 55 -

Let us finally evaluate Wo and LET First we note that

1 1
Iwz(r)l < fjg dsu, |w3(r)| < TFJQ |1og pu|dsu,
T T

[}

where ds |d(u + iu*)]| along .. Set

£, (r) jz as,, £,(r) = fQ ogdsys £5() = |k as,
T

Then fi < f2f3 and by Lemma 15

A

1
2m|wg (1) | Jz |log p, lds, 2 LL log (p, *+ 5-)ds,

r T u

A

1 1
fl(r) log [TIT?TIQ (pu + E_)dsu

£1(r) log (£,(r) + £5(r)) + % .

A

Thus
1 1
|w2(r)| + |w3(r)[ < /fzf3 {7 * 5= log (fz + fS) + 0(1).

From theorem 4 we infer that

- 50 -
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(T(r) + C)[z pzldz[ > Jz N(r, P)pzldzl
(18)

= JZ dth n(t, P)pzldzl = J; £,(t)dt.

In order to evaluate f3 we need a technique. We shall apply the
following so-called coarea formula; it will be proved in

Appendix 8.

Let ¢ be a Lipschitzian function on a bounded domain D in
the z-plane. It is known that ¢ is totally differentiable a.e.
in D by Rademacher-Stepanov theorem (see [12], p.97, for instance)

and grad ¢ is measurable there (see [12], p.87). Let g be a non-

negative continuous function on D. Then [ -1 gdm is a measurable
¢ ~(t)
function of t and
(19) fj 1 gdmdt = JJ g|grad o¢|dxdy
¢ “(t)nB B

for any Borel set B c D, where m denotes the 1l-dimensional

Hausdorff measure.

Let |z] < r (> 1) be a local parametric disk such that |z| < 1
corresponds to Dv' Denote by §(z) the distance from z in |z| < r
to |z| < 1, measured with respect to pzldzL It is a continuous

function of z. Set 8y = minl §(z) > 0. Define Gv(t) = {z;

z|=r
lz] <, 0 £ 68(z) <t} and Qv(t) = {z; |z| ¢, 8§(z) = t} for

t, 0 <tx< 60. From the definition it follows that Gv(t) is a
domain. Let Dv(t) be the exterior of the unbounded component D_

of the complement of Rv(t). If the exterior is not connected,

then there is a curve Yo in D_ surrounding some subset F of Qv(t).

- 51 -



We see that 61 = min §{z) > t

0

and J pds > 84 for any curve c
c

7€y

connecting F and |z| ¢ 1. Hence t =
§(z) z 6 > t on F. This is impossible.

Accordingly Dv(t) is a simply connected

domain. We observe also that Dv(t) is
the largest domain which contains |z| ¢ 1 and whose boundary is
contained in lv(t). We apply (19) to B = Gv(éo), ¢ =8 and g = 1,
and have

%0

J m(e (t))dt = JJ | grad ¢|dxdy.

0 v G,(84)
Since § is Lipschitzian, 8 is totally differentiable a.e. and hence
grad §| = 38/3s < p, a.e., where 36/9s is the derivative in the
direction of grad §. It follows that m(zv(t)) is finite for a.e.

t, 0 <t < g

We denote the closure of Gr - SO by Kr’ and take a triangulation
of Kr so that the projection is one-to-one on each triangle. We
assume that the triangles are mutually disjoint. Accordingly, each
triangle may be neither open nor closed. Let Al’ ceey Ak be the
triangles such that the z-images of their projections f(Al), ceey
f(Ak) are not disjoint from Gv(ﬁo), and denote by Bys -vvs By the
parts of the images of £(4;), ..., £(4) in G, (8,) - {|z| < 1}.

We regard u as a function on Bl’ ..+, By. We apply again (19) to

Bj (1 <j<k), ¢=26and g = |grad ulz/pZ and have
rS 2
J Of lgrad ul® 4o4¢ < f{ | grad ul2 dxdy.
0’2, (t)nB; Py B
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Taking a sum we obtain

rGO[ rad u

2
dmdt < IJ | grad ulzdxdy =T,
2, (t)NK_ Py K

T
where Qv(t)riKr means the part of Kr above Rv(t). It follows that

there exists t, 0 < t < § such that m(zv(t)) is finite and

0 b
2
[ lgrad u|” dm < -
P =8,
L, (t) nKr vA 0
-— b ('A/}/
Let y = z;z, be any segment f/
which is a cross-cut of D (t), and {D
v v 1D
D1 and D2 be the domains to which 1\\\\\\‘~
Dv(t) is divided by y. Evidently,

m(BDl) + m(BDZ) < o, It is not difficult to see that each aDi -y
is, as a closed set, a locally connected continuum. We shall use
the arcwise connectedness theorem which asserts that every locally
connected continuum is arcwise connected; see p.36 of [13], for
instance. It follows that each BDi - Yy contains a Jordan arc Yi

connecting z, and z,. Each Jordan closed curve Y; VY bounds a

1 2

simply connected domain D{, and Y1 VY, bounds a domain D' = DiU
YLJDé which evidently includes Dv(t)' Since yllJy2<:2v(t) and

Dv(t) is the largest domain which contains |z| < 1 and whose boundary
is contained in zv(t), D! =va(t) and Ylljyz = BDV(t). To see that
Y1 Y Yy is simple, take a point 25 €Y, outside D, and let <y be the

S

]
arc between z and z, on BDZ. Let z1

1
be the point of first intersection of z,
cq and Y, as in the figure. Assume
that zy # z,, and connect z] and z, D, /

in D1 by an arc ¢ (dotted line in the
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TN
figure). The arc zizzc-y2 and ¢ bound a Jordan domain A whose
closure contains y* = £§2;<:Y1. Since z4 lies outside of A and
I~ ~
2129 <Yy does not meet J3A, zlzoczyzidoes not meet y*. The curve

0 . N — -
consisting of zlzozi, v¥* and 2,24 is a Jordan closed curve. The

union of the domain bounded by this closed curve and D, must be

1
equal to Dv(t)‘ If we eliminate v*#, then we obtain a domain which
is larger than Dv(t)'and whose boundary is contained in Qv(t)}
This is impossible. Thus cq does not meet Y, except at zé.

Similarly we see that Y, does not meet Y1 except at z. and Zg-

1
Accordingly YUY, = aDv(t) is a rectifiable Jordan closed curve.

Map |z] < 1 conformally onto D,(t) by z = F(z). This is
extended to a one-to-one continuous function on |z| < 1. Denote
the image of |z] = 1 (0 < T ¢ 1) by c(t), and the length of c(t1)

27i/k

by L(t). For an integer k > 0 set w‘= e The function

k_IC

M(2) = [F(2) - F(we)} + «oo + |F(w "2) - F(2)]

is subharmonic in |[z| < 1 and continuous on |z| < 1 so that it

takes its maximum on |z| = 1. Therefore

he(®) s max () 5 LD,

As k » = A (2) » L(1) for any z on |z| = 1, and hence L(t) < L(1)
for any 1, 0 < 1t £ 1. Let o be any arc on |z| = 1, and set

o' = {|z] = 1} - a. Denote by ta and ta' the arcs {tz; z €al} and
{tz; ze€a'} respectively. Denote the lengths of their images by
L(F(ta)) and L(F(ta')) respectively; Then, for any sequence {Tn}

increasing to 1,
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L(1)

v

liminf L(Tn) > liminf L(F(Tna)) + liminf L(F(Tna‘))

n->w n-w n->e

nv

L(F(a)) + L(F(a')) = L(1).

Accordingly L(F(Tna)) +~ L(F(a)). We can conclude that

pdm for any non-negative upper

c (1) } IaDv(t)

semicontinuous function y on the closure of Dv(t)' We denote by

{
1imsupT+1J pdm <

n(P, Kr) the number, counted with multiplicity, of points of Kr
lying above P. It is an upper semicontinuous function of P.

Regarding it as a function on Dv(t)’ we see that there exists 1

such that
2 ] 2
j grad u|” o _ J rad u n(+, K )dnm < %3 )
c(t)nK,. Pz c(1) Py 0

Denote this c(t) by v,. We see that |grad u|dm = ds  along

Yverr and p, = pulgrad u|. Hence
r
| Loas < 2L
y!nK_ Pu U 0

Given a domain Q relatively compact in R' we can find the
above Yi’ ceey y&,outside 2. We denote the interior of yb by D;,
and see¢ that (17) 1s true for R - UvD;. We shall denote the
corresponding quantities by E(r), M(r), etc., and by B(r, Q) the

E(r), M(r) < M(r),

quantity corresponding to Q. Then E(r)

B(r, Q) < ﬁ(r) < B(r) and
ql
pe - 1 2q'r
£3(1) vzlf 'aK. Pu <5,
Yo'y
We have
|ﬁ2(r)| + Iﬁs(r)l < const./@%z(r) {log (%2(r)+r) + const.}.
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By (18) we have

Theorem 14. Let S be a parabolic open Riemann surface which
is a covering surface of R, and G and ug be as before. Let Dys vy

Dq' be open disks on R whose closures are mutually disjoint, let
mév)(r) be the total number of simply connected islands on Gr =

{(PeEG; 0 <u. <1 (< cG)}LJS which l1lie above Dv’ and set Mév)(r) =

G 0

T
J mév)(t)dt. Moreover, let Q be a domain on R with positive
0 .

distance from D LJ-~-LJDq,, denote by bG(r, ) the sum of the

1
orders of the branch points of Gr above @, and set BG(r, Q) =

(r . . .
J bG(t, 2)dt. Define EG(r) as before. If G contains a fixed
0

'GO >S4 then

a (v)
\)ZI(TG(T) - MG (I')) + BG(I', Q)

< EG(r) - X(R)TG(r) + 0(log (TG(r)+const.))-PO(/rw(r)Iog (w(r)+r)),

where w(r) satisfies
(r
J w(t)dt < const. (TG(r) + const.).
0

To evaluate w(r) itself from above we give

Lemma 19. Let ¢(r) be a non-negative integrable function

defined on [0, T Then there is an interval I c [0, ro] such

O]'
that J d log r < 2 and
I

(20)  ro(r) < max{re, y(r)(log ¥(r))’}  on [0, ry] - I,

T
where Y(r) = j ¢(s)ds.
0
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Proof. Consider ¥(t) = t (log t)z on [e, «). Suppose

w(ro) > e and define'r1 by w(rl)

= €.

By Lemma 18 there is a

¢
set I c[rl, ro} such that J d log r < 1 and (20) holds on

1
I

[rl, ro] - Il' On [1, rl] we have f(r) < e except for a set I2

with m(IZ) < 1. Hence on [1, ro] we have (20) outside I1 UIZ'

It is easy to see that J d log r < 2. Also in case w(ro)

11UI2

A
@

we have (20) on [0, rO] with a similar exception. Our lemma is

thus proved.

Noting that ﬁ(SO)r < T(r) and applying Lemma 20 to w(r)

we obtain

Theorem 15. With the same notation as in Theorem 14 we have

q'

(V)
RACHCN Mg (1)) + Bglr, @)

< Eg(r) - x(R)TG(r) + 0(/T4(r) (log Ty(r))%)

on [1, CG] except an interval IG with.f d log v < 2.
e
From Theorem 15 we obtain
Theorem 16. (Defect relation) Under the same condition as

above, let {Gn} be any exhaustion.

to «» such that 0 < r_ < c
n G

Then there exists {rn} tending

for each n and

X (R),
BGn(rn, @)
= liminf —T T
n-o . TGn rn
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EGn(rn)
£ = limsup PRI
n->e TGn rn_

We shall say that S is at least mv—ply ramified above Dv if
every simply connected island of S above Dv has at least mv(v > 1)

sheets. We establish

Theorem 17. (Disk theorem) Under the same condition as above

1
(21) I (1- ) & - xR
v v
if S is at 1least ms—ply ramified above Dv’ v=1, ..., q'

Proof. Denote by AG (Dv) the mean sheet number of Gt above
t

Dv' By making use of Ahlfors' covering theorem (see [11; p.140])

we obtain

mgng’) (8 5 Ag (D) £ u(Gy) + allyy),

where L(yt) = J pudu* and ‘a is a constant depending only on p.

‘ ST
We see that ’

f T ; T
L(y,)dt = J J p.du*dt
o ¢t oly "

A

0

T
v/gf J oldurdu = /ri(G,).
Yu

It follows from Lemma 19 that there is a set IGc:[l, CG] such that

~ 2
fI d log r < 2 and ru(Gr) < TG(r)(log TG(r)) on [1, CG] -1

G
G
Accordingly
(v) 1 L
MG (1) £ gE (Tg(n) + /TG0 log Tq(r))
on [1, cG] - IG. This yields the sum on the left hand side in
(21). It is now immediate to conclude our theorem by means of

Theorem 16.
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Appendix 1. Potentials with kernel h
First we prove

Proposition 1. Let u be a non-negative measure on R, and fix

P, on R. 1If the potential

0

o(P, Pg) = [ B(P3 Pgy QN(Q)

is of class C2 in an open set GcR - {PO}, then dy = (Zn)‘lA¢d£dn

in G, where A¢ = 32¢/ag2 + 32¢/8n2.

Proof. Let UcG be an open disk which corresponds to |z| <1

and for which P, is an outer point, and let V<R - UU3U be an

0

open disk with center at P For P €U we have

0°

r
o(P, Pg) = | h(P5 Py, QM@ + | R(P5 Py, Q@

R-U-V

+ ; + 1 _ 1
Jo {nws 2o @+ 208 pprtergrrlanc@ - 100 rrpyte e

By Lemma 3 h(P; PO, Q) is continuous with respect to (P, Q) €U x

(R-U-V). Regarding the first integral f hdy as a function
R-U-V

of ¢z in U, taking mean values of f hdpy on closed disks in U
R-U-V

and applying Fubini's theorem we see that it is a harmonic function'

of P on U.

To see that the second integral J hdu is harmonic, suppose
\

|z| < 1 corresponds to V and z = 0 to P,. For QeV we write

h(P; Py, Q = h(Q; P, P) = log TopgyT * u(Q, P,

where u(Q, P) is a harmonic function of Q for each P€U. For any

(Q, P) eV x U we have by the maximum principle
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min u(Q, P) < u(Q, P) £ max u(Q, P).
Qeav QedV

Lemma 3 implies that u(Q, P) = h(P; PO’ Q) is bounded for (Q, P) €
9V x U. Accordingly, u is bounded for (Q, P) €V x U. It Iollows

)
that J udpy is a harmonic function of Pe€U. Since
Vv
J log |z(Q)|du(Q) is constant, J hduy is a harmonic function of
4 A

P eU.

As to the integrand of the third integral we see as in the
proof of Lemma 7 that it is bounded on U x U and hence that the
third integral is a harmonic function of PeU. Next, let g > 0
be a function of class C2 such that g-= 1 on thé image D of
|zl < 1/2 and the support of g is contained in U. We note that ¢
is subharmonic as a function of ¢ in [z| < 1 so that A¢ > 0 there.
Set p2 = ghd and

s(P) = %;ff log TET%T?TT 0% (z)dedn.
It is a well-known classical result that s is of class C2 as a
function of P and its Laplacian is equal to —p2; cf., for instance,
I. G. Petrovsky: Lectures on partial differential equations, p.219.

2

Thus As -p~ = -gAd = -Ad on D, and hence A(¢p + s) = 0 on D.

n

Hence ¢ -s + h', where h' is harmonic in D. Thus

1f

1 1 2 .
1 = —— " R
JD og Q(PB'E(QT1 du(Q) Z“J|C|<1 log TETET?TT-O dgdn + h'" in.D,

where h" is harmonic in D. It follows that du = (Zw)—lAfdgdn in

D; see [3; p.43]. The arbitrariness of U concludes our propoistion.

Proposition 2. There does not exist a measure u which gives

[ nees Py, Qan@ =1 on R.
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Proof. Suppose this happened. By Proposition 1 u(R - {PO})

0. Hence p is a point measure Cep at PO' If ¢c >0, then 1 =
0

ch(P; P P = o, This is impossible. Accordingly c¢ = 0, which

0> Po)
is again impossible.

Proposition 2 shows that Ahlfors' requirement that 'das
Potential der Belegung SO(Q) konstant sein soll'" 1s not possible;
see p.5 of [1]. Accordingly some modification of subsequent

discussions of Ahlfors is needed.

Appendix 2. Conformal metric

In the beginning of §3 we called p_|dz| a conformal metric
if it is subject to pcldgl = pzldz| for any change of parameters
like z » . We showed that a positive conformal metric exists on

any Riemann surface R.

We shall give special positive conformal metrics. It is
known that the universal covering surface R” of R is conformally
equivalent to the disk |w| < 1 unless R is conformally
equivalent to the whole plane |w| < @ or to |w| < @ or to 0 <
|lw| < ®» or to a torus. In the case when R” is mapped onto |w| < 1

we: take

1
o(w) = ————x .
1 - |wl

If |w| < 1 is transformed to |W| < 1 by a linear transformation,
then

.1 [w]?

dw 1 - |W|2—’
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see (1-3) of [2]. Therefore p is well-défined on R. In the caée
when R is conformally equivalent to |w| g « or to |w| < = or to
0 < |w| < «, we take

_ 1
-y

1 + |w
In the case when R is conformally equivalent to a torus, R” is
mapped conformally to |w| < «. We take p(w) = 1. We have thus
considered p(w) = (1-[w|2)_1, (1+[w]2)'1, 1. The corresponding

Gaussian curvatures are -4, 4, 0 respectively.

As before we write dy for pgdxdy. The following theorem is

due to S. Chern [4].

Theorem 18. Let P be an arbitrary point on a closed Riemann

surface R, and pzldzl be a conformal metric such that e, ECl and
JJ pidxdy = 1., Then s = h(P'; P, u) is a C2 solution of the

equation As = Zﬂpi on R - {P} such that .
2
s(P(z)) + log |z| €cC”,

where z is a local parameter defined in an open disk U with center
at P and z = 0 corresponds to P. Solution is unique up to an

additive constant.

Proof. 1If there are two solutions S1 and Sy then A(s1 -
sz) = 0 on R so that 1 - S, is constant. We can prove the theorem
' , 2.
as Proposition 1 except for the proof of s + log lz] ec” in |z| < 1.

Let P' €U and denote its image in |z| < 1 by z(P'). We have

s(P') + log |z(P")] = f {h(P'; P, Q + log [z(P')|}du(Q)
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C Jneer oy |2@=z(P1)]
S e e @ - e 28R @

R JU log [2(Q) - z(P')]du(Q)

for z(P') # 0. The integrand of the second integral is a harmonic
function of P' for each Q€U even at P' = P. The required
conclusion follows as in the proof of Proposition 1. Our theorem

is now proved.

Remark. If there existed a CZ solution of As = pri on the
whole R, then s would be subharmonic on R and hence constant.

Thus As = 0 which is impossible.

We shall call h(P'; P, u) a kernel. .As an example we

consider Sario's kernel. Let h = h(P'; Pl’ PZ) and set

2h

Sg = log (1 + ™).

This is non-negative and smooth on R - {Pl}, and has a positive
logarithmic pole at Pl' Fix a local parameter z around P1 so that-
z = 0 corresponds to Pl' We shall denote by P'(z) the mapping of
the local parametric disk around z = 0. For any other point P #
P1 we define h(P'; P, Pl) in such a way that

s (P)
h(P'(z); P, P;) - log lz] - 5 as z + 0.

The function

s(P', P) = sO(P') + 2h(P'; P, Pl)

has a positive logarithmic pole at P as its only singularity.

This is called Sario's kernel.

- 63 -
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Let us see the symmetry s(P, Q) = s(Q, P). Draw small

circles CO’ Cé and C, around P, Q and P, respectively. By

1 1
Green's formula
oh(+; Q, Py)
. h('; P’ Pl) n ds
COUCOUC1
dh(-; P, Pi)
= J ' h(-; Q, Pl) e ds.
COUCOUC1

This gives

h(Q: P’ Pl) - 7 = h(P, Q: Pl) - 7

and hence s(P, Q) = s(Q, P).

We compute

_ e2h|grad (2h)|2

As = As
(1 + eZh)z

0

in R - {P, Pl}‘ We denote it by pz. It is easy to see that p is
of class Cl on R. We write p as e, when grad is taken with respect
to a local parameter z. We observe that pzldzl is a conformal

metric and obtain

2 L 2h
JJ‘ p dXd}’ =4 J J ——————'Z—H'—Z— dh*dh = 4'“',
R Z , -y

where y, is a level curve for the function h and h* is a conjugate
of h. It is easy to check thét the Gaussian curvature of P, is
equal to 1. By Chern's theorem (= our Theorem 18) s(P, Q) =

h(P; Q, u), where du = pidxdy. Sario's kernel has a disadvantage
that e, has zero points in general. Actually P, vanishes exactly

at the zero points of grad h and the number of the zero points of
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grad h is equal to the double of the genus of R on account of

Lemma 10.

Appendix 3. Zero points of the density 0,

Sario's conformal metric in the preceding appendix has zero
points at the critical points of grad h. In this and the next
appendices we allow isolated zero points of Jp Namely, let p, >
0 except at isolated points on R and P, ECZ outside the zero

points. We assume moreover that J |K]du < .
R

Let P0 be a point on R at which P, vanishes, and z be a
local parameter at P, such that |z| < 1 is a local parametric
disk and z = 0 corresponds to PO' Then by Green's formula

ds

T T

lj o log Py a 1
lz]=x T

1J 9 log e,
lz|=1,
for 0 <r <r, < 1. We call this the order of the zero point PO

and denote it by n(pZ, PO).

Let us see that n(pz, PO) is conformally invariant. Suppose'
lz] < L corresponds to a closed region D in a parametric disk

|z] < 1. We see by the aid of the invariance of dt of (4) that

(o, Py) 1j Kd ——1J 8108 Py g

nie,» = 5 u o+ S, .

z 0 ﬂ,D 2w 3D Bng g

‘Let |z] g t, 0 <t < t,» be contained in the interior of D. Then

we have
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Kdu -~ n(pz, P as t - 0

9 log p
N e AR R
oD

2m alnc g Z'ITJD_{ICI<t}

by Green's formula. This shows that n(pz, PO) does not depend on

the choice of a local parameter.

Let P be a branch point of S, and |z| < 1 be a local parameter
on a neighborhood of P such that P corresponds to ¢z = 0. Let 0 <
|g0| < 1. 1In some neighborhood of o, T may be regarded as a local
parameter on R. Hence pidxdy = pédgdn, where ¢ = £ + in, so that
oy = pz|z‘(;)|. As £ > 0 z'(z) - 0. Therefore we obtain a
conformal metric ps|dc] on S from pzldzl by defining it to be 0

at the branch points of S and elsewhere in a natural manner. We

denote by n(p, S) the sum of the orders of the zero points of pS
on S. We define ﬁ(p, G) also for any subdomain G of S.

Let n(P) be the multiplicity of f at ﬁ, and ¢ be a local
parameter at P such that P corresponds to ¢ = 0. Let c. be the
inverse image of |z| = r in the z-disk. Then by (4)

N ~ 1v 9 log P,
n(pc, P) = iiﬁ i?fc ——~§ﬁg—— ds;
T ,
= n(P)lim %J’ i 1:5 P2 4 +“§1’:)f de_ - %Jr ae
>0 “"J|z]|=r z lz|=1 c.

n(P)n(p,, £(P)) + n(P) - 1.

Let P . be the points of G which are projected to the zero

1’ PZ,
points of p_, and set n(p,, G) = zi n(P)n(p,, £(P;)). Then

Ao, G) = ] Alo,, Py) = nlo,, 6 + b(G),

1

where b(G) is the sum of the orders of the branch points of G.
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Appendix 4. Gauss-Bonnet's formula

L. Ahlfors [1] beautifully applied Gauss-Bonnet's formula to
value distribution theory. We shall show it. Let D be a triangle
with corners z

z, and with smooth sides in the z-plane such

17 %20 %3
that Py does not vanish on 3D. We have

[ - 3 ; z
JJD A log pzdxdy = [aD gﬁ-log pZdSZ Znn(pz, D). !

i
a

If we denote by 6 the angle between

e y
1 // \
D
the tangent and the x-axis, then 4£fj{ WWW%:§§§> Tz
//ﬁg z.
3
{ de = 2w, : )
9D

where the changes of angle at corners are

included too. Using dt of (4) we obtain

J Kdy = 2 - [ dr - § t; + 2m(p, D),
D aD

where dt is taken along 3D except the corners and T

s Toy, T
JaD 1> T22 T3

are the changes of angle at the corners.

We shall extend this formula to a general subdomain D of R
with smooth boundary 3D on which p, > 0. Fix a triangulation so
that p, = 0 possibly only inside of triangles, and denote the
numbers of the corners, sides and triangles by eg> € and e,
When j sides issue from a corner in the interior, the sum of the

outer angles is equal to (j - 2)w. Let ©

be the variation of the angle at a corner

on oD. If j sides issue from it, then \ /

i t /
the sum of the outer angles is equal to \\\\\\\\\! <
(j - 1)m - (w-06)=(j - 2)m + 6. Taking R

a sum we derive
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f Kdu = 2ﬂ{e2 - %—Z(j—Z)} - J dtr - 7§ Tt 2m(p,, D),
D

oD

where ) T is the sum of the changes of angle at the corners on

9D. Since ) j = 2e;, we have

it

(22) [D Kdu

-2wx (D) - JaD dt - ) T; + 2m(p,, D),

where x(D) = € + e; - e, is the characteristic of D. If D is

the whole closed surface R, then there is no 9D so that

(23) g%jR Kdu = n(p,, B) - x(R).

Next we shall establish a formula on a finite covering surface

F of R such that the projection of 3F contains no zero point of o,-

Denote by Rk the set of points of R above each of which there are

at least k inner points of F; we count the multiplicity for every

branch point of F. It follows that aRk contains no zero point of

o, Let = X(Rk) be the characteristic of Rk‘

Xk
) X * b(F). We obtain

1

a0 F5] K= nlo,, B e b - x®) - Ef e

This is a generalization of the identity in Lemma 11.

that we can prove it as in the proof of Lemma 11.

As an application of (22) we give

(
Second proof of Lemma 10. We may assume J dw*

E

p, = lgrad w]

and set A = {z€D; grad w = 0}. Then p, ec? and X

Then x(F) =

1
I ) Ty

We note

= 1. Consider

0 in D - A.

Hence pzldz| is a conformal metric satisfying our conditions.
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Taking w + iw* as a local parameter on 9D, we see easily that
f

JBD
required equality.

dt = 0, so that x(D) = n(grad w, D) by (22). This is the

Appendix 5. Identity for P, with zero points

We shall generalize the identity in Theorem 5 in the case

when p, may vanish. First we prove

Lemma 20. Let g(x, y) be a function of class C2 outside
the origin..0 = (0, 0) such that g vanishes outside the square

{|x| < 1/4, |y| < 1/4} and g(x, y) » -» as (x, y) » (0, 0). 1If

JJ |ag|dxdy < =,

then g is the sum of the logarithmic potential of density —(Zﬁ)-lAg,

a function harmonic at O and the potential of a point measure at O.

Proof. Consider the potential

= - L 1
U(X, Y) 4’”[[ 10g (X_g)2+(y_n)2 Ag(g’ n)dgdn-

By Poisson's formula AU = Ag outside O and hence g = U + h outside
O, where h is harmonic outside O. Denote by Mg the mean on the
circle x2 + yz = rz of a function ¢ in general, and set ¢T =
max (¢, 0). TFor re(0, 1/2) we see that

1

2
(x-£)“+(y-n)

~| 14g(€, n)|d&dn

A

log

utix, ¥) < |Ux, ¥)| ='£;ff

and

A

1 1(f{
M* < 57 log FJJ |Ag|dedn.
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ence ™M, >0 as T > 0, and Mt < rM'_ + 0. From a classical
H ¥ R §

result in potential theory (see, e.g., [3; p.196]) it follows that

i

hix, y) = hy(x, y) + c log

+ yz. Thus

1
»

where hl is harmonic at O too and rz

g="U+ h1 + c log

Let G be a subdomain of S as in §2 and u = uG be as there.

We shall prove

¢
Lemma 21, J (log Py ~ U)du* is a continuous function of t.
Y
t

Proof. As in the proof of Lemma 13 we have
log p, = (q-p)log |lw| + log p, * G(w),

where G is a continuous function. By Lemmas 7 and 20 we have

log p, = 7 B(E(); P, WK(PIAW(P) + v(2) + ¢ log T3r

where v is bounded. Hence
log py, - U = (q-cq-p)log |w| + ¢(w),

where ¢ is bounded. The proof of our lemma is completed as in the

proof of Lemma 4.
We prove

Theorem 19.

T
B(r) - E(r) + (x(R) - n(p, R)T(r) * [O n(p,, G,)dt
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1
- ﬂJ (log p, - U)du*.

Yr°Y0

Proof. Assume first that the projection of GttJYt - Gt'

contains no zero point of o,- By (24) we have

1 [t 5~
7FJ f Kdudt"
t' Gt”

rt

t
= | ey, Spoart

t
b(Gu0de - [ x (6 der

t! t!

t 9 log p
1 " u
A ] I,

atvl
t Yt"
t
= B(t) - B(t') - E(t) + E(t') + J n(o., G,.)dt"
o 2> St
.1 *
Z“J log pudu .

Yt_Ytt

Integrating (3) in Theorem 1 with respect to Kdu, we derive

{T(t) - T(t')}fR Kdp - f Udu*

t
[ dt"[ n(t", PYK(P)du(P)
Yt—Yt' Jt! R

t

t -
[ ke,
\]
'/,
We use (23) and obtain

B(t) - B(t') - E(t) + E(t') + (x(R) - n(p,, R))(T(t) - T(t"))

t
o mGys Geoar

1
- z“if  (log p - U)du*.
Yt Ytl
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There are only finitely many t's such that the projection of

P contains some zero points of o, - According to Lemma 21

J (log oy " U)du* is a continuous function of t. We can
Y¢
conclude our theorem easily.

Remark 1. If K is constant, then the right hand side of

the identity in the theorem reduces to (Zw)-lf log p du*.
Y..©Y
r '0

Remark 2. We can generalize (7) in Theorem 6 similarly.

Appendix 6. Second proof of the second main theorem

On account of Theorem 3 we may assume that p does not vanish
on R, that pezcz and that K = const. on R; such p exists as was
shown in Appendix 2. Let g > 0 be a function on R which is

integrable with respect to p and for which J gdy = 1. Let C be
R

the constant obtained in Theorem 4; we may and do assume that C

is positive. From Theorem 4 we derive

r
1) v ¢ [ g, e = [ atf nce, perane

0

i

T t ~ 2
[ dtJ J ;gpudu*ds,
Y

0 0 0 07y,

T - . T ~ 9
= [ dtf gdu = J dt[J g o..dudu®
: u
G G
t
where Ug is written simply as u and é indicates that g is regarded

as a function on S.

We shall apply lemma 15. As X on S we take A(E) = du*

fEﬂys

for Borel set EcS. By that lemma we have
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A

log | & oldu*
og J g pdu

o~ 2
] log (ge,)du*
Y Y

S S

or
~ 2 ~ 2
log g du* + log pudu* < log gpudu*.
Ys Ys Ys
It follows that

T t - r
J dtj exp{f log g du* + J log pidu*st < TG(r) + C.

0 0 Ys Ys

From Lemma 7 it follows that h(P'; P, u) is bounded below
on R x R, Choose a constant a' so that h(P'; P, u) + a' > 0 on
R. Set o(P', P) = h(P'; P, u) + a' and

q

(
g =c exp{Z Y o(+, P.) + 2 - 2 log [
v=1 v

o+, 2 + 1]},

e~ Q

v=1

where c is chosen so that J gdu = 1; it is easy to check that g
R

is integrable with respect to u. Clearly
q
g(+, P.) + 2 - 2 log { Y o(+, P) + 1},
v Vel v

N q
log g = logc + 2 )

v=1

where & (P, P) = 0(f(P), P). Substituting this into the above

inequality and applying Lemma 15, we obtain

T ft q -
TG(r) + C > J dt} exp {log c + 2 Z J o(+, P )du* + 2
0 Y v

0 v=1
(4 2
-2 [ log [ Y oo(e, P) + 1]du* + J log pudu*}ds
Y v=1 Y
T t q -
> f dt[ exp {log c + 2] f o(+, P )du* + 2
0 0 v=1 ‘v
s
! ~ 2
- 2 log k ) J o(-, Pv)du* + 11 + I log pudu*}ds.
v=1l "y Y

S S
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T t
For simplicity we denote the last side by f dtf ew(s)ds. We
0 0

apply Theorem 1 and the equality explained in the Remark to Theorem

5 and derive

q q
w(r) 2 const. + 4¢ ) (TG(r) - NG(r, PV)) + 2y j g(e, Pv)du*
v=1 v=17vy,
q q
- 2 log |2m ) (TG(r) - NG(r, Pv)) + ) J (-, Pv)du* + 1
v=1 v=1’vy

+ 4ﬂ(BG(r) - Eg(r) + x(R)T,(r))

! q
> const. + 47 ) (TG(r) - NG(r, P +2) f a(-, Pv)du*
v=1 v v=1 Yo
q f N )
- 2 log (ZﬂqTG(r) + ) J o(e, Pv)du* + 1J
v=1 Yo

+ 4n(Bo(1) - Eg(r) + x(R)TL(r)

q
> const. + 4m J (Tg(r) - Ng(r, P ) - 2 log (2mqT () + 1)
v=1

+ 4m(Bo(T) - Eg(r) + x(R)IT (1)),

where we use the general relation o - log (a' + a) > - log a'

valid for any o > 0 and a' > 1. Accordingly,
q
VZI(TG(r) - NG(r’ PV)) + BG(r)

1 w(r
< EG(r) - x(R)TG(r) * oo log TG(r) + fgﬂ) + const.,

where w(r) satisfies

T t w(s)
JO dtJ0 e ds < TG(r) C.
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Appendix 7. Second main theorem with double integrals

In a private circulation '"Remark on a paper of Sario" Wu

was concerned with the second main theorem in Sario's form. We

shall discuss it here.

We assume that p does not vanish on R. Let w be the function

defined in the preceding appendix. We know that

T t
d w(s) T + C.
JO t[o e ds < To(r)

Denote by A the triangle {(s, t); 0 < s <r, s <t < r}.

The area

is r2/2. We apply Lemma 15 and obtain

1og(ffA ew(s)dsdt]

2

1 w(s
log %T + log ;77;ffA e ( )dsdt

log (Tg(r) + C)

v

2 [
log %T + ;55EJJA w(s)dsdt.

v

We denote the integrals of TG’ NG’ etc. on A by Téz), Néz), etc.
Integrating the inequality last but one in the preceding appendix,

we have.

q
El(Téz)(r) -8B, p ) + B ()
\):
: 2
< Eéz)(r) - x(R)TéZ)(r) + %;(log TG)(Z) + %F(log TG(r) + const.)
r? r?
- 8—_‘; log T

[aN]

A

2
B{8) (1) - x(R)TEH) (1) + I log Ty(r) + I log Téz)(r) + 0(r2).
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Accordingly
r SRRSO
v=1 84 (1) Téz)(r)
(25)
(2) 2 2 (2)
. EG2 (r) R T 1og2TG(r) . T 1og2TG (r) . Ogrz) .
"1l () gn 18 (1) an 18 () 8% (1)

To derive a defect relation we observe that

(2) (r (T r (¥ T _ rZ T r3 ~
TG (r) > Jf/ZJs TG(t)dtds > TG(T)(r/st dtds = TT’TG(f) 2 16 U(SO)
and hence that
rz log Téz)(r) rz log Téz)(r)
(2) ) 773 173
Tg " (r) [Téz)(r)] {Téz)(r)]

-0

( 16 2/3 log Téz)(r)

~ ( V174
H(Sp) (160 @]

as 0 < r g g and r - . As in the proof of Theorem 15 or 17 we

f
find a set IG<:[1, cG] such that J d log r < 2 and
Ig
2)
ar{?) (r) 2
G 2 2 2
r —S T = rlr () < 71 )(r)[log Té )(r)]

on [1, cG] - IG. Therefore

r? log TG(r) r2

<
i) Tl

[1og Téz)(r) + 2 log log Téz)(r)] > 0

as r € [1, cG] - IG and r » .,

- 76 -
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Let {Gn} be any exhaustion, and choose {rn} such that Cg /2 <
n

r, < Cq and rn'e[l, Cq ] - IG for each n. Set
n n n
N r, P B{%) (r )
YCZ)(P ) =1 - limsup bn T g b(z) = limsup Gn 2
v nve 1@y nve T2 (r )
n G n
n n
5(2) = limsup —%E——~E—
n-o TGZ)(rn)
n

From (25) there follows the relation

q
21 vy B ey« B .
\):

We note that each y(z)(Pv) > 0 because NCZ)(rn, 4

¢ ) s T (r)

v =
n n

Cri/z by Theorem 4.

If we use the existence of p as in Remark 1 in §5 and define

T Tt ‘

J J J n(t, P_)dtdtds
(2) 0‘s tO v

Y* (Pv) = 1 - limsup

s etc.,

o6 reret
T J u(G_)drdtds
0’s tO T
then
Tl (2) (2)
Loy tey et et .
\)=

From this we can derive (11) by using a generalized form of

1'Hopital's rule (cf. [14; p.518]).

Remark. Chern [4] and Wu [14] used g = cu{23=1exp s(e, Pv)}Za’

0 < o < 1, where C, is determined so that g dpu =1, It seems,
R

however, that we meet a diffculty because Cq ¥ 0 as o 4 1.
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Appendix 8. Proof of coarea formuTla

We shall prove the formula (19). All functions will be real-

valued in this section. First we recall the definition of Hausdorff

measure. Given a set X on a line or in a plane and € > 0, set
m(e)(X) = inf X diam Xi and mgg)(X) = % inf Z (diam Xi)z,
A1 A i
£ €

where Ae is a division of X into mutually disjoint sets Xl’ XZ’

of diameter less than €. The limits m(X) and mZ(X) of m(g)(X) and
mge)(x) as € > 0 -are the one and two-dimensional Hausdorff measures
respectively. It i1s easy to see that m is equal to the Lebesgue

linear outer measure on a line. For a set X on a plane m(X) = 0

if and only if X is of Lebesgue measure zero.

In general, an upper integral jf(t)dt is defined for any

f > 0 by inf Jg(t)dt for measurable g > f. It is easy to find a

measurable function f' > f with [f'dt

det. It follows that

r

If dt 4 |£dat S £+ f.
n n
We begin with

Lemma 22. Let ¢ be a Lipschitzian function with Lipschitz
constant ¢ defined on a bounded Borel set B in the (x, y)-plane.

Then

Jm(¢'1(t))dt < 2.

Proof. Given ¢ > 0, choose a countable division Ae of B

such that diam A < ¢ for every AeEAE and

) % (diam A)Z < mge)(B) + e,
AEAE
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-1
= . t) cU{A; A€A .
Set Ae,t {AeEAE, ted(A)}. Then ¢ ~(t) cuf e,t}

We have

n( oty ¢ ] diam A= ] (diam A)xyq (1),
Aeh A€M

where X¢(A) denotes the characteristic function of ¢(A). It

follows that

AEA diam AJX¢(A)(t)dt
€

[n(®) 67 enat

A

J  (diam A)diam ¢(A) < ¢ | (diam A)Z
As_ A€a

A

HA

%? (mge)(B) +€) < %ﬁ (mz(B) + €).

As ¢ 4+ 0 m(e)(¢"1(t)) 4 m(¢-1(t)). Therefore

[mco7 enrar < 2€ myB).
This completes the proof.

Let ¢(x, y) be a function defined on a Borel set B in the
(x, y)-plane. We call it totally differentiable at a non-isolated

oint (x,, Y,) relative to B if we can write
P 0° Yo

8(x, ¥) = 8(xqs ¥g) *+ alx-xy) *+ bly-yy) *+ o(Vlx-xp) 2+ (y-y D).

We shall write ¢§B) and ¢§B) or simply ¢x and ¢y for a and b
respectively. If (xo, yo) is isolated, then we set ¢X = ¢y =0
at (xo, yo). We shall say that ¢ is totally differentiable
(everywhere) on a set B if ¢ is so at every non-isolated point

of B.
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Next we prove

Lemma 23. Let ¢(x, y) be a Lipschitzian function which is
defined on a bounded Borel set BO in the (x, y)-plane and totally

differentiable relative to B, a.e. on B - Assume that m(¢'1(t) nK)

0
is a measurable function of t and

Jm(¢-1(t)rﬁK)dt = Jj |grad ¢|dxdy
K

for every compact set K<:B0 such that ¢ is totally differentiable
relative to BO everywhere on K, ¢X and ¢y are continuous as

functions on K and

(26) lim sup l¢(z')-¢(z)'grad ¢9-(z'-2)| .y,
>0 0<|z'-z|<r [27-z] '
z,z2'€K
where z = (x, y), 2' = (x', y') and z' - z is regarded as a vector.

Then m(¢-1(t)r1B) is a measurable function of t and
zn Jm(¢—1(t) nB)dt = II |grad ¢|dxdy

B
for any Borel set B<:B0.

Proof. Let a Borel set B<:B0 be given. Using Lusin's and

Egorov's theorems we can find a compact set K, < B such that

1

mz(B—Kl) < 1/2, ¢ is totally differentiable on K1 relative to BO’

¢. and ¢y are continuous as functions on K, and (26) is true for

X 1

K = K- Similarly we can find a subset K, of B - Ky such that

¢ is totally differentiable on K2 relative to BO’ ¢_ and ¢y are

X

continuous on KZ’ (26) is true for K = K2 and mZ(B-Kl-KZ) < 1/22.

1 KZ - oo

Evidently mZ(B') = 0. By our assumption m(¢_1(t)fﬁKn) is a

We continue this process and set B' = B - K
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measurable function of t for each n and (27) is true for Kl’ K2’
From Lemma 23 it follows that m(¢_1(t)rﬂB‘) is a measurable
function of t (actually m(¢—l(t){1B') = 0 for a.e. t) and (27) is
true. Thus m(¢"1(t) NB) is a measurable function of t and (27) is

true for B.

Lemma 24. Let ¢ be a continuous function defined on a Borel
set B0 in the (x, y)-plane, and g be a non-negative Borel
measurable function on BO‘ If m(¢_1(t) NB) is a Borel measurable

function of t for every Borel set BcB

0’ then J 1 gdm is also

¢~ (t)

a Borel measurable function of t. Moreover, let h be a non-

negative measurable function on BO' If

Jm(qb-l(t) nB)dt = ”B h(x, y)dxdy

for every Borel set Bc:BO, then

]

f rr
[[ 1 sanae = [ g0x, yynex, yaxay.
o ~(t) ' B, ,

Proof. Set

. q-1
{(x, y) €By; 7P

g(P)

2p
2
q )

[LPA

glx, y) < 5%} (@ =1, ...,
) 2 .
and

g(P) - {(x, y) €By; 2P < glx, y)}.

Define gp on B, by (q—l)/2p on Eép) and 2P on E(p). Then

0
J g dm is a Borel measurable function of t. As p - » g 4+ g
oty P P

and the measurability of J 1 gdm is concluded. Moreover,

¢ ~(t)

- 81 -
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2P g (p)
v -1 - p
JJ¢_1(t) gpdmdt . 1 P Pn(¢ (t)rWEq ydt

]

Zp
roo 2 1!
P 1 (p) - q- J p{
+ 2 t) NE dt = 1= hdxdy + 2 hdxd
Jm(¢ (t) )dt Z P J Xcy JE(p) xXdy
= JJ g _hdxdy.
P
o
By letting p -~ «» we obtain the required equality.
Lemma 25. Let ¢ = (u, v) be a Lipschitzian transformation

of a compact set K in the (x, y)-plane into the (u, v)-plane such
that u and v are totally differentiable on K relative to K, u_,

uy, Vs vy are continuous on K, the Jacobian J¢ does not vanish

on K and
(28) 1im sup §¢(Z')‘¢(Z):D¢(Z)(Z'“Z)i =0,
>0 0<|z'-z|<r l27-z
z,2'€K

where D¢ is the Jacobian matrix of ¢ and Dé(z){(z'-z) is a vector
in the (u, v)-plane. Then there exists T > 0 such that, for every
point z = (x, y) of K, ¢ is one-to-one on KnA(z, ro) and ¢'1 is
a Lipschitzian transformation of ¢(Kr1A(z, ro)), where A(z, ro} =

{z'; |z'-z] < ro}. Moreover, ¢_1 is totally differentiable on

o (Kna(z, ro)) and

A\ -u
(29) Dy~ L = Tlé [ y y]

y
2o €K, and let A be the inverse matrix of D¢(zo). Given different

Proof, Set a = min {|J¢|/¢éi v ul o« vi + vi} on K. Take any

z and z', set z = D¢(zo)z and ¢' = D¢(zo)z‘. We have |A(z'-2)]

lz'-z|/a and hence
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.:-C,;C- _ {C"‘;l_ a‘C"Cl _
2'-Z+ TRz -0)T 2 Te-t] 2> 0
Assume that z, z'€XK, |z - z,] < T and lz' - zO] <r. We
write
9(z') - ¢(z) = Dy(z)(z'-2) + o(]z'-z])

= Dp(zy)(z'-2) + (D¢(z) - Do(zy))(z'-2) + o(lz'-z]),

where o(|z'-z]|) is a vector. On account of (28) there exists

el(r) which tends to 0 as r » 0 and which satisfies
lo(z'-2)| < |z' - z|el(r).

Since D¢ is uniformly continuous on K, there exists ez(r) which
tends to 0 as r > 0 and which dominates the norm of D¢(z) - Do (z).
By setting e(r) = el(r) + ez(r) we have
lo(z') - ¢(z) - (z'-0)|
(30)
= lo(z') - ¢(2) - Do(zy) (z'-2)| g |z' - zle(1).

It follows that

lo(z')-9(2) | > lC;:C - e(r) >a - e(r) > 2

[z7-z] 2

if r is small. Thus there is T, such that ¢ is.one-to-one on KTiA(zo,

ro), and the corresponding inverse transformation 1is Lipschitzian.

To prove the latter part of the lemma, take z, z' on Kn
A(zy> Ty), Set w = ¢(z) and w' = ¢(z'), and write D' for (Do(z)) L.

We note that v u
D-l___l_{y Y]_
75 |

- 83 -
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We have
w' - w = D¢p(z)(z'-2) + o(lz'-z])
and hence

D rwew) = 2 - z+ 0 o(lzt-z]) = o w7 ) D Moz 2]

Since
- 1 '
D Yo(lzt-z) | < FloClz' -z ]) |
and |z' - z|/|w' - w] < 2/a, we obtain D-lo([z'4zl) = o(|lw'-wl|)..
Hence

o twy =7t o+ D)+ o(fw-w]).

This shows that ¢-l is totally differentiable at every point of

o(Knb(zg, 14)) and D¢_1 = p !, Thus D ! has the required form.

Lemma 26. Let ¢(t) = (u(t), v(t)) be a Lipschitzian trans-
formation of a compact set K on a line into the (u, v)-plane such
that u'(t) and v'(t) relative to K exist and are continuous,

(u'(t), v'(t)) # 0 on K and

lim sup L¢(t')-¢(t);(t'-t)¢'(t)l =0,
>0 0<|t'-t|<r [t7-t]
t,t'eK
where ¢'(t) = (u'(t), v'(t)). Then there exist dO > 0 and a

function €4 of d in (O, d,) such that eq > 0 as d ~ 0 and

A

(31) a - edB)l¢'(t)|m(B) s m(e(B)) < (1 + edB)|¢'(t)lm(B)

for every Borel et B c K with diameter dB < d where t is an

O}
arbitrary point of B.

- 84 -
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Proof. We observe that a relation similar to (30) is true

for ¢ in the present lemma. Namely,
(32) lo(t") - o(t) - (£'-0)o' (ty)| < [t' - tle(x)

at any point t; €3B, where r = max (|t - tOI, [t - tyl) and e(r) 4
0 as v + 0. It follows as in Lemma 25 that there exists d0 > 0
such that, for every tc€K, ¢ is one-to-one on K(1(t—d0, t+d0) and
¢_1 is Lipschitzian on ¢(Kn (t-dy, t+d,)). We can choose a common
Lipschitz constant b > 0 for all t €K. Take any non-empty Borel
set Bc K of diameter less than do, and fix an arbitrary point

t,€B. Take t, t' arbitrarily on Krw(to-d t0+d0). Then by (32)

0 0°?
we have

t' - t] PEEIGED) o(t)| + [t' - tle(xr) . 1 + be(r)

le(t)-o(t)] = Id> (t [Te (") - ¢(t) ] = Jo' (DT

It follows that
n(o(B)) 2 (1+be(d)) Mot (tg) Im(B) 2 (1-be(dy)) |o" (ty) [m(B).

We have also by (32)

l¢(T;2 - ?ftll'ﬁ I¢'(t0)}[1 . T5$%%%TT

and
s(d )

m(¢(B)) £ [1 + Tirjﬁ;frr]|¢'(t0)|m(BJ-

Thus we obtain (31) with

s(d ) J

edB = max [ba(d ), = l¢ all
tekK

where dB is restricted to be less than dO

- 85 -
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Lemma 27. Let ¢(t) be as in Lemma 26. If it is one-to-one, .

then
n(o®) = | Lo (o)t
for any Borel subset B of K.

Proof. Let dO be the constant in Lemma 26 and B' be a non-
empty Borel subset of K. Fix an arbitrary point ty in B'. Since

$'(t) is continuous on K, by (31) we have

nCe8)) = [ et ) jae + [, dercegl - lorehar

SIS I THOILLERILCR

where n and n' tend to zero as diam B' - 0. ‘Dividing B into
finitely many Borel sets {Bi} of diameter less than § < dO, we

obtain

]
m(¢(B)) = ) m(¢(By)) = ] JB lo" (t) [dt + n"m(B)
¢ 3. :

1 i

JB [¢' (£) |dt + n"m(B),

where n" - 0 as 6§ »~ 0. By letting § » 0 we derive m(¢(B)) =

]
J lo" (t) |dt.
B

As the last lemma in this section we shall prove a formula

for change of variables.

Lemma 28. Let ¢ = (u, v) be a one-to-one Lipschitzian
transformation of a Borel set B in the (x, y)-plane into the

(u, v)-plane such that u and v are totally differentiable on B
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relative to B, u_, u_, v v. are continuous on B, (28) is true
X b4 X, Y
and the Jacobian J of ¢ does not vanish on B. Then for any

continuous function ¢ > 0 on y(B),

(33) ffw(B) ddudv = ffg d(V(z)) |J(z2) |dxdy.

Proof. We may assume that B is -a compact set K. Given € >
0, cover K by small open squares {Sn} so that KNS # § for each
n and Z ISn\ - lKl < g, where I | means a Lebesgue measure. Take
an arbitrary point an K ﬂSn. By the transformation w(zn) +
Dw(zn)(z—zn), S, is mapped to a parallelogram with area IJ(ZH)IISH!.
We may assume that the y-image of each K nSn is contained in a

parallelogram with area (|J(z ) [+e)|S |, and that Squ(KnS ) -
n
infw(KnSn)¢ < ¢. Hence |y(K nSn)I < (]J(zn)|+e)|Snl. ‘Set By =

KNSy, By = KN (S,-51), By = KN (S;-5-5,), ..., M = max, _|I(2)|

and M' = mane¢(K)¢(w)‘ We have

A

[f ddudv ¢ T sup ¢(|I(z) %) (S, |
¥ (K) n P(KeS )

(LN

s J(z)|IB_ | + MMV (|S_|-|B_|) + eM'} |S
g w(Kggn)¢l AR g 1S, 1-1B,1 € g 1S, |

LVAN

] sup ¢ou|J(z )| |B | + MM'e+ M'(|B|+e)e.
n Kns, n

Since Zn supKnSn¢°¢|J(zn)||Bn[ - fJK $pop|J(z) |dxdy as max, diam

Sn + 0, we obtain

Jff deudv < J‘j q)o(le(Z) IdXdy‘.
¥ (K) BEERE ¢

- 87 -
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By Lemma 25 w-l has the same properties as vy, and 1/J(z) is

the Jacobian of wnl. Considering ¢* = ¢oy|J| on ¥(K) we have

H $oy|J | dxdy o*dxdy
K

,
hw'low(K)

A

JJ ¢*°¢-1|J[_1dudv = JJ ¢dudv.
¥ (K) ¥ (K)

This is the inverse inequality. Thus (33) is derived.

Proof of (19). In view of Lemmas 23 and 24 it suffices to

establish

(34) Jm(¢_1(t)r1K)dt = JJ |grad ¢|dxdy
K

for any compact set K< D with the property that ¢ is totally

differentiable everywhere on X, Oy and ¢Y are continuous on XK and

1im Sup Ld)(zl)-d)(z)—‘gra‘d (p(z'—z)’L =O
- b
>0 0<|z'-z|<r l2t-z]
' z,2'€K
where z' - z is regarded as a vector. Set

Ky = {z €K; o = ¢y =0},

and let Z be any point of K - K- Suppose o # 0 at Zg> and let
AO be a closed disk around Zq such that ¢X # 0 on K{WAO. Define
a mapping ¢ of Kr\AO into the g-plane by (¢, y). Then it is
Liptschitzian and its Jacobian at z EKZﬂAO is equal to ¢X(z).
Moreover, it has the same properties as ¢ on K. Namely, each

component of ¢ = (¢, y) is totally differentiable, by and wy are

continuous and

lim sup IW(Z')'w(Z);D¢(Z)(Z'“Z)! = 0.
r>0 0<|z'-z|<r lz"-z]
z,z'€K

- 88 -
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By means of Lemma 25 choose an open disk A< b with center at zq

such that ¢ is one-to-one on KnA and the inverse transformation

w-l is totally differentiable on ¢(KnA). Set

EE= {n; (&, nyev(XKnA)}

and define a mapping eg of Eg into a plane by

6EM)=1V1@,n)EKﬂA

It is one-to-one, and deg/dn = (—¢y, ¢x)/¢x in view of (29). We

note that deg/dn is continuous and does not vanish.

By Lemma 27 we have

1 |d9g(”)
SORGEEDIES 5] an
E N (B') "
g .
for any Borel set B' cKnaA. Since ]deg(n)/dnl = |grad ¢|/[o,]

and this may be regarded as a continuous function on ¢(B'),

[

exists and is finite. By Fubini's theorem m(¢fl(t) NB') is a

measurable function of t, and by Lemma 28

”MB‘) Jj_T_Lgfgi ¢l gy

[[ | lezad el i5iaxay,
B! <l)X

f -1
Jm(¢ (t) nB')dt

where J is the Jacobian of the mapping y(x, t). Since J is equal

to ¢X, we obtain

fm(¢_1(t) nB')dt = JJB' |grad ¢|dxdy.
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The same is true if ¢y # 0 at Zqy- We cover K - K0 by countably

many disks Al, Az, ... like A. Since

Jm(¢-1(t) na; n(X-K;))dt |grad ¢|dxdy,

JfAln(K—KO)

Jm(¢_1(t) n(Ay-84) n(K-KO))dt |grad ¢|dxdy,

[ (Az-Al)ﬂ(K-KO)

we derive

1

f .
[mCo L(t) n (x-Kp))dt ij |grad ¢|dxdy.

Ko

Finally let us prove that m(¢_1(t)f1K0) is a measurable
function of t and that fm(¢—1(t)f1KO)dt = 0. Given & > 0, choose
r > 0 so that |¢(z') - ¢(z)]| < e]z' - z| whenever z, z' €K, and
|z* - z| < r. Divide K, into mutually disjoint Borel sets B

0
. Bn of diameter less than r. By Lemma 22

1’

’[m(¢—1(t) nB)dt < 2 m (), k=1, ..., n
Therefore
[ no 4e
m(¢ ~(t) NKy)dt < kgl m(¢ “(t) nBdt 2 — m,(Ky).

Since e may be arbitrarily small, we conclude Jm(¢_1(t)r1KO)dt = 0.

4 -
2

It follows that m(¢‘1(t)r\K0) is a measurable function of t; in
fact, it vanishes a.e. By taking a sum we derive (34). Thus

(19) is proved.
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