ooooobpooooo
363 0 19790 247-277

247

RIMS Kokvuroku ©No, 363, KResearch Institute tor Mathematical
Science Kyoto University,

INTERACTIVE THEOREM PROVING ON HIERARCHICALLY AND
MODULARLY STRUCTURED SETS oF VERY Many AxioMms®

Michio Honda*x Reijl Nakajimaxx*
Kagawa University Kyoto University
Dept ot Information Research Institute for
Science Mathematical Sciences
Takamatsu Kyoto

July 1979

A large number of axioms are often involved in the proof of a
single theorem in many realistic applications of mechanical
theorem proving such as formal verification of proarams whose
program domains are determined by user=defined axioms, There,
fully automatic proofs are unrealistic due to the obvious
constraints though a powerful machine support is hianly desired,
It is sugqgested that some meaningful structuring of theories can
ease the difficulties, Several strategies are proposed to
enhance efticient interactive non=resolution proots on
hierarchically and modularly structured theories with many
axioms, Use of such strateaies is illustrated in their
application to verification of hierarchical programs with
abstraction mechanisms,

Key words: interactive theorem provina, program verification,
non=resolution theorem proving, structured programmina,
hierarchical and modular program structures

¥ An extended abstract of this paper was presented at 1.JCAT ‘79,
¥*¥ Order is not significant

248

1, Introduction

For many practical applications of mechanical theorem
proving, a large number of axioms are often involved in the
Proof of a single theorem, An example of such applications 1is
the theorem proving required in formal program verification,
where the prodagram domains are determined by a number of

‘
user~defined axioms.

It seems that most technigues so far déveloned for the
mechanical theorem vroving are not directly applicable in such a
situation, ©Due to the obvious time and memory constraints,
fully automatic proofs are not realistic to cope with such
situations, Thus, man=machine interactive non=resolution proof
methods are inevitable, where the user keeps yell aware of what
is being done in each stage of the ongoina proof, understanding
the meaning of the formulas which are agenerated during the
proofs. With human interventions, 1t still can be highly
difficult to conduct proofs on a large theory with many axioms,
Thus some orqanlze& methods are desired to get .around with this
ditficulty, Here we suqggest that some meaninaful structuring of

the axiom set will ease the difficulty,

The motivation of our stuydy presented in this paper |is
derived from a software development called I0OTA system at Kyoto
university, The IOTA system will be an interactive system tor
developing, debugaging, verifyinag and executina programs written
in Ianduaqe IOTA, where the languace {is designed to support

hierarchical and modular program development, - It is not

249
Paage 2

possible to give the details of the features of the language and
the system bhere, To make the story short, verification of
proarams written in language I1I0TA requires theorem provina on
hierarchically and modularly structured theorjies with a larae
number of user=defined axioms; (In fact, we Aare as much
concerned with how such development of theories should be made
by man=machine interaction as how proofs should he done on them
though this will be the subject of another paper, 0Qften need of
elaboration or modification of user-given axioms is found during
proofs, which means that axiom=writing and theorem~proving must
go together to some extent and this Iis another reason to make

the system interactive,)

Section 2 presents what we mean by bhierarchically and
modularly structured theories. (This preparation may look too
long for the modest amount of result given 1in the subsequent
sections but should be necessary to have the proot sfrateqies
understood,) Then from section 3 through 6, we present some
strategies which are intended to enhance the efficiency of
interactive theorem proving on such theories,

These strategies are bejina 1irmplemented as I0OTA prover,
siibsystem of the 1I0TA system, which will be called in the
environment of proaram development, verification and debuggina,
(The most wupdated and readable introduction to IDTA system and
lanaguage is [4], 1t also contains nwpointers. to other related
literatures,)

The prover contains an automatic proof facility in addition

250

Page 3

to the proof checking facilities, The man~machine interaction
{i.e. proof checker) exploits the strategies in order to reduce
the proof that js beyond the limit ot the capabilities of the
automatic subsystem to one within the limit,

The first verison of IUTA prover currently runs on a DEC
SYSTEM 20, The 1implementation of & more powertul version is
under way, \

Belated works: It seems that no previous work has attempted
to exnloii the structuring of theories to facilitate mechanical
proofs, Clearl(2] seems to be somewhat Iin a similar direction
though it uses alaebraic axioms wnile’we use first order loaic,
(It is beyond the scope of this paper to compare the two
approaches.) The concepts of user~developed reduction rules
(Section 4) are introduced earlier in LCFI[3), while an idea
similar to theory~focusing (Section 3) is used in (8] but with a
different objective, 11 surveys nymerous works on

non~resolution theorem onroving.

251

Paage 4

2. Hierarchical and modular theory development

Lanaguage IOTA provides a syntax by which one can build up
formal theories for program specifications and write their
proaram implementations. In order to make the discussion
precise, we fix a logical system called T0TA loagic [51 so that
as far as specitications are concerned, I0TA is a 1language to
form theories of INTA loaic. We sejze dara types in proagramming
simply as sorts in the many=sorted lecqgic, and so IOTA logic is a
derivation of the many=~sorted first order logic, Reflecting the.
idea of data abstraction, each sort in I0TA logic is associaten
with a structure which 1is said to be basic on the sort, The
basic structure of a sort “s’ is-a finite set of functions PR<s>
called the primitive fﬁnctions on s and a finite set of axioms
BA<s> called the basic axioms of s, The tormulas Iin BA<KsS> are
supposed to characterize pronerties of the functions in PR<s>,
IDTA logic has the usual set of logical axioms and (loaical)
rules of inference as an ordinary many=-sorted first order logic,
In addition, the rules of I0OTA 1logic include the aenerator
induction rules on some of the sorts, The generator induction
rule on a sort s is made of all primitive functions on s whose
range is s in the well=known manner. (Exa&ples will be given in
due course,) Those sorts whose denerator inductions qre"included
among the rules of 10TA louic are called types. The rest of the
sorts are called sypes, (In short we consider a fixed model for
each type t, which is +the variahle~free terms of sort t
generated from the fuyunctions in PR<t>, 0n the other hand we <o

not fix any specific model tor a sype,) We wajit to see how sypes

252

Page 5

can be useful until Section 5,

Language 10TA supports hierarchical qnd modular program
buildina, 1i.e. the notion of a program in IOTA consists of a
hierachy of modules, each of which 1s specified seperately,
Thus as far as specication structures are c¢oncerned, program
development in language I0TA is to build up theories in I0TA
logic, A theory generated .in this \manner should be
hierarchically and modularly structured, Here a module defines
a pieces of the theory, We designate the theory presented by a
module 'q; by TH<a>, (Later on, we will give a more precise
definition of TH<g>,)

There are basically three kinds of modules ===~ type, sype and
procedure modules, ‘

The following is an example of a type module, (Examples
aiven {in this paper are not quite faithful to the legitimate

syntax rule of language I0TA,)

interface type AN
fn ZERQ & => @ as 0

sSuc¢ 2 => @
++ LESS ¢ (8,8) => BOOL as ege
++ EQUAL: (®,3) => BOOL as- @=@

end intertace

specitication type NN
VAT X,Y,Z, U,v: R
axiom 12 SUC(¥x) = SUC(y) => x=vy
23 “SUC(X) £ ¥
3: x£y => SUC(x)ILSUC(Y)

+4 47 X<y QL Y£X
+4 5: (x£y & yv£<X) => X=Y
++ 6: (x£vy & v£7Z) => x£7
++ Te: x=%
R x=zy => SUCI(x)=8UC(y)
++ 9 (x=yv & u=v) => (x£u) = (v€v)
++ 10 (x=y & y=v) => (x=y_) = (y=v)
end spnecification

253

Paage 6

This module presents the basic structure of a type nNd (or the
natural numbers), We simply say the module presents the sort of
NN, The presentatiop is devided into two parts; the interface
part which declares the primitive functions with their domains
and randge and the specification part in which the basic axioms
are placed, # denotes the type presented by the type module,
which is NN in this case. By "as" a notational abbreviation |is
introduced ftor a function name, So LESS(xXx,y) may be written as
X£y. All free variables occurring in the axioms are universally
guantified., Since the sort NN {5 a tvpé, the generator
inductions are logical rules of l10TA logic which are in the form

ot:

P{O/x} , P => P{SUC(x)/x}

bl L A B R A LR KA R E A A & L L X L A d L A 2 K X X]

P

where P is any formula, x is a varfable of sort &n and P{t/x}
stands for the substitution of a term t of sort NN for x in P,
By saying that the rules are loaical, we mean in practice ihat
whenever the user introducés a type (module), the languaqe
_processor automaticailv inclddes'tha generator induction rules

of the type in the proof system,

Incidentally, the eqgality is a function whose range is the
type BOOL, In 1I0TA 1logic, there are no predicate syrhols,

Instead there is a special type BOOL and all terms of sort HOUL

254

Page 7

are the atomic formulas., The primitive functions on BUOOL are
NOT, OR, FQUAL etc,, which are equivalenced with logical

-~

operators ~, @K, <=> etc, by axioms,

fince we have written a type module, we mqy add more functions
on the type by introducing them in a procedure module, These
functions are said to he non-=primitive because they are not

included in the generator induction rules,

intertace procedure NNMAX
fn MAX : (NN,aNN) => NN
CMIN 3 (NM,NN) => NN

end interface

specification procedure NNMAX
Var X,ysun
axiom 1: XLy => MAX(x,y)=vy
2: xLy => MIN(X,y)=X
3: MAX(x,y)sMAX(V,X)
4 MINCX,y)=MIN(Y,x)
[equality axioms for MAX, MIN]
end specification -

numMax is built upon NN and - BOOL, (Nétice that when we
presented NN, we assumed that there was already a type module
called BUOOL,.,) This means that TH<NEMAX> 1is an extension of
TH<NW> and THCROOL>, (we shall make this situation precise

later,)

We

aive

255

Page 8

TH<NNMAXD
A A
! |
THSNN> !
A i
! !
THSBROOLS>

another type module INTPOLY or the tyne

polynomials of a single variable with integer coefficients,

interface
fn ZERO
TERM

™
c™

ADD
COEF
DEG
end intertace

type INTPOLY

=-> / as 0

(INT,NN) => @

(NN ,R8) => @

(INT,8) => €& as INT,R
(B,8) => @ as @+@
(R,AN) => INT

B => NN)

28 ¥ 24 2P 2N B8 e

specification tvpe INTPOLY
var X,v,z'@; m,n:NN; {1:INT
axiom 1:

end

2
3
4:
5:
63
73
8
9
103
11:

12:

153
163
172

COEF(0,n)=0

DEG(N)=0
COEF(TM(n,x),n+m)I=CNEF(x,m)

m<n => COEF(TM(n,x),m)=0

X#0 => DEG(TM(n,x))=n+DFG(x)

Xx#0 => COEF(x,DEG(X))#0

DEG(x)<n => COEF(x,n)=0
(Yn.COEF(x,n) = CAEF(y,n)) => x=y
COEF(i.x,n) = i*COEF(x,n)
COFF(x+vy,n) = COREF(x,n) + COEF(y,n)
DEG(X+y) £ NNMAXAMAX(DEG(x),DEG(y))
COEF(TERM(i,n),n)=1

m#n => COFF(TERM(i,n),m)=0

i#0 => DEG(TERM(i,n))=n

TERM(D,n)=0

specitication

EQUAL on INTPOLY and the equality axioms are. implicit,

have

not

defined # or < on NN,

as abbhreviations of "A=R and RBgKA, respectively, Llanguaqe

has,

in

of

Ne

A#B and A<B should be regarded

107TA

tact, this kind of macro=like facility., ZERD is the

256

Page 9

polynomial zero, TERM(i,n) is 1,x™, Tr(n,0) §s x™¥0, DEG(Q)
qives the dearee of polynomial Q, CK(i,Q) is G multiplied by an
integer i and COFF(Q,n) 1s the n=th coefficient of Q, We assume
that we have aAalready a type INT or the integers on which
functions 1like ¥,4,0,1 and = are primitive, A same notational
abbreviation 1is used for functions on different sorts, For
instance, EQUAL®s on INTPOLY, NN, INT are all denoted by =, but
the langquage processor will be able to distinguish them by type
‘check. In language INTA, the proper symbol for a function {s
the pair 4§f, where f is the function name and 4% is the name of
the module a in which the function 1s introduced, S0, = on
INTPOLY is voroperly INTPOLY#EQUAL, BUt = <module named># 1is

omitted in many cases as long as no confusion can occur,

The next example is the procedure module DVS which 1is built

on INTPOLY, where DVS(x%x,y) reads x is divisible by vy,

interface procedure DVS
fn MULT ¢ (INTPOLY,INTPOLY) => INTPOLY as INTPOLY¥INTPOLY
DVS 3 (INTPOLY,INTPOLY) => BRODL
end interface '

specification procedure DVS
' Var X,Y,Z:INTPOLY; niNNp 12INT
axiom 1: O*¥x=0

2: x¥yzmyky
(X*¥y)*¥zz=x¥(y¥2)
(x+y)*¥z=x¥z+y*z
(1.X)*¥y=i,(x¥y)
TM(n,x)¥xy=TH(n,x*y)
TERY(1,n)*xx=i,TM(n,X)
DVS(x,2) <=> Jy.x=y*z
tication

(23

*e o3 24 se e

end spec

257

Page 10

For different modules p and a, » is said to depend direcildy
an g 1€f either (1) g is a type or sype module Aapnearing in tne
interface part ot p, or (2) at least one axiom in the
specification parf of p contajns a function which is jintroduce-
by a. For instance, INTPOLY agenends directly on NNMAX, IaT, N
etc, o0 is said to depepd eop g iff either (1) o Jdepends Adirectly
on g or (2) there exists a8 mpdule r such that p :depends directly
on r and r depends on g, ©p is said to he seli~cantained itf o
does not depvend on any module, The module BOGIX is
self~contained, e say that © iIs hierarchical iff eitper (1) o
is self=contained or (2) the nmodules on which n depends are all
hierarchical,. It 1is weasy to see that, If p is hlerarchical,
there is no module g such that p depends onh g at the sare time g
depends on p, Tnis means that there can be no circular chain of
depending relations among hierarcnical modules, The syntax of
IOTA allows only hierarchical modules and any vinlation will be

detected by the processor,

Here we are ready to make precise what is meant by a theory
’in I0TA logic, Although there can be different ways to define
the notion of theories in IOGTA loaic, the tollowina will be . the
most convenient for this paper, A theory T is a triple <5, ¥,
A> where 8 is a set of sorts, F is a set of functions, and A is

a set of formulas called the non=loaical axioms of T such that

¥ In this paper, we are speaking intormally, and so we
conveniently confuse a type (svpe) module name with tne nawe of
the type (sype) presented by the type (sype) module,

258

Page 11

each tunction occurring in at least one of the elements of A is
included in F and that for each function fi(sl, S2, ..., SN) =>
s0 in F, si is in S for all i=0,.,.,,n, we cah define the notion
of proofs and theorems of T in the usual manner. For two
theories T1 = <51, F1, A1> and T2 = <582, F2, A2>, T2 is said to
be an extension of T1 iff Si € 52, F1 € ¥F2 and A1 € A2, By the

joint of T1 and T2, we mean the theory <81 U 82, Fi1 U ¥2, A1 U

A2>,

how we define the theory TH<p> nof a module p, which 1is the
semantics of the syntactic o, Let p depend on modules gl,a2,
seep aOn for which TH<gi> are assumed to be defined already. Let
the Jjoint of TH<gi>, tor i =1, ..., n be <5°, F°, A®>, Then
THCPp> = <§, ¥, A> where S = $°|J &0, F = F° |4 F, A = AU A such
that F is the functions introduced by (the inierface part of) p,
A is the formulas presented by (the speci{fication part of) p and
50 is empty if p is a procedural module whereas $0 = { s } if p
is a type or svpe module which vresents the sort s, (Note that
this definition of TH<p> is well defined because p 1is A

hierarchical.,)

There are several modules called svstem modules such as N¥,
ROOL, INT, which are built=-in in the language, To proqram with
INTA is to write modules upon others startina with the system
modules, HNamely it is to extend theories in I0OTA loagic startinq

" with the theory determined by the system modules,

259

Page 12

THLNDVS>

TH<IKTPOLY>

\

THSNNMAXD>

”/,/7

TH<INT> ’ THSNND>

~_.

TH<BOOL>

The last example in this section is the type module for integer

arravs,

interface type INTARRAY

fn CREATFE : (NN,INT) => @
HIGH : A => NN
FETCH 3§ (R,NN) => INT
STORE 3 (B, ,NN,INT) => @
e

end interfac

specification type INTARRAY
var Xx,y:e; m,niNN; 1:INT
axiom 13 HIGH(CREATE(n,i))=n
2: ngHIGH(x) => FETCH(STORE(x,n,i),n)=1
3: mEHIGH(X) & NEHIGH(X) & mgn
=> FETCH(STORE(x,n,i),m)=FETCH(x,m)

end specification

The subscript of x:INTARRAY runs over BN from 0 to HIGH(x),
FETCH(%x,n) may be written as xin], CREATE(n,1) creates X such

that HIGH(x) = n and xIm]l = i for all 0<mgn,

260

Page 13

3. Module-wise development of reduction and simplification
rules

Normally, the reduction rules used in our proofs are from
among the logical reduction rules {,e, the converse of the
logical inference rules of the I0TA 1loqgic, The 1logical
reduction rules are, however, designed to be valid generally on
arpitrary theory and, therefore, tend to be rather {nettficient,
Thus, 1t is desirable to generate reduction rules on a specific
theory from the (non=logical) axioms of the theory and use them
when appropriate, (Notice that the soundness of such
non=loaical rules must be guaranteed, for . which some ktnd‘ of
machine support 1is desired. This point seems to have received
little attention so far,) But when the theory is large, 1t is
not necessarily easy for the user to denerate efficient
non=logical reduction rules, An immediate abplication of theory
modularization 1is in the module~wise develonment of reduction
rules, - It would be convenjient to develop reduction rules on
each speéific subtheory defined by a module because the axjioms
agiven by a sinale module are supposed to relate closely to each
other, The rules thus developed will not, of cause, be

generally applicable but powerfull on the subtheorv.

Given 3 module M which presents the following axioms where

01, 02, @23, K are some predicate symbols,

axiom 12 Q1(x) => R(xX)

261

Page 14

2: Q2(x) => R(X)
3: 03(x) => R(x)

Assume that, the predicate symbol R does not appear in any
modules on which M depends., (i,e, There exists no axiom of
TH<M> that contains R other than the axioms above,) Then f{rom

axioms 1, 2, 3, the following reduction rule is worked out:

rule R1 (P)s / P is a syntAactic variable /
goal : P o=> R(X) »
‘subgoal: P => Q1(x) or 02(x) ar @3(x)

An application of this rule reduces
(3.1) S(x) => R(x) [8(x) is a formula,]
to

(3,1,1) S(x) => Q1(x) ar 02(x) or Q3(x) ,

The following reduction rule would be worked out from the

axioms of INTARRAY,

rule R2 (P)
gqoal : P(FETCH(STORE(x,n,i),m))
subgoall: m=n & ngHIGH(x) => P(i)
2: m#n & mLHIGH(x) & nLHIGH(X) => P(FETCH(x,m))

An application of rule R2 as well as some loaical reduction
rules reduces the formula (3.2) ¢to the formulas (3,2,1) and

(3.2,2)

(3,2) ((i<k => A[iJgAlk]) & (mLi<igkk => AlLilgAlj)) &
(nLi<iKHIGH(A) => ALIILAL§]1) & kEHIGH(A) &
k<n & Alk+11gA(k])

262

Page 15

=> (i<k+l => STORE(STORE(A,k,Alk+1)),k+1,A[Kk))[i1<AlK])

[This formula is a verification condition for a program for
bubble sorting, "A" is a variable of sort INTARRAY, 1i,j,k,m,n
are variables of sort HN,]) %

(3,2,1) (k+1=1 & $KHIGH(A) & (i<k => A[ilgA[K]) &
(mgi<igk => A[i1<Al]) & (NLi<iKHIGH(A) => A[iJgAL§])
& KEHIGAH(A) & k<n & Alk+11£ALK]))
=> (i<k+1 => A[KISALK])

(3,2.2) (k+1#i & k+1<HIGH(A) & igHIGH(A) &
(i<k => A[i1<ALlK)) &
(mgi<jgk => AT11AT9]1) & (nLi<IKHIGH(A) => A[IILAITD)
5 KEHTGH(A) & k<n & Alk+11<AIK))
=> (i<k+1l => STORE(A,k,Alk+11)[ilgAlK])

Both formula (3,2,1) and (3,2,2) can be easily reduced to

Lrue.

263

Page 16

4, Theory Forcusing

One of the main difficulties with a proof on a large theory
derives from the wide selection 6f axioms to invoke at each step
of the proof, It is time consuming both for the man and tne
machine to search for the axiom to be used for the next
reduction, Given a formula to be proved on a large theory, the
validity generally depends on many axioms presented from
different modules. (We will discuss this point in detail at the
end of this section,) 1If the theory is cleanly and naturally
modularized, however, one could well expect some desirabile
property in the nroof, wnich we call proof locality. tamely, a
consecutive pvortion of proof stens, if aopropriately sglecﬁe&,
tends to depend on axioms from onlv a few or preferably a sinale
module, This property opens unr the possibility of permitting
the man~machine 1interaction to focus the attention on a
particular module for a portion of the period during the proof,
we collectively call such strateqies theory=focusina, Tne
successful use of theorv~focusing can enhance the efficiency of
the proof because it laraely narrows the selection of axioms at
Each step and facilitates trne effective applications of
reduction and simplification rules on a specific anodule,

The manv-sortéd-ness of the I0TA loaic oprovides a useful
techniaue for theory=focusina as follows, Generally a formula,
which is generated as a qoal in the course 'of the oroof, can

contain terms of different sorts, For instance

(4,1) x#0 & Y£0 & DVS(x,w) & DVB(y,w)
=> DVS(COEF(y,DEG(Y)) ax=~COEF(X,DEG(x)) TA(DEG(X)=DEG(Y), VI, %)

264

Page 17

(4.2) x#0 & yv#0 & DVS(y,w) & .
DVS(COEF(Y,DEG(Y)) «X=COFF(x,DEG(X)),TM(DEG(X)=DEG(Y),V),w)
=> DVS(x,w) & DV3(y,w)

contain terms x, v, w, COEF(Y,DEG(Y)).x, TH(DEG(X)=DEG(y),v),
CQEF(x.nEG(x)).TM(DEG(X)-DKG(v);v) of sort INTPOLY, terns
DEG(X), DEG(Y), DEG(x)=DEG(yY) ot sort. NN and terms
COEF(Y,DEG(Y)), CORF(x,DEG(X)) of sort INT, (This happens to be
one ot the verification conditions of a program which cohnutes
the 4g,c,qd, of two polynomials,) A straiéhttorward way for
theory=focusina is to replace all non=-variable terms of a
designated sort by variables of that sort , where the same terms
are replaced by a single variable, In this way, the structure
of the sort 1is concealed, facilitating the-focusing on the
structures of the other sorts, Here, reniacinq the terms of

sort NN and the terms of sort INT, we obtain

(4,1,1) x#0 & y#0 & DVS(X,w) & DVS(y,w)
=> DVS(rl,.,x=r2.,TM(n,y)},w)

(4.2,1) x#0 & y#0 & DVS(y,w) & DVS(ril,x=r2,TM(n,y),w)
=> DVS(x,w) & DVS(y,w)

which are free of the structures of IKT and NN, Applving axioms

of NVS and INTPOLY, we reduce (4.1.1) to true and (4,2.1) to
(4,2.1.1) V#0 & ri.x=sv¥w => u,Xx=u¥w

To prove (4,2.1,1), the concealed structure of INT must be

recovered and r1 Is changed back to CUEF(y,DEG(y)). Then the

proof proceeds this time using axiqms of the type module of INT,

(The axioms of 1NN are not involved,) This is an example of

265

Paae

theory=focusing wnich goes upwardly 1in the theorv hierarchy
(i,e, focusing on modules which Aare higher 1in the theory
hierarchy, hiding the lower modules), There are cases in which
the focusing goes downwardly,

We mentioned that the validity of a formula to be oproven
depends generally on many axioms presented hy different modules,
Here we show briefly how this happens,

It is often the case that the proof of a formula requires
some axioms of modules which are not referred to exnlicitly in
the formula,

For example, the following formula contains explicitly only a
function + and terms of type INTPOLY and no other module is
referred to explicitly, (x, v and 2z are variables of type
INTPOLY,)

x+(y+z)=z+(y+x)
In order to prove this tormula, one would need the commnutativity
and assoéiativitv of + on the integers, which should be given as
among the basic axioms on type INT, in addition to axiom 8 and
10 of INTPOLY,

(1f we included the followina two axioms as amona the basic
axjioms on IRTPOLY, the above formula could be proved using only
the axjoms of INTPOLY:

X+YSY+X
X+ (y+z)z=(X+y) ¢z
though these are deducible from axioms 8 and 10 together with

the axioms on INT,)

1

266

Paae 19

5, Theory Extractions >

The basic structure of the type of NN includes the theory of
the total ordering as a substructure, which can be contained in
the basic structures of many other types, We extract and
isolate the 1lines preceeded by ‘++47 in the presentation of the

type module of NN to form the sype module of ORDER,

interface sype ORDER
fn LESS 3 (8,8) => BOOL as B<®
EGUAL: (8,8) =~> BUOOL as ec=e
end interface
specification sype NORDER
var xX,v,z,u,v:Q
axiom 12 x£v ar v<x
2: (xgvV & vyg£z) => x£2
3: (xgy & y<xX) => x=v
43 X=X -
S (xXx=y & usv) => (xgul=(ygv)
6: (x=y & usv) => (x=u)=(y=v)
end specification

Thus a sype module looks quite like a type module, Sypes are
another KkKind of sorts in TOTA loaic whose basic structures are
presented by sype modules in languaaqe 10TA, Namely there are
primitive functions PR<s> and the basic axioms BA<s> on each
sype s, The difference is that there does not exist the notion
of generator inductions on sypes. Now we generally characterize
the relation which holds hetween NRDER and NN, Let uys remember
that as Aa svntactic rule of lanquage IOTA if a sype or type
module g presents a sype or type s, the name of each function in
PR<s> is in the form of T#f where T is the name of a, We will

confuse all three of g, s and T,

267

Page 20

Definition Given a sype module S and a sype or type module T,
the relation S € T holds 1ff

(1) For each function S#f:(S81,82,,..,5m) => s0 in PR<S>,
there exists a function T#f:(rt,r2,,..,rn) => r0 in PR<T> such
that m=n, riz=T if si=S and ri=si it si#S for i=0,1,,..,m,

(2) For each formula P in BA<S>, PI[S/T] is provable in
THST>, where the formula PI[S/T) is obtained from P replacing
each occurrence of °S” in P by “T’ and replacing appropriately
each variable of sort S5 in P by a varlable of sort T,
(Different varlaoles are replaced by different variables, For
instance, let P be x£Lv or v«<Xx In BAKORDER> which is really
Vx.Vy.(ORDER#LESS(X,y) at OKDER#LESS(y,x)), then PIORDER/NN] is

Yo, Vv, (NNRLESSCu,v) or NNELESS(v,u)),)

Notice that the transformation from P to PIS/T] is determined
up to alnha=conversions (or variable renamings), Since all
formulas in BA<KS> are closed, this does not cause any
inconvenience in our arguments, HNote that as the provability
property in (2) of the definition is undecidable, tne relation £
is undecidable. put the auther of S and T should know how to

establish 5 £ T,

Corollary In the definition above, if a tformula P is provable

268

Page 21

in TH<S>, so is PIS/T] in TH<T>.

Notice that this corollary depends essentially on that there
is no generator induction on the sype S,

On the other hand, the Structure of the procedure module
NNMAX essentially depends solely on the substructure of the
total ordefinq on NN, So we should rather write the following

type=parameterized procedure module:

interface procedure MAX(P:ORDER)
fn MAX : (P,P) => P
end intertace
specification procedures MAX(P:ORDER)

var x,y:P
axiom 1: xg<y => MAX(x,y)=vy -

-
»

*

end specification

The only difference from NNMAX Is that ‘P’ occurs in each
place of “NN®, PI1ORDER is understood to be a "type parameter”,
which runs over all tvpe T such that ORDER £ T, Substituting an
"actual" type parameter ‘T’ for each occurrence of “P® in the
présentation of MAX(P:ORDER),>we have a procedure module MAX(T),
For 1instance MAX(NN) is isomorphic to NNMAX, (Notice that =
and £ in MAX(P:ORDER) are P#EQUAL and P#LESS, respectively,

while they are NN#EQUAL and NN#LESS in MAX(WH),)

Thus if we have already written both NN and MAX(P:ORDER),

then the function HMAX(NN)#¥AX 3 (NN,NN) => NN - can be used

269

Page 22

automatically which is equivalent to NNMAX#MAX, In this way one
can reduce the work of module=writing, More importantly, giving
MAX(P:ORDER), the logical relation between TH<HNND> and THKNNKAXD>
is clarified hecause MAX(P:0ORDFER) npresents only what |is
essential in the extention from TH<KNN> to THCHNNHAX>,

As further examples, if we aive RING, the sype of rinao, then
INTPOLY can be generalized into a more general type POLY(TIRING)
which is the type of polynomials over arnitrary coeficient rina,
or with ANY, the sype which has only the equality and the
equality axioms, INTARRAY 1is ageneralized to ARRAY(T:ANY) which
is the type of array of any object with equality, The new acata
tvné concepts - of syopes aeneralizes 50 called
type-parametrization structures in nprogramming, The use of
sypes is hilahly useful in structurina progrars and theories and
in simplifying verification procedures, More details on svres
as well as the formalization of Lthe type=parametrization
teatures within the first order Jloagic can be found in (41,
Since the structures of theories can he simplified and clarified
by introducing svoes, the use of them can be said to be nelptyl
for theorem provinag on them,

But the sype concept has a more direct application to theorem
proving in the following way. There are many different theories
put often auite a few of them have 8 common subtheory and the
extraction of such common subtheory forms a sype, If a nowerful
reduction and simplification procedure is developbped on such a
sype, it c¢an be applied to any theory that contains the

subtheory. For example, all of theories of the inteqers, tne

270

Page 23

rationals and the polynomials contain the common structure of
rina, Thus any reduction and simplification strateaies
developed for the theory of rina can be applied to those
theories,

or this purpose, the sype concept introduced in this section
is 'rather restrictive, (These restrictions are desirable on
sypes as a programming concept in order to enhance the most
imoortant goal of ©proagram structurinag,) Thus we give the more
general and flexible relation as follows, (Let FN<M> be the set
of functions introduced by a8 module M and AX<M> be the set of

the axioms introduced by M,)

PDetinition Given a sypre § and a procedure, type or syoe
module T, we say § %iT for a mapping HIFNCS> => FNKT> iff

(1) H is one to one mapring,

(2) There exists a sort t such that if £:(s1,52,44,,5n) => SO
and HC£):(t1,52,.,,,tm) => tG, m=n and ti=si it $i¥#S and ti=t it
5i=Ss, \

(3) For each formula P in AX<S>, Tr(P,H) is provable in THLCT>
where Tr(P,H) is a formula obtained from P replacinag each S#t by
T#H(f) together with appropriate variable conversion from S to

T,

The user can prepare a sype 5 which Seems to be a subtheory
of many theories and develon prootf procedures on 5, Whenever
appropriate, he gives-a mappinag H for a module T and establishes

the relation 5 % Te (The amount of work required in

271

Page 24

establishing 8§ %{T should bhe for the most cases small or none,

Often Tr(P,H) itself is found among AX<T> for many P in AX<S>.)

Corollary 1f Sﬁf s then for any formula @, if O is provable
in TH<S>, so is Tr(Q,H) in THLT>, (Again this corollary

essentially depends on that there {s no generator induction on

There can be more than one relations petween the same pair of
S and T, ince a3 relation S i{T is established and stored,
whenever a theory concentration is made oﬁ T and the man=machine
interaction finas the portion nf the proof depends solelv on the
substructure 8 ot T, the goal formula is mapped hy: ul and s
tried to be reduced on é. This excludes the rest of tne
structure of T‘which is not involved for the moment and, by thne
reduction and simplification procedures develaped on 3, would
speed up the p;oaﬁ.

There can‘be many candidates for syoves which need not ne sé
elaborated as rina. For instance, it should be usefuyl ta nave a

simple sype consisting of two functions f and g such that tney

satisfy commutativity and associativity,

Page 25

6. Subformula reductions

In practice, fairly large formulas are involved in oproofs,
especiallv for Dprogram verifications.’ They must usually be
decomposed into several smaller sUbtormulés which are easily
processed, The usual technigue has been to reduce such a
formula to some normal form, e€.,9, In the form of an imnlication
whose antecedent: and conseauent are a conijunction and a
disjunction of atomic formulas(CD=normal form), respectively,.
However mecnaniéal application of such normal form reduction can
otten destroy the semantic enevitability in the structure of the
formula, The resulting formulas may be very hard to read and to
apply the strategies presented in the previous sections,

For instance consider the following formula,

(6.1) (VYw,(DVS(XO,w)EDVS(yD,w) <=> DVS(X,W)&DVS(y,w))
& x#0 & y#0)
=> (DEG(COEF(Y,DEG(Y)) «xX=COEF(X,DEG(Xx)), TH(DEG(Xx)=DEG(Y),V))
£ DEG(y)
=> Vw,(DVS(x0,w)EDVS(Y0,w)
<=> DVS(y,w) &
DVS(COEF(y,DEG(Y)) X
=COEF(X,DEGIX)) THDEG(X)=DEG(Y),v), %)))
& ("DEG(COEF(y,DEG(y)),.X
=COEF(Xx,DEG(X)) ,TH(DEG(X)=DEG(Y),Vv))ILDEG(Y)
=> Vw,(DVS(Xx0,w)&DVSIYO0,w)
<=> DVS(CUOEF(y,DEG(v)),. X
~COEF(x,DEG(X)) ,IM(DEG(X)=DEG(Y)Y,V), w)
& DVS(V:W)))

(This happens to be one of the verification conditions for a
program to compyte the g.,¢.,d, o0f two prolynomials,)

The (CD=)normal forms of the formula will be: -

(ho1.1) (DVS(X0,w0) & DVS(y0,w0) &
DEG(COFF(Y,DEG(Y)) X=COEF(X,DEG(X)) ., TM(DEG(X)=DEG(V),¥))

LDEG(y))
=> DVS(y,w0) Qr DVS(x0,w0) ar DVS(y0,w0) ar x=0 gr v=0

(6,1.,2) (DVS(Xx0,w0) & DVS(y0,w0) &
. DEG(COEF(y,DEG(Y)) ,Xx=COEF(X,DEG(X)) TH(DEG(X)~DEG(V),V
SDEG(Y))
=> DVS(COFF(Y. EG(Yy)).x
=COEF(x,DEG(x)),TM(DEG(X)~=DEG(Y),v),wd) ar
nDVS(x%0,w0) ar DVS(y0,w0d) gr x=0 ar y=0

(be1.3) (DVS(X0,wD) & DVS(yO,wD) &
DEG(COEF(y,DEG(Y)) . x=COEF(X,DFEG(X)) .TH(DEG(X)=DEG(Y),yY
' LDEG(y))
=> DVE(y,¥0) or DVS(x0,w0) gr DVS(y0,w0) or x=0 gr y=0

.y e

33

(6,1,9) (DVS(x,%0) &DVS(y,w0) &DVS(X0,w0) &DVS(y0,w0) &
DEG(COEF(y,DEG(Y)) x=COEF(%,DEG(X)),TM(DEG(X)=DEG(V),Y
SDEG(Y)Y)
z> DVS(y,wd) o x=0 gr v=0

(6,1,10) (DVS(x,w0) &DVS(y,w0) &DVS(X0,w0) &DVS(y0,w0) &
DEG(COEF(V,DEG(Y)) (Xx=CREF(x,DEG(X)) ,TM(DEG(X)=DEG(Y),V
SDEG(Y))
=> DVS(COEF(y,DEG(Y)).X
=COEF(x,0FEG(X)),TM(DEG(X)=DEG(Y),v),w0) oL
X=0 Qr vy=0 :

Dbviously these formulas (especially (6,1,10)) do not appear
to teach us much, Thus we want to work out some methods which
transform 4 lafqe formula eaquivalently into several smaller ones
without destroyina the natural structure of the original
formula,

Until now in most of theorem proving techniqueé. it has been
usual to apply reductions exclusively to the outermost level of
the formula té be proved, but careful applications of reductions

to some appropriate subformulas seem to be useful for our

Page 26

N

))

))

1)

R74

Page 3

purpose as we see in the following examples:
(6,1) is reduced to the following formulas by reducinag any
subformula In the form of (A => B) & ("A => C) to B when

B <=> C,

(Vw,(DVS(x0,w) & DVS(y0,w) <=> DVS(x,w) & DVS(V,w)) &
X#0 & y#0)
=> Yw, (DVS(X0,w) & DVS(y0,w)
- <=> DVS(y,w) &
DVS(COEF(vy,DEG(v)),X
~COEF(X,DEG(X)) ,TH(REG(X)=DEG(Y),y), %))
Namely,to prove a formula in the form of P((A=>B) & (“A=>C)),
it is sufficient to establish P(B) and B8<=>C, This subformula
reduction method is wuseful in program verification because

subformulas in the form of (A=>B) & ("A=>C) often appear due to

jt=statement,

Often a formula to he proved contains as subformula several
occurrences of a same formula, and such a subformula should not
be deformed in order to preserve the natural structure of ﬁhe
superformula, The validity question of the or;qinal formula can
he simplified by assianing true or false to such a subformula,
which 1is more préciselv described as: Given a tofmula P in
which several occurrences of a formula F appear, in order to
prove P, It is sufticient to establish F=>P{true/F} and ¥ F =>
pizalse/v) (if P is in the form of P1=>P2 then

F & Pi{frue/F} => P2{true/f} and

275

”F & P1{false/F} => P2{false/F}), where P{t/F} stands for the
tormula obtained from replacing ¥ by t, Then by using the
simplification rules of the vpropositional calculus such as
A=>true ===> true, the validity of the original formula can be
larqgely simplified with the original structure of P well

preserved,

(6.,2) € (i<k => A[ilgA([Kk]) & (mgi<igsk => AlilgALG)) &
(nLi<igHIGH(A) => A[{11£AL§1) & k<n & AlkISAI[Kk+1] &
mEi<igk+1)

=> A[i)gAl]]

[This formula happens to be a verification condgdition of
bubble sort program,]}

The formula above is decnmposed into the followinag formulas by

the above technique on i<j.

(6,2,1) (i<j & (i<k => A[ilgATK)) &
(mgi & true & €k => A[11gA[§)) &
(ngl & true & JSHIGH(A) => A[11LAL§]) & k<n &
ALk)gATk+1]) & mgi & Lrue & dgk+1)
=> A{i)gAlj]

(6,2.2) ("i<i & (i<k => AlilgAlk)) &
(m£i & false & jgk => AlilgA[§1) &
(ngi & false & JSHIGH(A) => A[i)LA[3I)) & k<n & ~
Afk)ISALKk+1) & m<l & f£alse & j<k+1l)
=> Ali)LATLH]

By applving the propositional reduction rules we aet (Hh,2.,1)°

from (6,2,1) and true from (6,2.2),

(6,2,1)7 (i< & (i<k => A[i)gA(lK]) &
(mgt & igk => A(ilgAli)) &
(ngi & JKHIGH(A) => A[1)1gAli]) &
k<m & A{k]ILA(k+1]) & mg£i & j<k+1)
=> AfilgAli)

Page 28

276

Page 29

where (6,2,1)° is proved by using the same technique on the
formulas mgi, j€k and i<k, 1In this way the natural structure of

the oriaginal formula can be preserved throuaghout the proot,

There can be many difterent methods for subformula reductions
and so 1t is desirable for the user to be abhle to develop such
methods interactively whenever necessary, In the same way as
module-wise develooment of reduction rules, the soundness must

be established,

Paye 39
Feferences

1, Hledsoe,w,d,? Kon=resolution theorem nrovina, rrtificial
Intellicence 9, 1=35, 1977

2. Gordon, ., #dilner, R,, Morris, L,, Hewey, M,, wadsworth, (.3 A
meta lanaquaage f€nr interactive proofs in LOF, Yth ACs Conference on
Princinles of Proararming Languanes, 1378

3, Nakajima, E,., YHonda, M,, Nakahara, H,: lrescribing and veritying
proarams ‘with abstract data types., Formal description of Proaramming
Concepts. (ed, "eyhold) korth=Holland Publisnhina, Co, 1977

4, HNakaijima, R,, #dakahara H,, Honda, .t Hierarchical nronran
verification ==a m@manv sorted loaical approach==, RIMS=265, Research
Institute for Mathematical Science, Kyoto University, 1978

5, Nakajima, R,:? Sypes =e-partial tvees== tor proaram structuring and

first order system I0TA loaic, Reserch Report nwo, 27, Institute of
Informatics, University of 0Oslo, 1977

b, MNelson, C.,'ﬂnnen. DeCeet Simplitication by cooperating decision
procedyres, AlI#=311, Stanford Artificial Intelligence Laboratry, 19378

