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§1. Linear system representations

A pair H= {fh , HoY of complex linear spaces H; , Hz is
called a linear system if a duality <&, n> is defined between/Hl
and H,. Namely, <& ,n> is a complex bilinear form on H; x H,
with the property & ,H;> =0 only if £€=0 and <H; ,nd» =0 only
if n=0. In thlS paper we consider H,;, H, as locally convex
ﬁausdorff topological vector spaces with o(H)ftopology, that is,
the topology generated by all functionels g—a><g ,n>;’on H;, and
by all functionals n~—><£’,nj> on H, respectively. 7

‘Let’X be a topological group or a topological algebra over
the complex number field €. - A linear system representation,(LSR,
for short) of X means a pair T= {T; , T2y of a representation T,
of X on H; and an antirepresentation T, of X on H, such that
LT (x)E ,nHy = L& ,Tz(x)n> for all xeX, £€H;, and neH,, and
that the €-valued functions x —=<T;(x)£ , n) on X are continuous
for ail EE€H;, neHs.

Two LSR’s T= {T; ,T,» on H= {H; ,H,» and T'= T}, T3>



on H = <H, , H»> are called eguivalent if there exists a pair ¢ =
%y ,%,> of linear isomorphisms ¢; of H; onto H; and 2, of H,
t N % - =
onto H; such that <&,(Z) , ¢:{(n) > = <£,n> for all £€H;, neH,
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andkthat 6,T, (x)07 =T1(xX), 0,T5 (x)03 =Ts(x) for all x € X.

ATLSR T= <T; ,T:> of X on H= <H, , H,» is called irre-
ducible if every T;-invariant non-trivial subspace of H; is o (H) -
dense in H,, or equiyalently, if every T,-invariant non-trivial
subspace of H, is o (H)-dense in H,.

Let G be é locally compact unimodular group, and L(G) the
algebra of all continuous functions on G with compact supports,
with multiplication defined by convolution. For every compact
subset C of G, denote by LC(G) the normed space of‘all continuous
functions on G whose supports are contained iﬁ C with supremum
norm. - Théh L(G) is, as the inductive‘limit of {LC(G) ; C is a
compact subset of G} , a topological algebra. ALSR T= £T; , T>»
of Gon H= <{H; ,H;> 1is called integrable with respect to L(G)
if, for every function f €L(G), there exist linear operators T; (f)

on H; and T, (f) on H, such that

[ <miee, n> feax= <THE, > = <&, T2 (5)n>
G

for all £€H;, n€&€H,, where dx denotes a Haar measure on G. Fdr
a compact subgroup K of G, it is called integrable with respect to
L(K) if the restriction of T on K is integrable with respect to

L(XK) .

1
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§2. Decomposability of LSR's

Let °J be a measure space with a o-finite measure y.
Suppose there is given, for almost every T e %, a linear system
rl = <F71'— ’ FE) . Two functions ¢, r', defined for almost all Te
T with its values (1), C'(.T) in FI (i=1 or 2), are identified
if z(1) =¢' (1) for almost all Te“7J. Let F; be a vector space
of functions (dr, strictly speaking, equivalence classes of
functions with respect to this identification) £ on % with its
values £(t1) in F?, and F,, similarly, a vector space of functions
n on °F with its values n(1) in Fi. When we consider each
element £ & F; as an equivalence class, we shall denote by ?; a
representative function in £. Similarly we shall denote by n a
representative function in n e‘Fz. For a such pair F,, F,, we

give the following three definitions.

DEFINITION 1. A pair F,;, F, will be called summable if 17—
<E(t) ,n(1)> is a €-valued summable function on ?J for every fe

Fi, neF,.

DEFINITION 2. A pair F;, F, will be called regular if, for
every function cpeLoo(‘D’ 1), £E€F; implies ¢£ €F;, and neF,

implies ¢n € F,, where ¢&(1) =¢(T)E(T), ¢n(T) = (TIn(T).

DEFINITION 3. A pair F;, F, will be called saturating if,

for arbitrary complete systems of representative functions {g i £



188

€F;} and {n;nerF,} , the set {&(1) ; EeFi} is o(F')-dense in

F}'and {ﬁ(T);T}éE@} is G(FT)—dense in FE for almost all Tt € °J.

LEMMA 1. Let F;, F2 be a regular and saturating paif, then
there exist £¢& F; and ng € F» such that £,(t) #0 and no (1) # 0 for

almost all t €°J.

Let Fi1, F2 be a regular saturating summable pair. ~ Then the

bilihear fbrm
g, n> = jq(&(ﬂ y n{T)> du(1)

gives a duality between F; and F,. We shall call the linear
system F= {F; , F,> with this duality a direct integral of FT,

and denote it by

F=<F, ,F,> = LI<F§ , Fr>du(r) .

DEFINITION 4. Let X be a topological group or a topological
algebra. A LSR U= <{U; ,U,> of X on a linear system E= {E; , E,>
is called decomposable if the following three conditions are
satisfied.

(1) The linear system E= <E; , E»> is isomorphic to a direct
integral F= <{F; ,F,> = i&§F¥ , F2>du(t) .

(2) For almost all t€9, irreducible LSR’s vt = <V'{ ’ VE)
are defined on F¥'=<F] ,F;> .

(3) Denote by Vi (x)§&, Va(x)n the functions defined by
Vi) €] (1) =vI (D), [Vo(0)n} (1) =Vi(x)n(1). Then E€F1, ne

Fo, implies Vi(x)£ €F;, Va(x)neF, for all x eX, and there exists
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an isomorphism ¢ = <&; , o> of E onto F such that
Vi(x) =105 (x)8), Vi (%) =0,U, (x) 03
for all x €X.
The LSR U= <U; , Upy> 1is called finite-dimensionally decom-
posable if, in addition, F'= <F¥ , F§> are finite-dimensional

for almost all te€ 9T.
§3. Spherical LSR’s of L°(8§) and canonical LSR’s of G

Let G be a locally compact unimodular group, K a compact
subgroup of G, and § an equivalence class of irreducible repre-
sentations of K. The normaliéed trace of § will be denoted by
Xgr and the normalized Haar measure on K will be denoted by du.

For a SR T=<T; , T,> of Gon H= £H; , H,> which is
integrable with respect to L(G) and L(K), we define_ continuous

projections P;(8), P,(8) on H;, H, respectively by

[ <miwe, > T @an= <pi(8)E,n>= <&, Pa(6)n>.
K .

Put Hi(8) =P (8)H;, Hp(8) =P, (8)H,, then H(S) = <H;(8) , Ho (8)>
is a linear system with the duality < , > restricted from H.
qu every function f e L(S§) =7(E*L(G)*')'(é, the space H;(8) is in-
variant under T, (f), and H; (6) is invariant under T, (f). Hence
we obtain a LSR T= <Ty, T,> of L($) on H(S) = <H1(8) , H2(8)>
where T (£) =T, (£) |H1(8) and T,(£) =T, (£) |H(8) for each f eL($).
If T is irreducible, then T is also irreducible.

- Now we fix a unitéry matricial representation u-—>D(u) of K

which belongs to 6. We shall denote by d its degree and by
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djs(u) the (i,j)-coefficient of D(u). Let PT(8), P3(8) be the

continuous projections on H;, H, respectively defined by
dg( KTy (WE, 0> 3 (wdu= <pH8)e , ny = <g, PE(omY .

Put HY(S8) =PT(§)H;, Hz(8) =P7(8)H,, then the pairs HT () =
(H}(é)’,H%(6)> are linear systems with the dualities restricted
from H. Since H%(é) and H%(G) are invariant under T; (f) and

T, (f) respectively for all functions f €L°(§8) = {£° ; fGIAS)},
where f°(x)==s f(uxu*)du, we obtain d LSR’s of the algebra L°(§)
K

on Y (6) = <ul(s) ,ui(6)> for i=1,---,d. These LSR’'s are
mutually equivalent. A LSR U= <U; ,U,> of L°(8) will be called
a spherical LSR corresponding to T = <EP1, T,> if it is equivalent
to these LSR’s of L°(§).

For a linear system E= <E; , E;) , we shall denote by E? the

vector space of all column vectors & = El with gielzl, and by Eg

ta
the vector space of all column vectors m whose components are in
Es. Then Ed== <E? ,Eg:> is a linear system with the duality

. d
<€,m>=§:l<gl,ﬂl>-
i=

LEMMA 2. Let U= <U; ,U;> be a LSR of L°(§) on E= {E; ,Ez>
which satisfies one of the following conditions,

(a) U is a spherical LSR corresponding to a LSR of G,

(b) U is irreducible and finite-dimensional.

d d

Then there exists a unique LSR U= <U; ,U0,> of L(§) on E- = {Ej ,
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Eg > such that’

U1 (e ¥ £)E =D(X) [Ua (£) ;)\, T2 (e ¥ )m="D(k) [Uz (),

Ul(f)Ed Uz(f)ﬂd

for all keK and'feL"(G)., where ¢, ¥ f (x) =f(k"x) and tD(k) is

k
the transposed matrix of D(k), and right hand sides are formal

products of matricies.

Let U= <U; ,U,> be a finite-dimensional irreducible LSR of

L°(8) on a linear system E= <E; , E,> , and U= <U,; , U,> the LSR

of L(S8§) on Ed= (Eg1 ’ E?} which is giVen in Lemma 2. Then it is
not difficult to show that U= <U; , U,> is irreducible. Choose

non zero vectdrs Eo eE(li and mo 6E€i arbitrarily, and put
W = {£€L(6) ; 01 (X %9 ¥ E#T;)E0 =0 for all geL(G)],
M, = {g e L(G) ; U2 (Xg X9 X £ XX )Imo =0 for all £<L(G)).
Then W, is a closed maximal left ideal and M, is a clqsed

maximal right ideal in‘L(G) . Now put

H, =L(Gym1 r Ho = m&(G) .

Dehoting by [f]; the coset in H; which contains £ and by [gl. the
coset in Hz which contains g, the pair H= <H;, H,> is a linear
system with the duality
lEl1, [912> = <UL (X IXE*X Eo sy Mo .
Then the LSR T= T, , T,> of G on H= <H, ,.H2> , defined by
L Ti(x) [£], = [€x*f]1,‘ Ty (%) [g]2=[g*€X]2,
is irreducible, and is called a canonical LSR of G corresponding

to U. Of course it depends on the choice of &, and n,, but it is
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unique up to equivalence.
§4. Decomposability of a homogeneous LSR of G

Let G , K, and 8§ be the same as in §3. Let T= <T; , T,>
be a ISR of G on a linear system H= <H; , H,> . Under the condi-
tion of integrability with respect to L(K), it is called G—hbmo—
geneous with respect to § if every T;-invariant subspace of H;
containing H; (8) is o(H)-dense in H;, and if every T,-invariant
subspace of H, containing H,(§) is o (H)-dense in H,.

Suppose there exist o (H)-dense T;- or T,-invariant subspaces
H), H, of H;, H, respectively, then H' = <H} ,H,> is a linear
system with the duality restricted from H. We shall call the
LSR T'=¢T;,T,>, where T; =T,|H; and T, =T,\|H;, a dense

contraction of T on H'.

THEOREM. Assume that G is second countabie. Let T‘=QP1, Ty>
be a LSR of G on H= <H; , H,)> , which is integrable with respect
to L(G), L(K), and is G—homogeneous with respect to 6. Suppose
the corresponding spherical LSR of L°(§) is fihite—dimensionally
decomposable, then there exists a decomposable dense contraction
7' of T on H;:= {Hi , Hy) which is integrable with respect to L(G)

and L(K) and satisfies H1(8) =H;(S8), Ha(8) =H,(38).

Let’s sketch the outline of the proof. Let U= <U; , U2>
be the corresponding spherical LSR of L°(8) on a linear system

‘BE=(E; ,Es> . For simplicity we consider as follows.
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(1) E= <E1, E2> = f,I(EE , Ez >du(T1) .

(2) Fo‘r almost all 1€y, finite-dimensional irreducible
LSR’s U' = <ut , UE) of L°(8) are defined on E' = { E! , E;> .

(3) For every £ €E:, we have [U;(f)&] (1) =Ui(f)E(1), and for
every n €E,, we have [U;(£)n] (1) =U; (£)n(1).

Consider the algebras 4(G) =1"(T , w) ®c L(G) and A8) =
L”(%7 , W) ®L(8). TLet T= (¥ ,T,» be the LSR of L(6) which is
given in Lemma 2 for U. For every element O‘:Z‘ ¢i®fi € ,4(6) ’
we define :

m1(a)E = Zifh(fiwig, ﬂz(oa)vn=zi;flz(fi)¢im

(& EE?, nGEC}) . By Lemma 1, there exist £,€ E; and ny e E, such

that £¢(T) #0 and no(t) #0 for almost all T € 9. We put

Eo= [Eo| € E? ’ Mo = [no| € Ecz1
0 0
0 ' 0

Then, using the second countability of G, we can prove the

following

LEMMA 3. The subspace {m(oc)io ;o€ A—(G)} is O(Ed)—dense in

E?, and {m,(o)mo ; a € )4(6)} is G(Ed)—dense in Eczl

Let B( , ) be a bilinear form on 4(G) x A(G) defined by

Blo, 8) = 25 KUt (W %9y *£5% Tg) 6380 , bymo)

1,7
for a= qui@fi and B = lej®gj. Now we put
1 J
Wy ={ae A(G) ;B(a,B) =0 for all B e 4G},

WM,=(8 € 4G ;B(a,B) =0 for all o € 4(®)}.
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Then the pair f,l= <ﬁ1 ' .ﬁ\.2> ' 3;)31= A(%I, ﬁ2= .m\'gf(G), is a
linear system with the duality
{laly, [B]2> =B(a,B).

Now we construct a LSR S= <S;,S,> of Gon fi= {f2,, §H,> by

S1(x) [al, = le % al ., S2(x)[Bla=1[B*e.l,
for every x €G.

Since the LSR U= €U, , U,> ofv L(8) on gd = <EC} , E%) is
equivalent to T= T, , T,> on H(S§) = <H,(§) , Hy(8)> , there exists

4 onto H(8) such that T,(f) =

an isomorphism y= <¥,, ¥,> of E
v 0, (£)¥7, Tp(£) =v,0,(£) V¥, for all £€L(S). For every element

o = Z ¢i®fi eA(G), we put
1
21(lal1) = 25 T1(£;)¥1(9;80), @2(Lalz) = & T2 (£,)¥2 (o 3mo) -
1 1

Then ¢ = <{d,, 9,> is a homomorphism of $1= R, ,v ﬁ2> into H =

< H, ,H,> , and, by Lemma 3, the images H; = &, (53) , Hy = 0, (5,)
are o(H)-dense T;- or T,-invariant subspaces of H;, H, respectively.
The dense contraction T' = <T], T3> of T on H' = {H;, Hy,> is
integrable with respect to L(G), L(K), and satisfies H;(d) =H,(8),
H;(G) =H,(8). Moreover it is equivalent to S= <S;,S,> .

On the other hand, using vectors E,(71) € (E'lr)d, mo (1) é(Eg)d,
we caﬁ construct the canonical LSR T' = <T'1E ’ T§> of G on a linear
system HU = <HY , H;> corresbponding to U with

<111, [91z >= LUT(XG %9 xEXTHEe(T) ,mo(T) >,

TI(X) [£1T=le, ok £11,  Ti(x)[glz=Igxel];.

LEMMA 4. For every. function f & L(§), we have

{Oi(£)E, n> = Lf<ﬁ¥(f)£m (D> du(t) (E€ES, neEd).
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It follows from Lemma 4 that, for every a= J, ¢i®fi e A,
, . : i

8= 2 . ®qg. € A,
3 J J

— T T
<[OC] 17 [B]2> = j“’] <§ [(bl(T)fl] 1 s %\ [KPJ(T)QJ] 2>dU(T) .
This means that every [a]: € .ﬁl can be seen as a function
lol1(1) = Flo; (VIE 11
i
on 7, and that every [B], € ﬁz can be seen as a function

[Bl2(1) = 2% [wj.(r)gjli.
3

Then it is easy to verify that the pair ﬁl, flz is regular, -
summable, and saturating. Thus the LSR S=<S; ,S,> of G on

f1= <5,, R,> is decomposable in the following way ;

fa= <8, Ro> = [ <uiLEI>au(n),

<si(x)[aly, [Bl2D = j?<TT(X) [ali(T) , [Bl2(T)> dn(r).

Since, as is remarked above, S is equivalent to T", the theorem

follows.
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