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Abstract

We formulate an improved lower bound on the maximum number of prime
implicants of n-variable Boolean functions. It is given as n!/(|{n/3J!
L(n+1)/3] ! [(n+2)/3] 1) + g(n,O,L(n+l)/3J—2) + g(n,O,ljn+2)/3J—2), where £(n,0,r)
is evaluated by the following recursive procedure: @(n,o,r) = 0 for r<0,
2(n,0,0) = 1 and 2(n,0,r) = n!/(|r/2j! [(r+1)/2]! (n-r)!) + &(n,0, [(r+l)/2]-2)

for r> 1.

1. Introduction

Prime implicants play an important role in the minimization problem of
Boolean functions. Generating all prime implicants of a given Boolean func-~
tion is the essential step for most algorithms to find its minimal expression or
realization. The problem discussed in this paper is of deriving an improved
lower bouna on the maximum number of prime implicants of n-variable Boolean
functions.

(2)

Dunham and Fridshal

(3)

bound, and Harrison gave 3n_2n as an upper bound on this number. Recently

(1) ) 5 l(2n+1)/3]

gave n!/({n/3) ! (n+1)/3]! (n+2)/3]!) as a lower
n
Chandra and Markowsky showed a better upper bound ([12n+l)/3j
on the number using a result on maximal sized antichains of partial orders
given by Kleitman, Edelberg and Lubell(B). We derive a recursive procedure

to compute an improved lower bound on the number. The recursive procedure

can be easily evaluated and is conjectured to be optimal.
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2. Definitions
Tn the main we employ definitions and notations used in standard texts
of switching theory<3)<6). Ld] denotes the largest integer k such that k< d.

For convenience we shall often identify a Boolean formula with the Boolean

function expressed as the formula. Let e, (1< j<n-r) be 0 or 1. Then
e. e J
X, 1l . o e Xi n-r is an r-cube over n variables, where
a1 n-r
e. X. if e, =0
i, i, i, .
X = J J for J =1, . . . ,n-r
J X, ife, =1
1. 1
J J
and 1 # i, ifs # ¢ for 1<s, t<n-r. The universal upper bound and uni-

versal lower bound of the Boolean algebra are denoted by I and @ respectively.
Relations < and < on n-variable formulas are defined as follows: @<I.
For a pair of a and b in {¢, I}, a<¢ b means a<¢b or a = b. For a pair of

n-variable Boolean formulas p and g, pg g means that for all (al, e e ,an)

n
€9, I} p(al, AN ,an)gq( .. ,an). DP< q means that p¢ q and

2,5
n
for at least one (al, Coe . ,an)E-{¢, I} p(al, A, ,an)<iq(al, .. ,an),

where s(al, . e . ,an) is the evaluation of Boolean formula s when X, is set
. i

to be ai for each 1.

A cube p is a prime implicant of an n~variable Boolean formula E if and
only if p<¢ E and there does not exist a cube g such that p¢ q< E. SPI(E)
and NPI(E) denote the set of prime implicants of E and the number of prime
implicants of E respectively. g(n) is defined as maX-{NPI(E)| E is an n-
variable Boolean formula} . en is a function from n-variable Boolean formulas
to sets of n-tuples of 0’s and 1’s such that (il, ... ,in) € en(E) if and

i 'in .

only if x,© . . . X ¢ E. TFor (al, .. ,an)é {o, i} w(al, ... ,an)
denotes the Hamming weight of (al, ... ,an), and for S G{O, 1}n w(s) = {
w(al, .o ,an)l (al, . e ,an)é§3}.

The (n,m,r)-regular formula, denoted by R(n,m,r), is the disjunction of
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(n-m)-cubes consisting of r nonnegated variables and m-r negated variables.
Boolean formula E is regular if and only if E is (n,m,r)-regular for some
n, m and r. Boolean formula E is semi-regular if and only if E is a dis-

junction of n-variable regular formulas for some n.

3. An Improved Lower Bound on g(n)

Dunham and Fridshal’s formula over n variables, denoted by DF(n), is

(2)

R(n, [(2n+2)/3}, [(n+2)/3]) or its variation The best known lower bound

on g(n) is max {NPI(R(n,m,r)HOSmSn, 0<r« m} = max{(i) (Iﬁ) ‘ 0<m<n,
0<r<m} = NPI(DF(n)) = n!/([n/3]! |(n+1)/3]! |(n+2)/3]!). Analysing DF(n)

we notice the following fact: If there exists an n-variable Boolean formula

E such that SPI(DF(n)) CSPI(E), then any prime implicant of SPI(E) - SPI(

DF(n)) must be a smaller cube than an Ln/3‘|—cube(h). From this observation
we formulate an improved lower bound on g(n).

Definition 1. g'(n,r,s) = max{NPI(E)I E is an n-variable Boolean
formula such that w( en(E)) < {r, r+l, . . . ,s}} .

From the above definition it is obvious that g(n) = g'(n,0,n) and g'(

n,0,r) = g'(n,n-r,n).

Theorem 1.  NPI(DF(n)) + g'(n,0, |(n+1)/3]-2) + g'(n,0, |(n+2)/3]-2)

<g(n).
Proof. Since w( § (DF(n))) = {|(n+2)/3), . . . (n+2)/3)+|n/3) }, it
w( B (7)) €fo, . . ., Ln+2)/3]-2} U {|(n+2)/3)+[n/3]+2, . . . ,n} then
SPI(DF(n)V F) = SPI(DF(n))VUSPI(F) and NPI(DF(n)V F) = NPI(DF(n)) + NPI(F).
Therefore the theorem holds. ]
Since for 0<r<n and 0<m<r w( @ (R(n,n-m,r-m))) € {r-m, . . . ,r},
NPI(R(n,n-m,r-m)) + g'(n,0,r-m-2)<g'(n,0,r). If we use this relation and

Theorem 1 to evaluate a lower bound on g(n), we only need values of g'(n,0,r)’s

for r< [(n+2)/3)-2. For a given r in this range NPI(R(n,n-m,r-m)) takes
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its maximum value when m = |[r/2]. Thus we obtain the next theorem.
Theorem 2. g'(n,0,r)2nt/( /2] (r+1)/2] t{n-r)1) + g'(n,0, | (r+1)/2]-2).

Definition 2. %(n,r) is recursively defined as follows: Z(n,r) = 0
for r<0, £(n,0) =1 and 2(n,r) = nU(UﬂZJ!Urﬂ)/ﬁ!(m%ﬁ!)+g%n,O,
Uﬁlﬂﬂ—m for 0< r< n.

2(n,r) is obviously a lower bound on g'(n,0,r). We can evaluate eln,r)

repeating not more than Llog2 rJ times its recursion.

Theorem 3. The total logarithm computing time cost and the total uni-
form computing time cost of g(n,r) by a random access machine are o(r log2 r
log, n) and O(r), respectively.

Proof. We use the recursion g(n,r) = nt/(pr/2)t (r+1)/2f 1 (n-7) 1) +
g(n,L(r+l)/2J—2). The computing cost of the first term of the above recur-
sion dominates the total computing cost. Therefore, the order of the total
computing cost equals the order of the computing cost of fln,r) = n(n-1)

. (n-r+l) = n(n-1) . . . (n~[r/2)+1) (n-(r/2)) . . . (n-r+l) = f(n,|r/2])
f(n~-|r/2], |(r+1)/2]). Let T(r) be the logarithm computing time cost of
fn,r). Then from the relation f(n,r) = f(n,|r/2]) f(n-|r/2],(r+1)/2}),
we have the following recurrence: '

log2 n for r = 2

T(r) =
2T(r/2) + r log, n for r>?2

The solution of the reccurence is T(r) = O(r log2 T log2 n).
The total uniform computing time cost of 2(n,r) is

:El;oge Ij

1=0 (r/21) = 0(r). Thus the theorem holds. ' [}
We summarize results in this section in the next theorem.

Theorem 4. A lower bound on g(n) is n!/(Lp/3J![}n+l)/3j![ﬂn+2)/3j!) +
E(n,lﬁn+l)/3j—2) + g(n,|fn+2)/jj-2), vhere g(n,r) is defined in Definition 2.

The total logarithm computing time cost and the total uniform computing time

-4 =
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cost of this lower bound by a random access machine are O(n (lpg2 n)g) and
0(n), respectively. The ratio of this lower bound to the old lower bound

NPI(DF(n)) is bounded by 1 + 0((1/2)*/3).

L. Conclusions and Open Problems

As stated in the previous section, our lower bound is a marginal impro-
vement of the old one. However, we cannot find at present any Boolean formulg
which has more prime implicants than our new lower bound on g(n). We exhaus-
tively examined the number of prime implicants of every symmetric Boolean
formula up to 17 variables on the FACOM 230/38 system at Gunma University.

We conjecture that our lower bound might be optimal. Since Chandra and Mar-
kowsky’s upper bound is derived using only a property of antichains, we are
more confident in ourselves to conjecture that g(n) might be much more closer
to our lower bound than to Chandra and Markowsky’s upper bound.

We invite the reader to consider the following open problems:

(1) Does there exist an n-variable semi-regular formula which has g(n)

prime implicants for each n ?

(2) 1Is our lower bound optimal to the maximum number of prime implicants

n-variable semi-regula formulas for each n ?
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