Partially Observable Markov Decision Problems
with Vector-valued Criteria

Akira Ichikawa

Faculty of Engineering

Shizuoka University

1. <u>Introduction</u>. Optimal control of discrete time Markov processes with partial observation has been studied by many authors, for example, [1], [5], [6], [7]. Smallwood and Sondik [6] in particular considered a Markov chain with finite states, signals and actions. They have formulated an optimal control problem over a finite horizon and presented an algorithm for an optimal policy and the minimum cost. Sondik [7] has then developed a further study on the infinite horizon problem with discounting. He introduces a new concept of finite transient policies and proposes an algorithm. We [3], [4] have studied the same problem from a different angle and examined the relation between these two methods.

Recently the theory of Markov decision problems has been extended to the case of vector-valued criteria. Furukawa [2] has studied vector-valued Markov decision problems with countable states and established a policy improvement algorithm as well as the characterization of optimal policies. In this paper we take the model in [3], [4] and establish main results in [2] for our Markov process.

2. The model. Let $T = \{0,1,2,\cdots\}$, $Y = \{1,2,\cdots N\}$, $S = \{1,2,\cdots M\}$ and $U = \{1,2,\cdots K\}$ be the index set, the state space, the signal space and the control space respectively. Our basic stochastic process is a Markov chain $y_t \in Y$, $t \in T$ which is not directly observable. The system dynamics is described as follows. At time $t \in T$ we know that y_t has a probability distribution $x_t = x = (x_i) \in \mathbb{R}^N$ (row vector), i.e., $x_i = P_r\{y_t = i\}$, $i = i, 2, \cdots N$. If we choose a control $u_t = u$

then the process makes a transition according to the transition matrix $P^{u} = (p_{ij}^{u}) \in \mathbb{R}^{N \times N}$ (N×N-matrix). From the new state y_{t+1} we receive a signal $s_{t} \in S$. We assume that the conditional probability of observing s, given that the current state is i and the control u is selected, is r_{is}^{u} . Let $R_{s}^{u} = \text{diag } \{r_{is}^{u}\} \in \mathbb{R}^{N \times N}$ (a diagonal matrix) and $e = \begin{bmatrix} 1 \\ i \\ 1 \end{bmatrix} \in \mathbb{R}^{N}$. Then the probability of observing s, given that the current probability distribution is x and the control u is selected, is given by $\{s \mid x, u\} = xP^{u}R_{s}^{u}$. By the Bayes' rule the distribution of x_{t+1} of y_{t+1} is then [6]

(2.1)
$$x_{t+1} = T(x|s,u)$$

$$\triangleq \frac{xP^{u}R^{u}}{\{s|x,u\}}$$

The process is repeated with the new distribution \mathbf{x}_{t+1} . It is convenient to regard \mathbf{x}_t as the state of our system. In fact \mathbf{x}_t is a Markov process with values in $\mathbf{R}^N[7]$.

To introduce an optimization problem we need some preliminary definitions. Let $X \in \mathbb{R}^N$ be the set of probability vectors i.e., $X = \{x = (x_i) \colon x_i \geq 0, \sum_{i=1}^N x_i = 1 \}.$ Let Δ be the set of mappings $\delta \colon X \neq U$ and define $\Pi = \{\delta_t, t \in T \colon \delta_t \in \Delta\}.$ Each element of Π is called a policy. A stationary policy is a policy which is independent of ti.e., $\delta_t = \delta$ for all $t \in T$. Hence we may identify Δ with the set of stationary policies. Now we introduce an \mathbb{R}^p -valued cost function

(2.2)
$$C_{\delta}(x_{0}) = E_{x_{0}} \sum_{t=0}^{\infty} \beta^{t} x_{t} Q^{\delta(x_{t})}, \quad \delta \in \Delta$$

where $0 < \beta < 1$ and $Q^{u} \in \mathbb{R}^{\mathbb{N} \times \mathbf{P}}$, $u \in U$. We wish to minimize $C_{\delta}(x_{0})$ over Δ in the sense of Definition 2.1.

Definition 2.1. A policy δ_* is optimal if

$$C_{\delta}(x_{0}) \leq C_{\delta*}(x_{0}), \forall x_{0} \in X \Rightarrow C_{\delta*}(x_{0}) = C_{\delta}(x_{0}),$$

where ≤ means componentwise inequality.

<u>Definition 2.2</u> [2]. Let $\Omega \in \mathbb{R}^p$ be nonempty. A point $\xi \in \Omega$ is minimal if $\eta \leq \xi$, $\eta \in \Omega \Longrightarrow \eta = \xi$. The set of all minimal points in Ω is denoted $e(\Omega)$. Let $B^p(\chi)$ be the space of p-vector valued bounded functions with sup norm, where we may take any norm in \mathbb{R}^p . Define on $B^p(\chi)$ mappings

(2.3)
$$(L_{\mathbf{u}}f)(\mathbf{x}) = \mathbf{x} \mathbf{Q}^{\mathbf{u}} + \beta \sum_{\mathbf{s}} \{\mathbf{s} | \mathbf{x}, \mathbf{u}\} f(\mathbf{T}(\mathbf{x} | \mathbf{s}, \mathbf{u})), \mathbf{u} \in U$$

$$(L_{\delta}f)(\mathbf{x}) = \mathbf{x} \mathbf{Q}^{\delta(\mathbf{x})} + \beta \sum_{\mathbf{s}} \{\mathbf{s} | \mathbf{x}, \delta(\mathbf{x})\} f(\mathbf{T}(\mathbf{x} | \mathbf{s}, \delta(\mathbf{x}))), \delta \in \Delta$$

and a multi-valued mapping

$$(2.4) \qquad (L_{*}f)(x) = e(\bigcup_{u \in U}(L_{u}f)(x)),$$

Remark: Since $\bigcup_{u \in U} (L_u f)(x)$ has only a finite number of points, $(L_* f)(x)$ is nonempty and well-defined.

One can easily show that L_u , L_δ are contractions on $B^P(x)$ and that the unique fixed point of L_δ is the cost C_δ corresponding to the policy $\delta \in \Delta$.

Lemma 2.1. L_u and L_{δ} are monotone.

Proof. They are monotone componentwise.

<u>Definition 2.3</u> [2]. A function $f_* \in B^p(X)$ is said to be a fixed point of L_* if $f_*(x) \in (L_*f_*)(x)$, $\bigvee_x \in X$. It is said to be minimal if $f(x) \leq f_*(x)$, $f \in L_*f \implies f_* = f$.

We are interested in finding fixed points of $\,L_{\mathbf{x}}\,$ and in characterizing an optimal policy. We present two useful lemmas.

Lemma 2.2. Let $\{\delta_n\}$ ϵ Δ be arbitrary. Then there exists a subsequence $\{\delta_n\}$ which is convergent to some δ ϵ Δ pointwise i.e., $\delta_{n_j}(x) \rightarrow \delta(x), \ \forall_x \ \epsilon \ X.$

Proof. Let $V^n = \{V_i^n\}$ be the partition of X given by

$$V_{i}^{n} = \{x | \delta_{n}(x) = i\},$$

where we omit V_1^n whenever it is empty. Let $V_0^\infty = \prod_{n=1}^\infty V^n$ be the partition given by the product of all V^n . We assume $V_0^\infty = \{W^m\}$, $m=1,2,\cdots$. Then each δ_n takes a single value on any W^m . Hence there exists a subsequence $\delta_{n_1 j}$ such that $\delta_{n_1 j}(x) = i_1$, $x \in W^1$. Similarly there exists a subsequence $\delta_{n_2 j}$ of $\delta_{n_1 j}$ such that $\delta_{n_2 j}(x) = i_2$, $x \in W^2$. In general there exists a subsequence $\delta_{n_m j}$ such that $\delta_{n_m j}(x) = i_m$, $x \in W^m$. Now take the diagonal sequence $\delta_{n_j j}$, $j=1,2,\cdots$. Then except possibly first finite numbers of j $\delta_{n_1 j}(x) = i_m$ on w^m for any m. Therefore $\delta_{n_1 j}(x) + \delta(x)$, where $\delta(x) = i_m$ on w^m . Lemma 2.3. If $\delta_n(x) + \delta(x)$ and $\delta_n(x) + \delta(x)$, then $(L_{\delta n} f_n)(x) \to (L_{\delta} f)(x)$, $\forall_x \in X$.

Proof. $(L_{\delta_n} f_n)(x) - (L_{\delta} f)(x)$ = $x(Q^{\delta_n(x)} - Q^{\delta(x)}) + \beta \sum_{s} [\{s | x, \delta_n(x)\} f_n(T(x | s, \delta_n(x)))]$

- $\{s \mid x, \delta(x)\} f(T(x \mid s, \delta(x)))\}$.

For fixed x ϵ X, there exists an integer N > 0 such that $n \geq N \Rightarrow \ \delta_n(x) = \delta(x) \ .$

Hence L.H.S. = $\beta\{s \mid x, \delta(x)\}[f_n(T(x \mid s, \delta(x)) - f(T(x \mid s, \delta(x)))]$ $\rightarrow 0 \text{ as } n \geq N \rightarrow \infty$.

<u>Policy improvement</u>. We shall show that policy improvement is valid for our problem.

Theorem 2.1. For any $\delta_0 \epsilon$ Δ given there exists a sequence $\{\delta_n\}$ ϵ Δ such that $L_{\delta_n} = 0$ $\delta_n \epsilon$ $L_* = 0$ δ_n , $L_* = 0$ δ_n and $L_* = 0$ δ_n δ_n δ_n δ_n δ_n δ_n δ_n δ_n δ_n δ_n

Proof. Note that $(L_{\mathbf{x}}C_{\delta_n})(\mathbf{x})$ is nonempty and $L_{\delta_n}C_{\delta_n} = C_{\delta_n}$. Since $(L_{\delta_n}C_{\delta_n})(\mathbf{x})$ $\in \bigcup_{\mathbf{u}\in U}(L_{\mathbf{u}}C_{\delta_n})(\mathbf{x})$, we can choose $\mathbf{u}=\mathbf{u}(\mathbf{x})$ such that $(L_{\mathbf{u}}C_{\delta_n})(\mathbf{x}) \leq (L_{\delta_n}C_{\delta_n})(\mathbf{x})$. Hence there exists $\hat{\mathbf{u}}=\hat{\mathbf{u}}(\mathbf{x})$ such that $(L_{\hat{\mathbf{u}}}C_{\delta_n})(\mathbf{x}) \in (L_{\mathbf{x}}C_{\delta_n})(\mathbf{x})$ and $(L_{\hat{\mathbf{u}}}C_{\delta_n})(\mathbf{x}) \leq (L_{\delta_n}C_{\delta_n})(\mathbf{x})$ for any $\mathbf{x}\in X$.

Now define $\delta_{n+1}(x) = \hat{u}(x)$. Then

$$(\mathsf{L}_{\delta_n+1}^{\mathsf{L}}\mathsf{C}_{\delta_n}^{\mathsf{L}})(\mathsf{x}) \leq (\mathsf{L}_{\delta_n}^{\mathsf{L}}\mathsf{C}_{\delta_n}^{\mathsf{L}})(\mathsf{x}) = \mathsf{C}_{\delta_n}^{\mathsf{L}}(\mathsf{x}) \text{ and } (\mathsf{L}_{\delta_n+1}^{\mathsf{L}}\mathsf{C}_{\delta_n}^{\mathsf{L}})(\mathsf{x}) \in (\mathsf{L}_{\boldsymbol{x}}^{\mathsf{L}}\mathsf{C}_{\delta_n}^{\mathsf{L}})(\mathsf{x}).$$

But $L_{\delta_{n+1}}$ is monotone, so

$$C_{\delta_{n+1}} \leftarrow L_{\delta_{n+1}}^m C_{\delta_n} \leq \cdots \leq L_{\delta_{n+1}}^2 C_{\delta_n} \leq L_{\delta_{n+1}}^n C_{\delta_n} \leq C_{\delta_n}.$$

Proof. Since C_{δ_n} is monotone decreasing and bounded below, there exists a limit C_{∞} . By Lemma 2.2 there exists a subsequence δ_{n_j} such that $\delta_{n_j} \to \delta_{\infty} \in \Delta$ pointwise. By Theorem 2.1

$$C_{\delta_{n_j}} \leq L_{\delta_{n_j}} C_{\delta_{n_j-1}} \leq C_{\delta_{n_j-1}}.$$

Now we can pass to the limit $n \to \infty$ to obtain

$$C_{\infty} \leq L_{\delta_{\infty}} C_{\infty} \leq C_{\infty}$$
.

But $L_{\delta_{\infty}}$ has a unique fixed point $C_{\delta_{\infty}}$, so $C_{\infty} = C_{\delta_{\infty}} = L_{\delta_{\infty}} C_{\infty}$.

Theorem 2.2. There always exists a fixed point of L_* . In fact C_∞ given in Lemma 2.4. is a fixed point of L_* .

Proof. Since $L_{\delta_{\infty}}^{} C_{\infty} = C_{\infty}$, $C_{\infty} \epsilon \bigcup_{u \in U} L_{u}^{} C_{\infty}$. Suppose there exists $\xi \epsilon (L_{*}C_{\infty})(x)$ such that $\xi \leq C_{\infty}(x)$ strictly. Then there exists at least one component, say k^{th} one, such that $(\xi)_{k} < C_{\infty}(x)|_{k}$.

So there exists $\varepsilon > 0$ such that

$$(2.5) (\xi)_{k} \leq C_{\infty}(x)|_{k} - \varepsilon .$$

Note that there exists $\delta \in \Delta$ such that $L_{\delta}^{c} = \xi$ by definition.

Hence $(L_{\delta}C_{\infty})(x)|_{k} \leq C_{\infty}(x)|_{k} - \epsilon$. Now define

$$\hat{\delta}(y) = \begin{cases} \delta_{\infty}(y), & y \neq x \\ \delta(x), & y = x \end{cases}.$$

Then
$$(L_{\widehat{\Lambda}}^{\circ}C_{\infty})(x) \leq C_{\infty}(x)$$
 and

$$(2.6) \qquad (L_{\widehat{\delta}^{\mathbb{C}_{\infty}}})(x)\big|_{k} \leq C_{\infty}(x)\big|_{k} - \varepsilon.$$

Now take n large enough and define

$$\hat{\delta}_{n_{j}}(y) = \begin{cases} \delta_{n_{j}}(y), y \neq x \\ \delta(x), y = x \end{cases}$$

then $\delta_{n_1}(y) \rightarrow \hat{\delta}(y)$ and

$$(L_{\delta_{n_{j}}} C_{\delta_{n_{j}-1}})(x)|_{k} = (L_{\delta_{n_{j}}} C_{\delta_{n_{j}-1}})(x)|_{k}, \quad k \neq k$$

$$(L_{\delta_{n_{i}}}C_{\delta_{n_{i}-1}})(x)|_{k} - \frac{1}{3} \epsilon \leq (L_{\hat{\delta}}C_{\infty})(x)|_{k}$$

$$(2.9) C_{\infty}(x)|_{k} = (L_{\delta_{\infty}}^{C_{\infty}})(x)|_{k} \leq (L_{\delta_{n_{1}}}^{C_{\delta_{n_{1}}-1}})(x)|_{k} + \frac{1}{3} \epsilon .$$

Now adding (2.6), (2.8), (2.9) we obtain

$$(2.10) \qquad (L_{\delta_{n_{j}}}^{2}C_{\delta_{n_{j}-1}})(x)|_{k} \leq (L_{\delta_{n_{j}}}C_{\delta_{n_{j}-1}})(x)|_{k} - \frac{1}{3} \epsilon .$$

Combining (2.7) and (2.10) we obtain

which is a contradiction to the fact $L_{\delta n_j} {}^{C} {}_{\delta n_j-1} = L_* {}^{C} {}_{\delta n_j-1}$.

Hence $\xi \in (L_*C_\infty)(x)$, $\xi \leq C_\infty(x) \Rightarrow \xi = C_\infty(x)$. Thus we have shown $C_\infty \in L_*C_\infty$.

Characterization of an optimal policy. When C_{δ} is real-valued, it is known that there always exists an optimal policy and that it is a unique fixed point of $L_{*}[4]$. Next we shall present a necessary and sufficient condition of an optimal policy.

Theorem 2.3. A stationary policy δ_{*} is optimal iff $C_{\delta_{*}}$ is a minimal fixed point of L_{*} .

Proof. Let δ_* be optimal. First we show $C_{\delta_x}(x) \in (L_*C_{\delta_x})(x)$, $\forall_x \in X$.

Note that $C_{\delta_*} = L_{\delta_*} C_{\delta_*}$ and $(L_{\delta_*} C_{\delta_*})(x) \in \bigcup_{u \in U} L_u C_{\delta_*}$. Suppose there exists $\xi \in (L_* C_{\delta_*})(x)$ such that $\xi \leq C_{\delta_*}(x)$ strictly. Then for some $\bar{u} = \bar{u}(x) \in U$, $\xi = (L_{\bar{u}} C_{\delta_*})(x)$. Define

$$\bar{\delta}(y) = \begin{cases} \delta_*(y), & y \neq x \\ \bar{u}, & y = x \end{cases}$$

Then $(L_{\overline{\delta}}C_{\delta_{\underline{u}}})(y) \leq C_{\delta_{\underline{u}}}(y)$. By monotonicity of $L_{\overline{\delta}}$ we have

$$C_{\overline{\delta}} \leftarrow L_{\underline{\delta}}^{\underline{\delta}} C_{\delta_{\underline{*}}} \leq \cdots \leq L_{\underline{\delta}}^{\underline{\delta}} C_{\delta_{\underline{*}}} \leq L_{\overline{\delta}} C_{\delta_{\underline{*}}} \leq C_{\delta_{\underline{*}}}.$$

But C_{δ_*} is optimal, so $C_{\overline{\delta}} = C_{\delta_*}$. In particular $\xi = (L_{\overline{\delta}}C_{\delta_*})(x) = C_{\delta_*}(x),$

which implies $C_{\delta_*} \in L_* C_{\delta_*}$.

Now we show that C_{δ_*} is minimal. Suppose there exists a fixed point f of L_* , then there exists $\delta \in \Delta$ such that $f = L_{\delta}f$. But L_{δ} has a unique fixed point C_{δ} , so $f = C_{\delta}$. Then $C_{\delta_*} \leq f$.

Conversely, suppose C_{δ_*} is a minimal fixed point of L_* . Suppose for some δ ϵ Δ , $C_{\delta} \leq$ C_{δ_*} . Then we can construct a sequence δ_n as in Theorem 2.1 with $\delta_0 = \delta$. Then

$$\mathbf{C}_{\delta_{n+1}} \leq \mathbf{L}_{\delta_{n+1}} \mathbf{C}_{\delta_{n}^{\leq}} \cdots \leq \mathbf{C}_{\delta} < \mathbf{C}_{\delta_{*}}.$$

By Lemma 2.4 there exists a limit C_{∞} of C_{δ_n} and δ_{∞} of $\delta_{n,j}$, a subsequence and $C_{\infty} = C_{\delta_{\infty}} = L_{\delta_{\infty}} C_{\infty} \le C_{\delta} \le C_{\delta_{*}}$. By Theorem 2.2 C_{∞} is a fixed point of L_{*} . Now minimality of $C_{\delta_{*}}$ implies $C_{\delta_{\infty}} = C_{\infty}$, which necessarily yield $C_{\delta} = C_{\infty} = C_{\delta_{*}}$.

Final remarks. In the case of real-valued C_{δ} 's we have presented an algorithm for an optimal policy and the minimal cost. The main problem in numerical computation is that X is uncountably infinite. But our algorithm involves only a finite number of vectors at each step. In the case of vector-valued C_{δ} 's we cannot establish the existence of an optimal policy, but we may seek for an algorithm for fixed points of $L_{\mathbf{x}}$.

We cannot directly extend our algorithm in [4] to the new situation and each step to find δ_n , C_{δ_n} is more complicated. So we shall discuss computational aspects elsewhere.

References

- [1] E. B. Dynkin, Controlled random sequences, Theory Prob. Appl., X, 1965, pp.1-14.
- [2] N. Furukawa, Vector-valued Markovian decision processes with countable state space, 1978.
- [3] A. Ichikawa, A note on partially observable Markov decision problems, Reports Fac. Eng., Shizuoka University, 1978, pp.71-76.
- [4] K. Sawaki and A. Ichikawa, Optimal control for partially observable

 Markov decision processes over an infinite horizon, J. Opns. Res. Soc.

 Japan, 21, 1978, pp.1-16.
- [5] Y. Sawaragi and T. Yoshikawa, Discrete-time Markovian decision processes with incomplete state observation, Ann. Math. Stat., 41, 1970, pp.78-96.
- [6] R. D. Smallwood and E. J. Sondik, Optimal control of partially observable processes over the finite horizon, Opns. Res., 21, 1973, pp.1071-1088.
- [7] E. J. Sondik, The optimal control of partially observable Markov processes over the infinite horizon: Discounted Costs, Opns. Res., 26, 1978, pp.282-304.