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1. Introduction. Optimal control of discrete time Markov processes
with partial observation has been studied by many authors, for example,
(11, [5]1, [6], [7T]. Smallwood and Sondik [6] in particular considered
a Markov chain with finite states, signals and actions. They have for-
mulated an optimal control problem over a finite horizon and presented
an algorithm for an optimal policy and the minimum cost. Sondik [T7]
has then developed a further study on the infinite horizon problem with
discounting. He introduces a new concept of finite transient policies
and proposes an algorithm. We [3], [4] have studied the same problem
from a different angle and examined the relation between these two
methods.

Recently the theory of Markov decision problems has been extended
to the case of vector-valued criteria. Furukawa [2] has studied vector-
valued Markov decision problems with countable states and established a
policy improvement algorithm as well as the characterization of optimal
policies. In this paper we take the model in [3], [4] and establish
main results in [2] for our Markov process.

2. The model. Let T = {o0,1,2,°**} , Y={1,2,--- N} , 8 ={1,2,---M}
and U = {1,2,~°-K} be the index set, the state space, the signal space
and the control space respectively. Our basic stochastic process is a
Markov chain - Yy € Y, t € T which is not directly observable. The
system dynamics is described as follows, At time t € T we know that
Yy has a probability distribution X, =x = (xi) € RN (row vector),

ie., x, = Pr{yt=i} , i=1,2,+++N, If we choose a control u, =u
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then the process makes a transition according to the transition matrix

X
P" = (sz) e BV (NXN-matrix). From the new state Yi4y We Teceive a

signal Sy € S. We assume that the conditional probability of observ-

ing s, given that the current state is i and the control u is se-

N

X
lected, is rgs. Let Rz = diag {r?s} e RVY (a diagonal matrix) and

1

e =[ E-] € RN. Then the probability of observing s, given that the
1

current probability distribution is x and the control u is selected,

is given by {slx,u} = xPuR:. By the Bayes' rule the distribution of

X, of Vi1 is then [6]

t+1
2.1 =
(2.1) Xy 41 T(x|s,u)
u
5 xP'R]
{s]x,u}
The process is repeated with the new distribution x . It is conven-

t+1

ient to regard x, as the state of our system. 1In fact Xy is a Markov

process with values in RN[7],
To introduce an optimization problem we need some preliminary def~

initions. Let X € RN be the set of probability vectors i.e,,

N

X = {X=(xi): xiZO, 2 Xi=l }. Let A be the set of mappings & : X>U
i=1

and define I = {Gt,teT: Gte A}. Bach element of I is called a policy.

A stationary policy is a policy which is independent of t i.e., 6t = §
for all t € T. Hence we may identify A with the set of stationary
policies., Now we introduce an Rp-valued cost function

(2,2) Lt 8(x)
06(x0)=EXOtZOB x,Q %/, Seh

X
where 0< B <1 and Q" ¢ RN P, uEeyU. We wish to minimize CS(X

o)

over A in the sense of Definition 2.1.

Definition 2.1. A policy §, is optimal if

Cd(XO) < Cé* (xo), be £ X =» CG*(X ) = 06 (x.),
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<

where means componentwise inequality.

Definition 2.2 [2]. Let Q € R® be nonempty. A point £ € Q is minimal

if n<£& MNmef = n = &. The set of all minimal points in Q is
denoted e(R). Let BP(x) be the space of p-vector valued bounded func-
tions.with sup norm, where we may take any norm in R®. Define on Bp(x)

mappings

(Luf)(x) xQ" + B z {s]|x,ulf(T(x]|s,u)),u e U

(2.3) §(x

1]

(L) (x) = %) + 8 ] (s]x,60x)}r(2(x]5,6(x))), 6 € A
S

and a multi-valued mapping

(2.4) (L f) (x) = (U (L ),

uel

Remark: SinceJéU(Luf)(x) has only a finite number of points, (L*f)(X)

is nonempty and well-defined.
One can easily show that L , Lg are contractions on BP(x) and

that the unique fixed point of L6 is the cost C,. corresponding to

§
the policy &8 € A .-

Lemma 2.1. Lu and L6 are monotone,

Proof. They are monotone componéntwisé.

Definition 2.3 [2]. A function fy € BP(X) is said to be a fixed

point of L, if fi(x) € (L,fy)(x), VX £ X, It is said to be minimal
it f(x) < fu(x) , f e Lyf = fx=7

We are interested in finding fixed points of L, and in character-
izing an optimal policy, We present two useful lémmas;
Lemma 2.2, - Let {Gn} e A be arbitrary, Then there exists a subsequence
{an} which is convergent to some & € A pointwise ige;;
5nj(x) + 8(x), V, € X

Proof. Let V- ='{in1} be the partition of X given by
s s 0 = 1),

3
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[eo]
where we omit V? whenever it is empty. Let Vm =T V" pe the partition
) n o D=L
given by the product of all V™. We assume V = {W'}, m=1,2,---
Then each 6n takes a single value on any ng Hence there exists a sub-

sequence Gn such that Gn (x) = il’ X € Wl. Similarly there exists
1

l.
J J

a subsequence § of § such that 6§ (x) =1i,., x ¢ W

: ngj nlj no, 2

In general there exists a subSequence § such that 8§ (x) = im,xE:wm.

J J
Now take the diagonal sequence én. s J=1,2,--+ . Then except possibly
J

first finite numbers of Gn (x) = im on W' for any m, Therefore
J3 *

§  (x) » 8(x) , where 6&(x) = i on W,

ny5
Lemma 2.3. If Gn(x) + §(x) and fh(x) + f(x) , then

(Lo Fa) () = (1fY(x) , Y, € X
Proof, (Ly £,)(x) ~ (Lgf)(x)

= x(@% ) _ g8 4 g T [{s]x,6_(xIf, (2Cxls,8 ()
L

- {s]x,8(x)IF(T(x]s,8(x) )T .
For fixed x € X, there exists an integer N > Q such that
n>N=> Sn(x) = §(x) .
Hence L.H.S. = B{s|x,8(x)HF, (T(x|s,6(x)) ~ f(T(x|s,6(x)))]
>0as nxN »=

Policy improvement. We shall show that policy improvement is wvalid for

our problem.

Theorem 2.1, For any-6oe A given there exists a sequence '{6n} € A

Ce € LyCo Cy, £Cq. and S Co
6n+l 6n 6n I(l§'1+1 6n 6n %%+1 Gn

such that L

Proof. Note that (L,C. ){(x) is nonempty and L, C, = C. . Since
%Cs, 6,08, = Con

(Lsncan)(x) sng(LuCSn)(x), we can choose u = u(x) such that
(L Cy )(x) £ (Ly Cq )(x). Hence there exists i = (x) such that
u Op S 8p

(Lﬁcdn)(X) € (L*Cén)(X) and (LﬁCSH)(X) < (L5ncdn)(X) for any - x € X.
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Now define 6n+l(x) = i(x). Then

(Ly  Cg )(x) < (L Cs )(x) = Cq (x) and (Lg Cg )(x) € (LyCq )(x).
ntl n n n n n+tl n n
But L<S is monotone, so
n+l
Cs +LI§ Cs _<_""§L§ Cg <Ly Cg <Cg .
n+l n+l n n+tl n nt+l n n

Lemma 2.4. Let 6n be given as in Theorem 2.1. Then Csn - Coo € BP(X)
and there exists a subsequence an of 6n such that 6nj(x) ~ 8_(x),6_ € A.
Furthermore, C_ = LGmFsm = C6

o

Proof. Since 06 is monotone decreasing and bounded below, there exists

n
a limit C_. By Lemma 2.2 there exists a subsequence 5n- such that
J
§ +§8 € A pointwise. By Theorem 2.1
nj o
< <
CS < L6 C6 - < C6 -
nj njy nj- nj-

Now we can pass to the limit nj + © to obtain

Cc <L

But L6 has a unique fixed point Csm, so C_ = C5 = LG C

(o]
Theorem 2.2. There always exists a fixed point of Lg. In fact C_
given in Lemma 2.L4. is a fixed point of L.

Proof. Since L6 Co = Cps C.E ééULqu . Suppose there exists
(o] . .
£ € (LyC_)(x) such that & < C_(x) strictly. Then there exists at least
one component, say K tB one, such that (E)k < Cm(x)lk .
So there exists € > 0 such that
< -
(2,5) (), 8 C (x| ~e
Note that there exists § € A such that LG Co = £ by definition.
< - . i
Hence (LGCm)(x)lk < Cw(x)lk € Now define
8(y) = { 8.(v), vk

S(X); y=x .
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Then (Lgcm)(x) < C(x) and

(2.6) (Lge ) (x) ], < c(x)], - €.

Now take nj large enough and define

énj(y) =J an(y) > T¥x
| | | 8(x) , y=x
then §_ (y) > g(y) and

nj

(2.7)

' , Kkk
(Ly €5 @, = (g 5 @], |
nj nj-l nj nj—l
(2.8) ‘ 1
(L, ¢ Hx)], - —=— e < (Lxc ) (x)]
an an—l k 3 § o k
- : L
(2.9) Cw(x)lk = (L cm)(x)lk s (g Cs )(.x),|k r e
o« nj nJv‘l
Now adding (2,6), (2.8), (2,9) we obtain
~ L
(2.10) (LG Cs )(X)Ik < (L6 Cs )(x)lk -3 €
nj nj—l nj nj—l
Combining (2.7) and (2.10) we obtain
Lg C@ <L CS strictly,
nj nj—l nj nj-l
which is a contradiction to the faect L C e L,C .
S § *7§
nj nj-l nj—l

Hence £ € (L,C )(x), & < C_(x)=» £ =C_(x) . Thus we have shown
C, € LgC, -

Characterization of an optimal policy. When Cd is real-valued, it is

known that there always exists an optimal policy and that it is a unique
fixed point of ILg,[4]. Next wé shall presént a necessary and sufficient
condition of an optimal policy,

Theorem 2.3. A stationary policy §, is optimal iff Cé* is a minimal

fixed point of Ly .

Proof. Let 8 be optimal. First we show Cg (x) € (L*Cé )(x), ¥ e X.
* *
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=1, C o

Note that Cs* LG* 5, and (LS*CG*)(X) € ééULuCG* . - Suppose there

exists £ ¢ (L*CS )(x) such that & < 06 (x) strictly. Then for some
% *

u=1ulx) e, &= (Lﬁca*)(x). Define

T

Then (LzxC. )(y) £ C: (y). By monotonicity of Lz we have
076, Sx i ' $

2
Ces « Ll oL < - <
5 < LgCs < ors LSCG* L, < C

= gts, < s,

But C is optimal, so . Cz = ¢C . In particular
Sy § Sy

£ = (158, ) () = cg (x),

which implies Cd £ L*06 .
* *

Now we show that CG is minimal, Suppose there exists a fixed
*

point f of Lg, then there exists § € A such that f = LGf . But L$ ‘
has a unique fixed point C@ , SO f = Cé' Then C, & f,
Conversely, suppose Cé is a minimal fixed point of L,, Suppose
*

for some S €A, C, & C Then we can constract a sequence 6n as in

8 6* '
Theorem 2,1 with 60 = § , Then

Cs <Ly Ce&™''sCg<C

n+l n+l n

J Sg
By Lemms 2.4 there exists a limit C, of 06 and §_ of Sn , 2 sub-
n J
sequence and C_ = CG = L6 C, < C6 < C6 . By Theorem 2.2 C_ is a
*

o] [eo)
fixed point of Ly. Now minimality of CG implies Cé = C, », which
* [eS)

necessarily yield C6 =C, = CG*'

Final remarks. In the case of real-valued CS'S we have presented an

algorithm for an optimal policy and the minimal cost. The main problem
in numerical computation is that X is uncountably infinite. But our
algorithm involves only a finite number of vectors at each step. In the
case of vector-valued CG'S we cannot establish the existence of an

optimal policy, but we may seek for an algorithm for fixed points of

L

% *
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We cannot directly extend our algorithm in [} ] to the new situation
and each step to find Gn, CG is more complicated. So we shall discuss

computational aspects elsewhere.
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