Sperical Setions of a Homogeneous Vector Bundle Katsuhiro Minemura

In this note, we show some results on the integral representation of eigensections of invariant differential operators on a homogeneous vector bundle over a riemannian symmetric space. First we determine the structure of the algebra D of invariant differential operators on a homogeneous vector bundle, define the notions of eigensections and spherical sections corresponding to a given finite-dimensional representation of the algebra D and obtaine the dimension formula and an integral representation of spherical sections. The notion of spherical sections is a generalization of that of zonal spherical functions. The dimension formula of the space of spherical sections will be crucial for the problem of Poisson integral representation of eigensections, which I would like to solve during this summer.

Precisely speaking, let G be a connected real semisimple Lie group with Lie algebra G of finite center, K a maximal compact subgroup with Lie algebra K, G = KAN an Iwasawa decomposition with split torus A and g = $K(g)e^{H(g)}n(g)$ (g \in G, K(g) \in K, $e^{H(g)}$ \in K, n(g) \in K, where n(g) is an element in the

$$P_{\tau,\lambda}(g) = e^{-(\lambda+\rho)H(g^{-1})}\tau(K(g^{-1}))$$
 $(g \in G)$.

Then there exists an algebra homomorphism, say $\chi_{\tau,\lambda}$, of \mathbb{D}_{τ} into $\mathrm{End}_{\mathrm{M}}(\mathrm{V})$ such that

$$\Delta P_{T,\lambda}(g) = P_{T,\lambda}(g) \circ \chi_{T,\lambda}(\Delta) \qquad (\Delta \in \mathbb{D}_{T})$$
,

where V denotes the representation space of τ and $\operatorname{End}_M(V)$ denotes the set of endomorphisms on V which commute with $\tau(m) (m \in M = Z_K(A) = the$ centralizer of A in K).

For an irreducible representation (σ, V_{σ}) of M, put $H_{\sigma} = \text{Hom}_{M}(V_{\sigma}, V)$ and $H_{\tau, \sigma} = \text{Hom}_{M}(V, V_{\sigma})$. Then $\chi_{\tau, \lambda}$ defines a representation $\chi_{\tau, \sigma, \lambda}$ of D_{τ} on H_{σ} by

$$\chi_{T,\sigma,\lambda}(\Delta) = \chi_{T,\lambda}(\Delta) \circ a \quad (a \in H_{\sigma})$$
.

Let $\mathcal{Q}(\mathtt{E})$ denote the space of analytic sections of E. Given a

representation (χ,H) of \mathbb{D}_{τ} , we call $u\in\mathcal{Q}(E)$ an eigensection of type χ , if there exists a finite number of \mathbb{D}_{τ} -invariant subspaces $H_{\mathbf{i}}$ in $\mathcal{Q}(E)$ such that as a representation space of \mathbb{D}_{τ} , each $H_{\mathbf{i}}$ is isomorphic to a quotient representation of (χ,H) . Let $\mathcal{Q}(E,\chi)$ denote the space of eigensections of type χ .

Let $F_{\sigma,\lambda}$ denote the vector bundle over G/MAN associated to the representation $\sigma \otimes e^{-\lambda + \rho} \otimes 1$ of MAN on V_{σ} and let $\mathcal{B}(F_{\sigma,\lambda})$ denote the space of $F_{\sigma,\lambda}$ -valued hyperfunctions on G/MAN. For $\phi \otimes a \in \mathcal{B}(F_{\sigma,\lambda}) \otimes H_{\sigma}$, put

$$P_{T,\sigma,\lambda}(\phi \otimes a) = \int_{K} P_{T,\lambda}(k^{-1}g)a\phi(k)dk$$
.

Then it is easy to see that $P_{\tau,\sigma,\lambda}$ gives a G-linear mapping of $\mathcal{B}(F_{\sigma,\lambda})\otimes H_{\sigma}$ into $\mathcal{Q}(E,\chi_{\tau,\sigma,\lambda})$.

Let $\mathcal{Q}(E,\chi_{T,\sigma,\lambda})^T$ denote the subspace consisting of the sections in $\mathcal{Q}(E,\chi)$ which transform according to τ under the left regular representation of K on $\mathcal{Q}(E)$. We identify $V\otimes H_{T,\sigma}$ with the subspace of sections in $\mathcal{Q}(F_{\sigma,\lambda})$ which transform according to τ under the left regular representation of K on $\mathcal{Q}(F_{\sigma,\lambda})$ by

$$V \otimes H_{T,\sigma} \ni V \otimes b \longmapsto \phi_{V,b}(k) = b_{T}(k^{-1})_{V} \in \mathcal{B}(F_{\sigma,\lambda})$$

$$(v \in V, b \in H_{T,\sigma}, k \in K),$$

where $\phi_{v,\,b}$ is regarded as an element in $\mathcal{B}(F_{\sigma,\,\lambda})$ by

$$\varphi_{\mathbf{v},\mathbf{b}}(\mathrm{kan}) = e^{(\lambda-\rho)H(a)}\varphi_{\mathbf{v},\mathbf{b}}(k)$$
.

Then the mapping

$$v \otimes b \otimes a \longrightarrow P_{\tau,\sigma,\lambda}(\varphi_{v,b} \otimes a)$$

$$= \int_{K} P_{\tau,\lambda}(k^{-1}g)ab\tau(k^{-1})vdk$$

gives a linear mapping of $V \otimes H_{\tau,\sigma} \otimes H_{\sigma}$ onto $\mathcal{Q}(E,\chi_{\tau,\sigma,\lambda})^{\mathsf{T}}$. As a corollary, using the "subrepresentation theorem" of Casselman, we have a linear isomorphism

$$\mathcal{A}(E,\chi)^{\mathsf{T}} \cong V \otimes (\mathbb{D}_{\mathsf{T}}/\mathrm{Ker} \chi)^{\mathsf{*}}$$

for any irreducible representation χ of \mathbb{D}_{τ} .

Now it is very interesting to study when $P_{\tau,\sigma,\lambda}$ will give a G-isomorphism of $\mathcal{B}(F_{\sigma,\lambda})\otimes H_{\sigma}$ onto $\mathcal{A}(E,\chi_{\tau,\sigma,\lambda})$. We have the following conjecture:

Under a certain regularity condition on λ , we can construct a boundary value mapping $\beta_{\tau,\sigma,\lambda}$ of $\mathcal{Q}(E,\chi_{\tau,\sigma,\lambda})$ into $\mathcal{Q}(F_{\sigma,\lambda})\otimes F_{\sigma}$ such that

$$\beta_{\tau,\sigma,\lambda} \circ P_{\tau,\sigma,\lambda} (\varphi \otimes a) = \varphi \otimes c(\tau,\lambda)a, \varphi \in \mathcal{B}(F_{\sigma,\lambda}), a \in H_{\sigma}$$

where $c(\tau,\lambda)$ is the generalized c-function.

It seems not so hard to prove it now because almost all necessary lemmas have been proved and we have only to see what differential operators in $\mathbb{D}_{\overline{1}}$ will be necessary and suitable in order to determine the vector bundle to which the boundary values should belong.

References

- (1) S. Helgason, Invariant differential operators on homogeneous manifolds, Bull. Amer. Math. Soc. 83 (1977), 751-774.
- (2) J. Lepowsky, Algebraic results on representations of semisimple Lie groups, Trans. Amer. Math. Soc. 176 (1973), 1-44.
- (3) K. Minemura, Invariant differential operators and spherical sections of a homogeneous vector bundle, preprint.
- (4) K. Okamoto, Harmonic analysis on homogeneous vector bundles, Lecture Notes in Math., Vol. 266, pp. 255-271, Springer-Verlag, 1972.
- (5) N. R. Wallach, Representations of semisimple Lie groups and Lie algebras, Canad. Math. Congress, 1978.