ooooboooao
363 0 19790 278-291

278

On Semantic Generalization of Examples

Makoto HARAGUCHI

Department of Mathematics, Kagoshima University

1. Introduction

An effective program synthesis sfstem should have so convenient
facilities that the descriptions of functions éan be exactly and
easily realized in it. The function—descriptions fed to such a
system are either complete or incompleée. Although one may prefer
the complete descriptions to the incomplete ones, giving them is
often as difficult as writing the desired ?rograms. On the other
hand, when we use the incomplete descriptions, which are comparatively
easy to obtain, we have to give the resulting programs careful
examinations in order to verify if they are desired ones.

Examples (input-output pairs) of the functions are most typical
of the incompléte descriptions in the sense that even the beginners
can understand them and that there are a great many functions which
are consistent with the examples. Very active studies [5-8] have
been made of the ways progfams are mechanically constructed from
their example data, and the approaches are called "programmings by
eﬁamples" or "program syntheses from examples”. V

Obviously the programming by examples is an induction, and the
formalizations of the inductions have been proposed in the literature

(1,2,3]. By modifying them, we can put the programming by examples

279

‘into the mathematical theory, and this is what we concern in this
paper.

In Section 2, we give two definitions that specify the power
of the automatic programming by examples denoted by APE. One of
the definitions is the "syntactic generalization" and the other
"semantic generalization". The syntactic one is a special case
of the "identification in the 1limit"[1,2] which is the widely
accepted cohcept on the inductions. However, as the mathematical
criterion for APE, we adopt the semantic generalization rather than
the syntactic one. In Section 3, we compare the syntactic and
semantic generalizations, and it is proved that the semantic generali-
zations are more powerful than the syntactic ones under the reasonable
assumption. Inithe final section, we show that the class RP of all
recursive predicates is outside of the scope of the semantic generali-

zations.

2. Syntactic and semantic generalizations

We formalize APEs by specifying machines. An APE machine is
an effective procedure which takes a finite set of examples of the
form (x,y) € NXN and returns a program i which is an index of the
partial recursi&e function ¢i . Moreover an external agency, who
may be a user, feeds the APE machine examples of a function and
expects the machine to compute the correct programs of the function.
Let us consider the factorial program to understand the well-behaved
APE machines. We may feel that the program is "identity" from the
example set {(1,1),(2,2)}. By receiving the additional data (3,6),

we are aware of our mistakes. For more example {(x,x!): 0<x<7} ,

280

we will infer that the function is the factorial one. Moreover,
we never change our valid inference so long as received data are
of the form (x,x!). |
Essential points found in the above is that, from rich enough
examples, inferred programs are all the same and correct ones. The

following definition is the formalization of this statement.
Notation For a partial function f, D(f) denotes the set of all finite
example sets of f. Moreover, for a class C of partial functions, D(C)

denotes the union of D(g) for all functions g in C.

Definition 1. (Syntactic generalization)

A partial function f is said to be syntactically generalized
(from its examples) by an APE machine M, if there exists a set ceD(f)
such that (1) ¢M(cf; f and
(2) M(d) = M(c) for each d with c£deD(f).
Moreover a class of partial functions C is said to be syntactically
generalizable, if there exists an APE machine M with D(C) Cdomain (M)

such that any f in C is syntactically generalized by M.

It follows that if.cl and c, satisfy thevcondition (1) and (2)
then:M(cl) = M(cz) holds. Thus syntactic generalization requires
that a unique correct programs i is related to £ by the machine M.
For this reason, we call Definition 1 a syntactic generalization.
Now let us recall the goal of APE machines. An APE machine M is
expected to produce the correct programs of the function. Hence,

different programs are allowable as long as they are correct. From

281

this viewpoint, we have the following definition.

Definition 2. (Semantic generalization)

A partial function f is said to be semantically generalized
(from its examples) by an APE machine M, if there exists ce&D(f)

such that f for each d with c€deD(f).

Pv(a) 2
Moreover, a class of partial functions C is said to be semantically
generalizable if there exists an APE machine such that D(C)C domain (M)

and each f in C is semantically generalized by M.

The semantic generalization requires that produced programs
are all the correct ones if the examples contain sufficiently large
informationé. Especially, if £ is a total recursive function then
a unique function related to £ by M is just £ itself. For this reason,
we call Definition 2 a semantic generalization.

Remark that the syntactic and semantic generalizations are
modifications of the identification in the limit [1,2] and the "weak
identification in the limit" [4] , respectively. By their formula-
tions of the inductions, the generalizations of data are treated as
"leérning processes" in the environment that'the induction machines
are fed iﬁfinitely long data sequence called the daté presentation.
However, it is‘troublesome to consider the occurences of repeated
data in the data presentations or the choice of order by which each
data id fed to M. Hence, in this paper, we adopt the definition that

APE machines really act on data "sets" but not on data "sequences".

282

3. The class of functions that are same almost everywhere

A syntactic generalization is obviously a semantic one. Is the
converse also true? 1In order to answer the question, we prepare the

following recursive function called "degeneration union".

Definition 3. (Degeneration union)

Let du be the recursive function defined by
¢du(i,d)(x) = if x € domain(d) then value(x,d) else ¢i(x),
where d €D, the class of all finite single-valued subsets of NX N,

and value(x,d) = y iff (x,y)e d.

Uses of tables make the structurés of programs degenrate.
In this sense we call the definition a degeneration union. 1In
general, a generalized object accounts thé source of generalization.
This means, in the case of APE; that the examples are’exactly realized
in the APE machine. Formally, an APE machine M is said to be feasible

if ¢ 2 d, whenever M(d) is defined. The proposition bellow is

M(d)

directly from the definition.

Proposition 1. For each M that semantically generalizes a class C,

there is a feasible APE machine M' that also semantically generalizes
C. Hence; we can assume the feasibility in the case of semantic
generalizations, without loss of generality.

Proof. Let us define M' to be M'(d) = du(M(d),d), then M'is clearly

feasible. For any f in C, there is a cé&€D(f) with ¢M(d);)f whenever

ccdeD(f). Because dCf and ¢ af, it follows that ¢ (x) is

M'(4d)
)(x)=f(x) for all xedomain(f).

M(d)

if xedomain(d) then %alue(x,d) else ¢M(d

283

We now give a simple example of the semantic generalization
by using the degeneration union. Let DU(i) be the class

DU(i)={¢du : deD}, then obviously DU(i) is

(i,4)
semantically generalized by M defined to be M(d) = du(i,d), and the
functions in DU(i) differ each other at most in finite input sets.

if domain(¢i) is recursive, we can easily modify M using a decision
procedure of domain(¢i) so that it is syntactically generalizable.
In.case domain(¢i) is not recursive, it seems difficult to generalize
DU(i) syntactically. We formally justify this intuition by restrict-
ing APE machines to feasible ones. For -this purpose we prepare two

lemmas-one is a basic result on computability and the other due to

Blum [2].

Lemma 1. There exists a 0-1 valued partial recursive function ¥ such

that any 0-1 valued recursive function cannot be an extension of ¥

Lemma 2. For any feasible APE machine M with domain (M)=D, there
exists a two placed recursive function h such that any partial func-
‘tion is h-honest whenever f is syntactically generalized by M.
ﬂere, a partial function f is called h-honest if there is a program
j such that (1) ¢jg f and

(2) ¢j(x) < hi{x,f(x)) almost everywhere on domain(f),

where ®i denotes the computational complexity measure (M.Blum,1967).

Proof. Assume that a fixed order < on NxN is given, and let I (x,y)
be the finite family of all s with the properties

» s> (x,y) and sc{(a,b) : (a,b) < (x,v)} .

284

The desired recursive function h is defined by

h(x,y) = max {@M(s) (x):sez(x,y)}.
From the assumptions, h is really a recursive function. Let (Xl’yl)’
(x2,y2),... be the sequence of data of f in the fixed order. Then,

for the smallest k with I(x) 5 ¢ that satisfies the conditions

k' Yk
of syntactic generalization, it follows that if n>k then an SkQ(S,
vwhere s; = {(xl,yl),...(xi,yi)} . Hence, it follows that if n.»k then
- ® = . i .

M(sn)(xn) ®M(c)(xn) < h(xn,yn) holds This completes the proof
Now we can prove the important fact mentioned before.

Theorem 1. For a partial recursive function ¢i that satisfies Lemma 1,

DU(i) is not syntactically generalized by any feasiblé APE machine.

Proof. Assume that DU(i) is syntactically generalized by M. Then
obviously domain(M) is D, the class of all finite functions. Hence,
Lemma 2 implies thg existence of a recursive function h such that
each function in DU(i), especially ¢i’ has a program j such that
¢i§¢j and Qj(x) < h(x,¢j(x)) a.e. on domain(¢i). Evaluating
{Qj(x) : xe&domain(¢i) énd ®j(x)> h(x,¢j(x))} byva constant k,
we have Qj(x) < max {k,h(x,¢j(x))} for all xe}domain(¢i). Moreover,
assuming that h is monotonic with respect to the second argument
(replace h by h'=Ax.y.max{h(x,z) 125y}, for.example), we have
®j(x)5max{k,h(x,l)} for all x e domain(¢,). Moreover,¢ is defined as
follows. $(x) = if ®j(x)5;max{k,h(x,l)}

then [if ¢j(x)>l then 1

else ¢j(x)]

else 1 .

285

Clearly ¢ is a 0-1 valued recursive function and an extension of ¢ -

This is a contradiction.

Thus, under the assumption that APE machines are feasible, we
know that the semantic generalizations are more powerful than the
syntactic ones, because the class DU(i) in Theorem 1 is semantically
generalizable. If we agree that APE machines should be feasible then
this section can be closed; otherwise we have to turn our attention
to the possibilities of the existence of an APE machine, which is not
feasible, to generalize DU(i) syntactically. Since the definition of
DU(i) is not dependent on the individual structure of i, the genera-
lizer of DU(i), if any, may be uniform in i. Recall that the
semantic generalizer Mi(d)=du(i,d) of DU(i) is clearly uniform in i.
Thus we have the conjecture that if, for each i, DU(i) is syntacti-
cally generalizable then the generalizer is uniform in i just like
thé case of semantic generalizations. However, the next theorem
shows that this conjecture is impossible. First we present a method
for effectively constructing "counter examples" of a syntactic genera-

lizer of DU(i).

Lemma 3. Assume that M syntactically generalizes DU(i). Then there
exists a recursive function ¢ uniform in M and i that is not syntacti-

cally generalized by M.

Proof. The desired ¢ is defined by the procedure "def" which

‘generates the graph of ¢.

286

def

let ¢ = {(0,k)} ; (k is arbitrary.)

LOOP: let C .
0,i

let n=1;

empty set for i=0,1;

let C
n,i

[4

Cpop, i Uilx,i): x = min [z& domain(cUcC__,)]
for i=0,1} ;

STEP: [if M(X) # M(CcUC) then let C = CL_JCn and goto LOOP

n,o0 .0

else if M(C) # M(CUCn l) then

’

‘let C = CcUC and goto LOOP 1;

n,1l

GENE: generate the graph of ¢i untill

(m,¢i(m)) with me#:domain(CLJCn i) is found;

’

(if such a (m, 9, (m)) is found)

let Cn+l,i = Cn’iLj{(m,¢i(m))} for i=0,1;

let n = n+l and goto STEP;

Of course, C, C and Cn have their values in D, the class of all

n,0’ ,1

finite single-valued subsets of NxN. Moreover, ¢(x) = y if and only
if (x,y) is in the set C. Under the assumption that M generalizes
DU(i) syntactically, we consider the two cases to verify that ¢ is
not syntactically generalized by M.

Case 1, domain(¢i) is infinite. Assume that the def never enters
LOOP after some finité time. Because domain(¢i) is infinite, GENE
always finds the pair (m,¢i(m)). Hence, the def begins to repeat

the process in which GENE and STEP are executed in turn. ConSequently

the CLJCn and CLJCn define the functions f,. and f, in the limit,

0 r 1 0 1

respectively. f0 andrfl are in DU(i) and have different values at

X. Hence M(CLJCP) # M(CLJCn i) eventuélly holds, because M

0
r
generalizes DU(i). This impiies that LOOP is entered again. This

14

287

is a contradiction. Thus LOOP is infinitely often executed, and this
implies that there is a chain of data sets {Cn} of ¢ with cng;cn+l

and M(Cn) # M(C), that is, ¢ is not syntactically generalized by M.

n+l
Case 2. domain(¢i) is finite. ¢ is finite iff the def enters GENE
and never exit. However, it is proved that ¢ is really a function

with infinite domain and LOOP is infinitely often executed. Thus,

Case 2 is similar to Case 1.

Theorem 2. Under the assumption that, for any i, DU(i) is syntacti-
cally generalizable, there is no effective method to construct the

syntactic generalizer m(i) of DU(i).

Proof. Assume that there is a recursive function m such that DU(i)
is syntactically generalized by m(i). Then we can obtain the

recursive function g such that g(i) is an index of ¢ , in Lemma 3,
- which is constructed from m(i) and i. From the recursion theorem,

* there is a neN with ¢ ¢ . This equation implies that ¢n is

g(n) ~ "n
not syntactically generalized by m(n). This contradicts to the fact

that ¢n€EDU(n), that is ¢n is syntactically generalized by m(n).

It will be natural for us to have the new conjecture that the
semantic generalizations are properly broader than syntactic ones.
Of course the semantic generalizations are not universal. We make

sure of this fact in the next section.

288

4. The class of all recursive predicates

In order to investigate the power of the semantic generali-
zations theoretically, we consider the class RP of all recursive
predicates. Gold[3] had proved that RP is not identifiable in the
limit. Hence it is a corollary that RP is not syntactically generali-

zable. Then, is RP semantically generalizable?
Theorem 3. RP is not semantically generalizable.

Proof. Assume to the contrary that RP is semantically generalized
by M. Then a recursive predicate, which is never identified from
any rich enough exaﬁples, is constructed by deceiving M. First notice
that domain(M) contains any 0-1 valued finite functions. Assume that
the values of ¢(x) are defined for x with 0sx<m and let

dn,i = {(0,9(0)),...,(m,¢(m)), (m+1,i),...(m+n,i)} for i=0,1
Then by dovetailing on n, find n and x with

¢M(d)(x) # ¢M(d)(x). Remark that searching x with

n,l n,0

¢i(x) # ¢j(x) is also done by dovetailing. Because RP is

generalized by M and because wi defined by

wi(x) = if x £ m then ¢ (x) else i are in RP, there is a set

e, which is a finite subset of N, such that '¢M(¢i!e) = wi .

i) : d.
Hence n and x with M(d)(x) # ¢M(d 0)(x) are really foun

n,l n,
Now execute next two routines in parallel.

RUN: evaluate ¢, (x) for i, = M({$(0),0(1),ere,p(m)})
m
ASSUME: "assuming" that ¢ is defined to be ¢ (y)=0 for

m+l<y<n, repeat all the processes from the first.

- 11 -

289

(Refer to the following figure for readers. to help to understand the

parallelism.)

111 . .
¢(0)¢(l)...¢(m)‘0 5 O(flnd x, with ¢M(dn l)(xl)#¢M(dn O)(xl))
original data , — ! ’ !
, assumed data
] |
| I
i |
My |
yd :
RUN with x !
! § LY. lieiia s witn ¢ ()
M 00 ...0 2 M(d)2
0 (x,))
: M(dn,o) 2
RUN with x, ;
1
/ '
i
i 1. - - Lli¢ing X,
30. . .0
RUN with x3
&

Because enlarging the original data of ¢ (i.e. ¢(0)¢(l)...¢(m)) by
\¢(y)=0 eventually forces M to produce an index of some total function,
it must occure that the call of RUN at some level returns with ¢im(x)l.
Let k be the number of 0's just before the RUN at this level is called.
Since x is chosen so that

%M (6 (0) === (m) 0517y XV 7 9y (4 (0) ---¢ (m) 0¥0™) (X)

we can select i=o or i=1 so that

¢im+k(x) g ¢M(CD(O)———cb(m)okin)(X) . Now we enlarge the defini-
tion of ¢ to be
¢(m+1) =¢ (m+2) =-----=¢ (m+k) =0 and

¢ (mtk+1)=¢ (m+k+2) ==——-=- =¢(m+k+n)=i

- 12 -

230

Finally, ¢ is defined by the ‘enlargement procedure described as
above. <Clearly, for any rich enough example set c of ¢ , there
exist d; and d, with cg;dié,D(¢) such that(bM(dl) and ¢ M(dz) have

defferent values. This implies that ¢ is not semantically genera-

lized by M.

5. Conclusion

Considering the goal of APE machines we have adopted the
semantic generalizations as successes of APEs and compared them
with the syntactic generalizatioﬁs. Theorem 1 show that the semantic
generalizations have a little wider scope if we consider the feasi-
ble generalizations only. However, the class of functions DU(i),
that has been considered throughout in Section 2, is a purely
' theoretical class. It still remains as a question whether there
is a practical class that is semantically generalizable but not
syntactically generalizable. We close this report by drawing the

position of semantic generalizations in the following figure.

the outside of the semantic generalizations

RP

semantic generalizations
DU(i) for ¢i is essentially

partial

syntactic generalizations
éhy effectively
enumerable class of

recursive functions

- 13 -

291

REFERENCES

[1] E.M. Gold, Language identificatipn in tﬁé limit, Information
and Control, 10 (1967), 244-262.

[2] L. Blum and M. Blum, Toward a mathematical theory of inductive
inference, Information and Control, 38 (1975), 125-155.

[3] E.M. Gold, Limiting recursioﬁ, Journal of Symbolic Logic,

20, (1964), 28-48.

(41 M. Haraguchi, A theoretical foundation of a programming by
examples, Mem.Fac.Sci.Kyushu Univ.Ser.A., to appear.

jS] A.W. Biermann, Approaches to automatic programming, Advances in
Computers Vol. 5 (1976), 1-63.

[6] P.D..Summers, A methodology for LISP program construction

from examples, JACM, 17 (1977), 161-175.

[7] s. Hardy, Synthesis of LISP functions from examples, Advanced
papers of the 4th IJCAI (1975), 240-245.

'[8] D. Show, W. Swartout, and C. Green, Inferring LISP programs

from examples, Advanced papers of the 4th IJCAI (1975), 260-267.

- 14 -

