On a decomposability of homogeneous linear system representations of a locally compact group

Hitoshi SHIN'YA

Department of Mathematics

Faculty of Science

Ehime University

§1. Linear system representations

A pair $H = \langle H_1, H_2 \rangle$ of complex linear spaces H_1 , H_2 is called a linear system if a duality $\langle \xi, \eta \rangle$ is defined between H_1 and H_2 . Namely, $\langle \xi, \eta \rangle$ is a complex bilinear form on $H_1 \times H_2$ with the property $\langle \xi, H_2 \rangle = 0$ only if $\xi = 0$ and $\langle H_1, \eta \rangle = 0$ only if $\eta = 0$. In this paper we consider H_1 , H_2 as locally convex Hausdorff topological vector spaces with $\sigma(H)$ -topology, that is, the topology generated by all functionals $\xi \longrightarrow \langle \xi, \eta \rangle$ on H_1 , and by all functionals $\eta \longrightarrow \langle \xi, \eta \rangle$ on H_2 respectively.

Let X be a topological group or a topological algebra over the complex number field \mathbf{C} . A linear system representation (LSR, for short) of X means a pair $T = \langle T_1, T_2 \rangle$ of a representation T_1 of X on H_1 and an antirepresentation T_2 of X on H_2 such that $\langle T_1(x)\xi, \eta \rangle = \langle \xi, T_2(x)\eta \rangle$ for all $x \in X$, $\xi \in H_1$, and $\eta \in H_2$, and that the \mathbf{C} -valued functions $\mathbf{x} \longrightarrow \langle T_1(\mathbf{x})\xi, \eta \rangle$ on X are continuous for all $\xi \in H_1$, $\eta \in H_2$.

Two LSR's $T = \langle T_1, T_2 \rangle$ on $H = \langle H_1, H_2 \rangle$ and $T' = \langle T_1', T_2' \rangle$

on $H'=\langle H_1', H_2' \rangle$ are called equivalent if there exists a pair $\Phi=\langle \phi_1, \phi_2 \rangle$ of linear isomorphisms ϕ_1 of H_1 onto H_1' and ϕ_2 of H_2 onto H_2' such that $\langle \phi_1(\xi), \phi_2(\eta) \rangle = \langle \xi, \eta \rangle$ for all $\xi \in H_1, \eta \in H_2$ and that $\phi_1 T_1(x) \phi_1^{-1} = T_1'(x), \phi_2 T_2(x) \phi_2^{-1} = T_2'(x)$ for all $x \in X$.

A LSR T = $\langle T_1, T_2 \rangle$ of X on H = $\langle H_1, H_2 \rangle$ is called irreducible if every T_1 -invariant non-trivial subspace of H_1 is $\sigma(H)$ -dense in H_1 , or equivalently, if every T_2 -invariant non-trivial subspace of H_2 is $\sigma(H)$ -dense in H_2 .

Let G be a locally compact unimodular group, and L(G) the algebra of all continuous functions on G with compact supports, with multiplication defined by convolution. For every compact subset C of G, denote by $L_C(G)$ the normed space of all continuous functions on G whose supports are contained in C with supremum norm. Then L(G) is, as the inductive limit of $\{L_C(G) : C \text{ is a compact subset of G} \}$, a topological algebra. A LSR $T = \langle T_1, T_2 \rangle$ of G on $H = \langle H_1, H_2 \rangle$ is called integrable with respect to L(G) if, for every function $f \in L(G)$, there exist linear operators $T_1(f)$ on H_1 and $T_2(f)$ on H_2 such that

$$\int_{G} \langle T_{1}(x) \xi, \eta \rangle f(x) dx = \langle T_{1}(f) \xi, \eta \rangle = \langle \xi, T_{2}(f) \eta \rangle$$

for all $\xi \in H_1$, $\eta \in H_2$, where dx denotes a Haar measure on G. For a compact subgroup K of G, it is called integrable with respect to L(K) if the restriction of T on K is integrable with respect to L(K).

§2. Decomposability of LSR's

Let $\mathcal T$ be a measure space with a σ -finite measure μ . Suppose there is given, for almost every $\tau \in \mathcal T$, a linear system $F^T = \langle F_1^T, F_2^T \rangle$. Two functions ζ , ζ' , defined for almost all $\tau \in \mathcal T$ with its values $\zeta(\tau)$, $\zeta'(\tau)$ in F_1^T (i = 1 or 2), are identified if $\zeta(\tau) = \zeta'(\tau)$ for almost all $\tau \in \mathcal T$. Let F_1 be a vector space of functions (or, strictly speaking, equivalence classes of functions with respect to this identification) ξ on $\mathcal T$ with its values $\xi(\tau)$ in F_1^T , and F_2 , similarly, a vector space of functions η on $\mathcal T$ with its values $\eta(\tau)$ in F_2^T . When we consider each element $\xi \in F_1$ as an equivalence class, we shall denote by ξ a representative function in ξ . Similarly we shall denote by $\dot{\eta}$ a representative function in $\eta \in F_2$. For a such pair F_1 , F_2 , we give the following three definitions.

DEFINITION 1. A pair F_1 , F_2 will be called summable if $\tau \to \langle \xi(\tau), \eta(\tau) \rangle$ is a C-valued summable function on $\mathcal T$ for every $\xi \in F_1$, $\eta \in F_2$.

DEFINITION 2. A pair F_1 , F_2 will be called regular if, for every function $\phi \in L^{\infty}(\mathcal{T}, \mu)$, $\xi \in F_1$ implies $\phi \xi \in F_1$, and $\eta \in F_2$ implies $\phi \eta \in F_2$, where $\phi \xi(\tau) = \phi(\tau) \xi(\tau)$, $\phi \eta(\tau) = \phi(\tau) \eta(\tau)$.

DEFINITION 3. A pair F_1 , F_2 will be called saturating if, for arbitrary complete systems of representative functions $\{\dot{\xi}:\xi\}$

 $\begin{array}{ll} \varepsilon \, F_1 \} & \text{and} & \left\{ \dot{\eta} \, \, ; \, \eta \, \varepsilon \, F_2 \right\} \, , \, \, \text{the set} \, \left\{ \dot{\xi} \left(\tau \right) \, \, ; \, \xi \, \varepsilon \, F_1 \right\} \, \, \text{is} \, \, \sigma (F^T) \, \text{-dense in} \\ F_1^T \, \, \text{and} & \left\{ \dot{\eta} \left(\tau \right) \, \, ; \, \eta \, \varepsilon \, F_2 \right\} \, \, \text{is} \, \, \sigma (F^T) \, \text{-dense in} \, \, F_2^T \, \, \text{for almost all} \, \, \tau \, \varepsilon \, \mathcal{T} \, . \end{array}$

LEMMA 1. Let F_1 , F_2 be a regular and saturating pair, then there exist $\xi_0 \in F_1$ and $\eta_0 \in F_2$ such that $\xi_0(\tau) \neq 0$ and $\eta_0(\tau) \neq 0$ for almost all $\tau \in \mathcal{T}$.

Let F_1 , F_2 be a regular saturating summable pair. Then the bilinear form

$$\langle \xi , \eta \rangle = \int_{\sigma_{\tau}} \langle \xi(\tau) , \eta(\tau) \rangle d\mu(\tau)$$

gives a duality between F_1 and F_2 . We shall call the linear system $F = \langle F_1, F_2 \rangle$ with this duality a direct integral of F^T , and denote it by

$$F = \langle F_1, F_2 \rangle = \int_{\mathcal{T}} \langle F_1^T, F_2^T \rangle d\mu(\tau)$$
.

DEFINITION 4. Let X be a topological group or a topological algebra. A LSR U = $\langle U_1, U_2 \rangle$ of X on a linear system E = $\langle E_1, E_2 \rangle$ is called decomposable if the following three conditions are satisfied.

- (1) The linear system $E=\langle E_1\,,\,E_2\rangle$ is isomorphic to a direct integral $F=\langle F_1\,,\,F_2\rangle=\int_{\sigma}\langle F_1^{\mathsf{T}}\,,\,F_2^{\mathsf{T}}\rangle\,d\mu(\tau)$.
- (2) For almost all $\tau \in \mathcal{T}$, irreducible LSR's $V^T = \langle V_1^T, V_2^T \rangle$ are defined on $F^T = \langle F_1^T, F_2^T \rangle$.
- (3) Denote by $V_1(x)\xi$, $V_2(x)\eta$ the functions defined by $[V_1(x)\xi](\tau) = V_1^T(x)\xi(\tau), \quad [V_2(x)\eta](\tau) = V_2^T(x)\eta(\tau). \quad \text{Then } \xi \in F_1, \ \eta \in F_2 \text{ implies } V_1(x)\xi \in F_1, \ V_2(x)\eta \in F_2 \text{ for all } x \in X, \text{ and there exists}$

an isomorphism $\Phi=\langle\Phi_1,\Phi_2\rangle$ of E onto F such that $V_1(x)=\Phi_1U_1(x)\Phi_1^{-1},\qquad V_2(x)=\Phi_2U_2(x)\Phi_2^{-1}$ for all $x\in X$.

The LSR U = $\langle U_1, U_2 \rangle$ is called finite-dimensionally decomposable if, in addition, $F^{\tau} = \langle F_1^{\tau}, F_2^{\tau} \rangle$ are finite-dimensional for almost all $\tau \in \mathcal{T}$.

§3. Spherical LSR's of L°(δ) and canonical LSR's of G

Let G be a locally compact unimodular group, K a compact subgroup of G, and δ an equivalence class of irreducible representations of K. The normalized trace of δ will be denoted by χ_{δ} , and the normalized Haar measure on K will be denoted by du.

For a LSR $T=\langle T_1,T_2\rangle$ of G on $H=\langle H_1,H_2\rangle$ which is integrable with respect to L(G) and L(K), we define continuous projections $P_1(\delta)$, $P_2(\delta)$ on H_1 , H_2 respectively by

$$\int_K \langle T_1(u)\xi \,,\, \eta \rangle \, \overline{\chi_\delta}(u) \, du = \langle P_1(\delta)\xi \,,\, \eta \rangle = \langle \xi \,,\, P_2(\delta)\eta \rangle \,.$$
 Put $H_1(\delta) = P_1(\delta)H_1$, $H_2(\delta) = P_2(\delta)H_2$, then $H(\delta) = \langle H_1(\delta) \,,\, H_2(\delta) \rangle$ is a linear system with the duality $\langle \ , \ \rangle$ restricted from H . For every function $f \in L(\delta) = \overline{\chi_\delta} * L(G) * \overline{\chi_\delta}$, the space $H_1(\delta)$ is invariant under $T_1(f)$, and $H_2(\delta)$ is invariant under $T_2(f)$. Hence we obtain a LSR $\widetilde{T} = \langle \widetilde{T}_1,\, \widetilde{T}_2 \rangle$ of $L(\delta)$ on $H(\delta) = \langle H_1(\delta) \,,\, H_2(\delta) \rangle$ where $\widetilde{T}_1(f) = T_1(f) \, \big|\, H_1(\delta) \,$ and $\widetilde{T}_2(f) = T_2(f) \, \big|\, H_2(\delta) \,$ for each $f \in L(\delta)$. If T is irreducible, then \widetilde{T} is also irreducible.

Now we fix a unitary matricial representation $u \to D(u)$ of K which belongs to δ . We shall denote by d its degree and by

 $d_{ij}(u)$ the (i,j)-coefficient of D(u). Let $P_1^i(\delta)$, $P_2^i(\delta)$ be the continuous projections on H_1 , H_2 respectively defined by

 $d\int_K \langle T_1(u)\xi,\eta \rangle \,\overline{d_{11}}(u)\,du = \langle P_1^{\dot{1}}(\delta)\xi,\eta \rangle = \langle \xi,P_2^{\dot{1}}(\delta)\eta \rangle\,.$ Put $H_1^{\dot{1}}(\delta) = P_1^{\dot{1}}(\delta)H_1$, $H_2^{\dot{1}}(\delta) = P_2^{\dot{1}}(\delta)H_2$, then the pairs $H^{\dot{1}}(\delta) = \langle H_1^{\dot{1}}(\delta), H_2^{\dot{1}}(\delta) \rangle$ are linear systems with the dualities restricted from H. Since $H_1^{\dot{1}}(\delta)$ and $H_2^{\dot{1}}(\delta)$ are invariant under $T_1(f)$ and $T_2(f)$ respectively for all functions $f \in L^{\circ}(\delta) = \{f^{\circ}; f \in L(\delta)\}$, where $f^{\circ}(x) = \int_K f(uxu^{-\dot{1}})du$, we obtain d LSR's of the algebra $L^{\circ}(\delta)$ on $H^{\dot{1}}(\delta) = \langle H_1^{\dot{1}}(\delta), H_2^{\dot{1}}(\delta) \rangle$ for $i = 1, \cdots, d$. These LSR's are mutually equivalent. A LSR $U = \langle U_1, U_2 \rangle$ of $L^{\circ}(\delta)$ will be called a spherical LSR corresponding to $T = \langle T_1, T_2 \rangle$ if it is equivalent to these LSR's of $L^{\circ}(\delta)$.

For a linear system $E = \langle E_1 , E_2 \rangle$, we shall denote by E_1^d the vector space of all column vectors $\xi = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_d \end{pmatrix}$ with $\xi_i \in E_1$, and by E_2^d

the vector space of all column vectors ${\bf m}$ whose components are in E_2. Then E^d = $\langle {\bf E}_1^d \;, \, {\bf E}_2^d \rangle$ is a linear system with the duality $\langle \xi \;, \, {\bf m} \; \rangle \; = \; \sum_{i=1}^d \, \langle \xi_i \;, \, {\bf n}_i \rangle \;.$

LEMMA 2. Let $U=\langle U_1\,,\,U_2\rangle$ be a LSR of L°(δ) on E = \langle E₁ , E₂ \rangle which satisfies one of the following conditions,

- (a) U is a spherical LSR corresponding to a LSR of G,
- (b) U is irreducible and finite-dimensional. Then there exists a unique LSR $\tilde{U}=\langle \tilde{U}_1\,,\,\tilde{U}_2\rangle$ of L(δ) on E^d = $\langle E_1^d$,

 $E_{\mathbf{i}}^{\mathbf{d}}$ such that

$$\tilde{U}_{1}\left(\varepsilon_{k} * f\right) \xi = D(k) \begin{pmatrix} U_{1}(f) \xi_{1} \\ \vdots \\ U_{1}(f) \xi_{d} \end{pmatrix}, \quad \tilde{U}_{2}\left(\varepsilon_{k} * f\right) \eta = {}^{t}D(k) \begin{pmatrix} U_{2}(f) \eta_{1} \\ \vdots \\ U_{2}(f) \eta_{d} \end{pmatrix}$$

for all $k \in K$ and $f \in L^{\circ}(\delta)$, where $\epsilon_k * f(x) = f(k^{-1}x)$ and $^tD(k)$ is the transposed matrix of D(k), and right hand sides are formal products of matricies.

Let $U=\langle U_1 \ , U_2 \rangle$ be a finite-dimensional irreducible LSR of $L^{\circ}(\delta)$ on a linear system $E=\langle E_1 \ , E_2 \rangle$, and $\widetilde{U}=\langle \widetilde{U}_1 \ , \widetilde{U}_2 \rangle$ the LSR of $L(\delta)$ on $E^{\overset{}{d}}=\langle E_1^{\overset{}{d}} \ , E_2^{\overset{}{d}} \rangle$ which is given in Lemma 2. Then it is not difficult to show that $\widetilde{U}=\langle \widetilde{U}_1 \ , \widetilde{U}_2 \rangle$ is irreducible. Choose non zero vectors $\xi_0 \in E_1^{\overset{}{d}}$ and $\eta_0 \in E_2^{\overset{}{d}}$ arbitrarily, and put

$$\mathcal{M}_1 = \{ f \in L(G) : \widetilde{U}_1(\overline{\chi_{\delta}} * g * f * \overline{\chi_{\delta}}) \xi_0 = 0 \text{ for all } g \in L(G) \},$$

$$\mathfrak{M}_2 = \left\{ g \in L(G) : \widetilde{U}_2(\overline{\chi}_{\delta} * g * f * \overline{\chi}_{\delta}) \mathfrak{m}_0 = 0 \text{ for all } f \in L(G) \right\}.$$

Then \mathfrak{M}_1 is a closed maximal left ideal and \mathfrak{M}_2 is a closed maximal right ideal in L(G). Now put

$$H_1 = L(G) / \mathcal{H}_1$$
, $H_2 = \mathcal{H}_2 / \mathcal{L}(G)$.

Denoting by $[f]_1$ the coset in H_1 which contains f and by $[g]_2$ the coset in H_2 which contains g, the pair $H = \langle H_1, H_2 \rangle$ is a linear system with the duality

$$\langle [f]_1, [g]_2 \rangle = \langle \widetilde{U}_1(\overline{\chi_{\delta}} * g * f * \overline{\chi_{\delta}}) \xi_0, \eta_0 \rangle.$$

Then the LSR $T = \langle T_1, T_2 \rangle$ of G on $H = \langle H_1, H_2 \rangle$, defined by

$$T_1(x)[f]_1 = [\epsilon_x * f]_1, T_2(x)[g]_2 = [g * \epsilon_x]_2,$$

is irreducible, and is called a canonical LSR of G corresponding to U. Of course it depends on the choice of ξ_0 and η_0 , but it is

unique up to equivalence.

§4. Decomposability of a homogeneous LSR of G

Let G , K, and δ be the same as in §3. Let $T = \langle T_1 , T_2 \rangle$ be a LSR of G on a linear system $H = \langle H_1 , H_2 \rangle$. Under the condition of integrability with respect to L(K), it is called G-homogeneous with respect to δ if every T_1 -invariant subspace of H_1 containing $H_1(\delta)$ is $\sigma(H)$ -dense in H_1 , and if every T_2 -invariant subspace of H_2 containing $H_2(\delta)$ is $\sigma(H)$ -dense in H_2 .

Suppose there exist $\sigma(H)$ -dense T_1 - or T_2 -invariant subspaces H_1' , H_2' of H_1 , H_2 respectively, then $H' = \langle H_1' , H_2' \rangle$ is a linear system with the duality restricted from H. We shall call the LSR $T' = \langle T_1' , T_2' \rangle$, where $T_1' = T_1 | H_1'$ and $T_2' = T_2 | H_2'$, a dense contraction of T on H'.

THEOREM. Assume that G is second countable. Let $T = \langle T_1 , T_2 \rangle$ be a LSR of G on $H = \langle H_1 , H_2 \rangle$, which is integrable with respect to L(G), L(K), and is G-homogeneous with respect to δ . Suppose the corresponding spherical LSR of $L^{\circ}(\delta)$ is finite-dimensionally decomposable, then there exists a decomposable dense contraction T' of T on $H' = \langle H_1', H_2' \rangle$ which is integrable with respect to L(G) and L(K) and satisfies $H_1'(\delta) = H_1(\delta)$, $H_2'(\delta) = H_2(\delta)$.

Let's sketch the outline of the proof. Let $U = \langle U_1 , U_2 \rangle$ be the corresponding spherical LSR of L°(δ) on a linear system $E = \langle E_1, E_2 \rangle$. For simplicity we consider as follows.

- (1) $E = \langle E_1, E_2 \rangle = \int_{\mathcal{T}} \langle E_1^T, E_2^T \rangle d\mu(\tau)$.
- (2) For almost all $\tau \in \mathcal{T}$, finite-dimensional irreducible LSR's $U^T = \langle U_1^T, U_2^T \rangle$ of $L^{\circ}(\delta)$ are defined on $E^T = \langle E_1^T, E_2^T \rangle$.
- (3) For every $\xi \in E_1$, we have $[U_1(f)\xi](\tau) = U_1^T(f)\xi(\tau)$, and for every $\eta \in E_2$, we have $[U_2(f)\eta](\tau) = U_2^T(f)\eta(\tau)$.

Consider the algebras $\mathcal{A}(G) = L^{\infty}(\mathcal{T}, \mu) \otimes_{\mathbb{C}} L(G)$ and $\mathcal{A}(\delta) = L^{\infty}(\mathcal{T}, \mu) \otimes_{\mathbb{C}} L(\delta)$. Let $\tilde{U} = \langle \tilde{U}_1, \tilde{U}_2 \rangle$ be the LSR of $L(\delta)$ which is given in Lemma 2 for U. For every element $\alpha = \sum_{i} \phi_i \otimes f_i \in \mathcal{A}(\delta)$, we define

$$\pi_{1}(\alpha)\xi = \sum_{i} \tilde{U}_{1}(f_{i}) \phi_{i}\xi, \qquad \pi_{2}(\alpha)\eta = \sum_{i} \tilde{U}_{2}(f_{i}) \phi_{i}\eta$$

 $(\xi \in E_1^d, \eta \in E_2^d)$. By Lemma 1, there exist $\xi_0 \in E_1$ and $\eta_0 \in E_2$ such that $\xi_0(\tau) \neq 0$ and $\eta_0(\tau) \neq 0$ for almost all $\tau \in \mathcal{T}$. We put

$$\xi_0 = \begin{pmatrix} \xi_0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in E_1^{\mathbf{d}}, \qquad m_0 = \begin{pmatrix} \eta_0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in E_2^{\mathbf{d}}.$$

Then, using the second countability of G, we can prove the following

LEMMA 3. The subspace $\{\pi_1(\alpha)\xi_0 : \alpha \in \mathcal{A}(\delta)\}$ is $\sigma(E^d)$ -dense in E_1^d , and $\{\pi_2(\alpha)\pi_0 : \alpha \in \mathcal{A}(\delta)\}$ is $\sigma(E^d)$ -dense in E_2^d .

Let B(,) be a bilinear form on $A(G) \times A(G)$ defined by $B(\alpha, \beta) = \sum_{i,j} \langle \tilde{U}_1(\overline{\chi}_{\delta} * g_j * f_i * \overline{\chi}_{\delta}) \phi_i \xi_0, \psi_j \eta_0 \rangle$

for
$$\alpha = \sum_{i} \phi_{i} \otimes f_{i}$$
 and $\beta = \sum_{j} \psi_{j} \otimes g_{j}$. Now we put

$$\mathcal{M}_1 = \{ \alpha \in \mathcal{A}(G) ; B(\alpha, \beta) = 0 \text{ for all } \beta \in \mathcal{A}(G) \},$$

$$\mathfrak{M}_2 = \{ \beta \in \mathcal{A}(G) ; B(\alpha, \beta) = 0 \text{ for all } \alpha \in \mathcal{A}(G) \}.$$

Then the pair $\mathfrak{H}=\langle\mathfrak{H}_1\,,\,\mathfrak{H}_2\rangle\,,\,\,\mathfrak{H}_1=\mathcal{A}^{(G)}_{m_1},\,\,\mathfrak{H}_2=\mathcal{H}^{(G)}_{m_2},\,\,$ is a linear system with the duality

$$\langle [\alpha]_1, [\beta]_2 \rangle = B(\alpha, \beta).$$

Now we construct a LSR $S = \langle S_1, S_2 \rangle$ of G on $\mathfrak{H} = \langle \mathfrak{H}_1, \mathfrak{H}_2 \rangle$ by $S_1(x)[\alpha]_1 = [\epsilon_x * \alpha]_1$, $S_2(x)[\beta]_2 = [\beta * \epsilon_x]_2$ for every $x \in G$.

Since the LSR $\tilde{\mathbf{U}} = \langle \tilde{\mathbf{U}}_1 , \tilde{\mathbf{U}}_2 \rangle$ of $\mathbf{L}(\delta)$ on $\mathbf{E}^d = \langle \mathbf{E}_1^d , \mathbf{E}_2^d \rangle$ is equivalent to $\tilde{\mathbf{T}} = \langle \tilde{\mathbf{T}}_1 , \tilde{\mathbf{T}}_2 \rangle$ on $\mathbf{H}(\delta) = \langle \mathbf{H}_1(\delta) , \mathbf{H}_2(\delta) \rangle$, there exists an isomorphism $\Psi = \langle \Psi_1 , \Psi_2 \rangle$ of \mathbf{E}^d onto $\mathbf{H}(\delta)$ such that $\tilde{\mathbf{T}}_1(\mathbf{f}) = \Psi_1 \tilde{\mathbf{U}}_1(\mathbf{f}) \Psi_1^{-1}$, $\tilde{\mathbf{T}}_2(\mathbf{f}) = \Psi_2 \tilde{\mathbf{U}}_2(\mathbf{f}) \Psi_2^{-1}$ for all $\mathbf{f} \in \mathbf{L}(\delta)$. For every element $\alpha = \sum_i \phi_i \otimes \mathbf{f}_i \in \mathcal{A}(G)$, we put

$$\begin{split} & \Phi_1([\alpha]_1) = \sum_{\mathbf{i}} T_1(f_{\mathbf{i}}) \, \Psi_1(\phi_{\mathbf{i}} \xi_0) \,, \; \Phi_2([\alpha]_2) = \sum_{\mathbf{i}} T_2(f_{\mathbf{i}}) \, \Psi_2(\phi_{\mathbf{i}} m_0) \,. \\ & \text{Then } \Phi = \langle \Phi_1 \,, \, \Phi_2 \rangle \text{ is a homomorphism of } \mathfrak{H} = \langle \mathfrak{H}_1 \,, \, \mathfrak{H}_2 \rangle \,, \; \text{and, by Lemma 3, the images } H_1' = \Phi_1(\mathfrak{H}_1) \,, \quad H_2' = \Phi_2(\mathfrak{H}_2) \\ & \text{are } \sigma(H) \text{-dense } T_1 \text{- or } T_2 \text{-invariant subspaces of } H_1, \; H_2 \text{ respectively.} \end{split}$$
 The dense contraction $T' = \langle T_1' \,, \, T_2' \rangle \,$ of T on $H' = \langle H_1' \,, \, H_2' \rangle \,$ is integrable with respect to L(G), L(K), and satisfies $H_1'(\delta) = H_1(\delta)$, $H_2'(\delta) = H_2(\delta)$. Moreover it is equivalent to $S = \langle S_1 \,, \, S_2 \rangle$.

On the other hand, using vectors $\xi_0(\tau) \in (E_1^T)^d$, $\eta_0(\tau) \in (E_2^T)^d$, we can construct the canonical LSR $T^T = \langle T_1^T, T_2^T \rangle$ of G on a linear system $H^T = \langle H_1^T, H_2^T \rangle$ corresponding to U with

$$\left\langle \left[f\right]_{1}^{T}, \left[g\right]_{2}^{T} \right\rangle = \left\langle \widetilde{U}_{1}^{T}(\overline{\chi}_{\delta} * g * f * \overline{\chi}_{\delta}) \xi_{0}(\tau), m_{0}(\tau) \right\rangle,$$

$$T_{1}^{T}(x) \left[f\right]_{1}^{T} = \left[\varepsilon_{x} * f\right]_{1}^{T}, \quad T_{2}^{T}(x) \left[g\right]_{2}^{T} = \left[g * \varepsilon_{x}\right]_{2}^{T}.$$

LEMMA 4. For every function $f \in L(\delta)$, we have $\langle \tilde{U}_1(f)\xi, \eta \rangle = \int_{\P} \langle \tilde{U}_1^T(f)\xi(\tau), \eta(\tau) \rangle \, \mathrm{d}\mu(\tau) \qquad (\xi \in E_1^{\tilde{d}}, \, \eta \in E_2^{\tilde{d}}) \, .$

It follows from Lemma 4 that, for every $\alpha = \sum_{i} \phi_{i} \otimes f_{i} \in \mathcal{A}(G)$, $\beta = \sum_{i} \psi_{j} \otimes g_{j} \in \mathcal{A}(G)$,

$$\langle [\alpha]_1, [\beta]_2 \rangle = \int_{\mathcal{T}} \langle \sum_{i} [\phi_{i}(\tau) f_{i}]_{1}^{T}, \sum_{j} [\psi_{j}(\tau) g_{j}]_{2}^{T} \rangle d\mu(\tau).$$

This means that every $[\alpha]_1 \in \mathfrak{F}_1$ can be seen as a function

$$[\alpha]_1(\tau) = \sum_{\mathbf{i}} [\phi_{\mathbf{i}}(\tau) f_{\mathbf{i}}]_1^{\tau}$$

on \mathcal{T} , and that every $[\beta]_2 \in \mathfrak{F}_2$ can be seen as a function $[\beta]_2(\tau) = \sum_{\mathbf{j}} [\psi_{\mathbf{j}}(\tau)g_{\mathbf{j}}]_2^{\tau}.$

Then it is easy to verify that the pair β_1 , β_2 is regular, summable, and saturating. Thus the LSR $S=\langle S_1,S_2\rangle$ of G on $\beta=\langle \beta_1,\beta_2\rangle$ is decomposable in the following way;

5 = 〈51, 52〉 =
$$\int_{\gamma} \langle H_1^{\tau}, H_2^{\tau} \rangle d\mu(\tau)$$
,

$$\langle S_1(x)[\alpha]_1, [\beta]_2 \rangle = \int_{\mathcal{T}} \langle T_1^T(x)[\alpha]_1(\tau), [\beta]_2(\tau) \rangle d\mu(\tau).$$

Since, as is remarked above, S is equivalent to T, the theorem follows.