102

A METHOD OF CLASSIFYING EXPANSIVE SINGULARITIES

By Hideki Omori

Introduction

To study singularities is in a sense to study the classification of germs of varieties. It is therefore important to give a method of classification. The purpose of this paper is to show the classification of a class of germs of varieties, which will be called expansive singularities in this paper, is included in that of Lie algebras of formal vector fields. As a matter of course, the classification of the latter does not seem easy. However, note that such a Lie algebra is given by an inverse limit of finite dimensional Lie algebras of polynomial vector fields truncated at the order k, $k \ge 0$. Therefore such Lie algebras can be understood by step by step method in the order k.

Let \mathbb{C}^n be the Cartesian product of n copies of complex numbers \mathbb{C} with natural coordinate system (x_1, \dots, x_n) . By \mathcal{O} , we mean the ring of all convergent power series in x_1, \dots, x_n centered at the origin 0. Let \mathbb{V} be a germ of variety in \mathbb{C}^n at 0, and $\mathbb{J}(\mathbb{V})$ the ideal of \mathbb{V} in \mathcal{O} (cf.[2] pp86-7 for the definitions). Two germs \mathbb{V} , \mathbb{V} ' are called bi-holomorphically equivalent if there is a germ of holomorphic diffeomorphism \mathcal{O} such that \mathcal{O} (0) = 0 and \mathcal{O} (\mathbb{V}) = \mathbb{V} '

Let $\mathfrak X$ be the Lie algebra of all germs of holomorphic vector fields at 0, and $\mathfrak X(V)$ the subalgebra defined by $\mathfrak X(V) = \left\{ u \in \mathfrak X \; ; \; u \, J(V) \subset J(V) \right\}.$

 $\mathfrak{X}(V)$ is then an \mathcal{O} -module. If there are v_1, \dots, v_s , linearly independent at 0, then Corollary 3,4 of [9] shows that V is bi-holomorphically equivalent to the direct product $\mathbb{C}^S \times W$, where $W \subset \mathbb{C}^{n-s}$. Thus, for the structure of singularities we have only to consider the germ W. Taking this fact into account, we may restrict our concern to the varieties such that all $u \in \mathfrak{X}(V)$ vanishes at 0, which we assume throughout this paper, i.e. $\mathfrak{X}(V)(0) = \{0\}$.

u $\in \mathfrak{X}(V)$ (u(0) = 0) is called a <u>semi-simple expansive vector</u> <u>field</u>, if after a suitable bi-holomorphic change of variables at 0, u can be written in the form

(1)
$$u = \sum_{i=1}^{n} \hat{\mu}_{i} y_{i} \partial/\partial y_{i},$$

where $\hat{\mathcal{H}}_1,\ldots,\hat{\mathcal{H}}_n$ lie in the same open half-plane in $\mathbb C$ about the origin. (See also §2.A for a justification of this definition.) The origin 0 is called to be an expansive singularlity, if $\mathfrak{X}(V)$ contains a semi-simple expansive vector field. If V is given by the locus of zeros of a weighted homogeneous polynomial, then V has an expansive singularlity at 0. The advantage of existence of such a vector field V is that one can extend through exp to a germ V to a subvariety V in $\mathbb C^n$. In this paper we restrict our concern to the germs of varieties with expansive singularities at the origin.

For such $\mathfrak{X}(V)$, we set $\mathfrak{X}_k(V) = \left\{u \in \mathfrak{X}(V) \; ; \; j^k u = 0\right\}$, where $j^k u$ is the k-th jet at 0. Since $\mathfrak{X}(V) = \mathfrak{X}_0(V)$, $\mathfrak{X}_k(V)$ is a finite codimensional ideal of $\mathfrak{X}(V)$ such that $[\mathfrak{X}_k(V),\mathfrak{X}_k(V)] \subset \mathfrak{X}_{k+k}(V)$ and $\bigcap \mathfrak{X}_k(V) = \{0\}$. We denote by $\mathfrak{J}(V)$ the inverse limit of $\left\{ \begin{array}{c} \mathfrak{X}(V)/\mathfrak{X}_k(V) \right\}_{k \geq 0}$ with the inverse limit topology. Since $\mathfrak{X}(V)/\mathfrak{X}_k(V)$ is finite dimensional, $\mathfrak{J}(V)$ is a Frechet space such that the Lie bracket product $[\cdot,\cdot]: \mathfrak{J}(V) \times \mathfrak{J}(V) \mapsto \mathfrak{J}(V)$ is

continuous. Namely, O(V) is a Frechet-Lie algebra. It is obvious that O(V) is a Lie algebra of formal vector fields, where a formal vector field u is a vector field $u = \sum_{i=1}^{N} u_i \partial/\partial x_i$ such that each u_i is a formal power series in x_1, \dots, x_n without constant terms. The statement to be proved in this paper is as follows:

Theorem I Let V, V' be germs of varieties with expansive singularities at the origins of \mathbb{C}^n , \mathbb{C}^n ' respectively. Notations and assumptions being as above, V and V' are bi-holomorphically equivalent, if and only if $\mathfrak{I}(V)$ and $\mathfrak{I}(V')$ are isomorphic as topological Lie algebras.

By the above result, we see especially that any isomorphism Φ of $\Im(V)$ onto $\Im(V')$ preserves orders, that is, $\Phi \, {\mathfrak T}_k(V) = {\mathfrak T}_k(V')$ for every k. Hence, to classify $\Im(V)$ is to classify the inverse system $\{ {\mathfrak X}(V) / {\mathfrak X}_k(V) \}_{k \geq 0}$. Note that ${\mathfrak X}(V) / {\mathfrak X}_k(V)$ is an extension of ${\mathfrak X}(V) / {\mathfrak X}_{k-1}(V)$ with an abelian kernel ${\mathfrak X}_{k-1}(V) / {\mathfrak X}_k(V)$. Such extensions can be classified by representations and second cohomologies (cf.[6]).

The proof of the above theorem is devided into several steps as follows:

<u>Step</u> 1. We define the concept of Cartan subalgebras and prove the conjugacy of Cartan subalgebras.

Step 2. Using the assumption that V (resp. V') has an expansive singularity at 0, we prove that there is a Cartan subalgebra \mathcal{G} of $\mathcal{G}(V)$ such that $\mathcal{G}(X)$ (resp. $\mathcal{G}(X)$). By a suitable biholomorphic change of variables, every element of $\mathcal{G}(Y)$ can be changed simultaneously into a normal form, which is a polynomial vector field. Moreover, every eigenvector with respect to ad($\mathcal{G}(Y)$) is a polynomial vector field.

Step 3. Now, suppose there is an isomorphism Φ of $\Im(V)$ onto $\Im(V')$. Then, by definition $\Phi(G)$ is a Cartan subalgebra of $\Im(V')$. Hence by Steps 1, 2 we may assume that $\Phi(G) \subset \Im(V')$. Thus, considering the eigenspace decomposition of $\Im(V)$, $\Im(V')$ with respect to $\operatorname{ad}(G)$ ad G' respectively, we see that Φ induces an isomorphism of G onto G', where G' (resp. G') is the totality of $\operatorname{u} \in \Im(V)$ (resp. G') which can be expressed as a polynomial vector field with respect to the local coordinate system which normalizes G' (resp. G').

Step 4. From isomorphism $\Phi: \phi \mapsto \phi'$, we conclude by the same procedure as in [5] that there is a bi-holomorphic diffeomorphism \mathcal{G} of \mathbb{C}^n onto \mathbb{C}^n such that $\mathcal{G}(0) = 0$ and $d\mathcal{G}(0) = \phi'$. The main idea of making such \mathcal{G} is roughly in the fact that every maximal subalgebra of ϕ corresponts to a point. However, since $\phi(0) = \{0\}$, the situation is much more difficult than that of [1]. Existence of expansive vector field plays an important role at this step as well as in the above steps.

Step 5. Recapturing V from the Lie algebra \wp , we can conclude $\mathscr{G}(V) = V'$.

The theorem is proved by this way. Note that the converse is trivial.

§1 Conjugacy of Cartan subalgebras

We denote a formal power series f in a form $f = \sum_{|\alpha| \geq 0} a_{\alpha} x^{\alpha}$, where $a_{\alpha} \in \mathbb{C}$, $\alpha = (\alpha_1, \dots, \alpha_n)$, $|\alpha| = \alpha_1 + \dots + \alpha_n$ and $x^{\alpha} = x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdots x_n^{\alpha_n}$. We denote by \mathcal{F} the Lie algebra of all formal vector fields and \mathcal{F}_k the subalgebra

$$\left\{u \in \mathcal{F} : u = \sum_{i=1}^{n} \sum_{|\alpha| > k} a_{i,\alpha} x^{\alpha} \partial / \partial x_{i} \right\}$$

 \mathcal{F} is then regarded as the inverse limit of the system $\{\mathcal{F}/\mathcal{F}_k:p_k\}$, where $p_k:\mathcal{F}/\mathcal{F}_{k+1}\mapsto\mathcal{F}/\mathcal{F}_k$ is the natural projection. We denote by \tilde{p}_k the projection of \mathcal{F} onto $\mathcal{F}/\mathcal{F}_k$. p_k and \tilde{p}_k are sometimes called forgetful mappings. Since $\mathcal{F}/\mathcal{F}_k$ is a finite dimensional vector space over \mathfrak{C} , \mathcal{F} is a Frechet space, and the Lie bracket product is continuous.

Let \mathcal{J} be a closed Lie subalgebra of \mathcal{J} , and $\mathcal{J}_k = \mathcal{J}_k \cap \mathcal{J}$. The closedness of \mathcal{J} implies that \mathcal{J} is the inverse limit of the system $\left\{\mathcal{J}/\mathcal{J}_k : p_k\right\}_{k \geq 0}$. In this paper, we restrict our concern to a closed subalgebra \mathcal{J} of \mathcal{J}_0 . For any subalgebra \mathcal{J} of \mathcal{J}_0 , we denote by $\mathcal{H}(\mathcal{J})$ the normalizer of \mathcal{J}_0 , i.e. $\mathcal{H}(\mathcal{J}) = \{u \in \mathcal{J}_0: [u, \mathcal{J}_0] \in \mathcal{J}_0\}$, and by $\mathcal{J}^{(0)}(\mathcal{J}_0)$ the 0-eigenspace of \mathcal{J}_0 , i.e. $\mathcal{J}^{(0)}(\mathcal{J}_0)$ is the totality of $v \in \mathcal{J}_0$ satisfying that there are nonnegative integers \mathcal{J}_0 , \mathcal{J}_0 , (depending on v) such that \mathcal{J}_0 is nilpotent, then $\mathcal{J}^{(0)}(\mathcal{J}_0) \supset \mathcal{H}(\mathcal{J}_0)$. Therefore, if $\mathcal{J}^{(0)}(\mathcal{J}_0) = \mathcal{J}_0$, then $\mathcal{H}(\mathcal{J}_0) = \mathcal{J}_0$. The converse is also true if \mathcal{J}_0 dim \mathcal{J}_0 (\mathcal{J}_0) < $\mathcal{H}(\mathcal{J}_0)$ is the converse is also true if \mathcal{J}_0 dim \mathcal{J}_0 (\mathcal{J}_0) < $\mathcal{H}(\mathcal{J}_0)$ is the converse is also true if \mathcal{J}_0 is \mathcal{H}_0 (cf.[6]).

A subalgebra f of \Im is called a <u>Cartan subalgebra of</u> \Im , if the following conditions are satisfied:

 $(\mbox{\it f},1)$ $\mbox{\it f}$ is a closed subalgebra of $\mbox{\it f}$ such that $\mbox{\it f}_{k}\mbox{\it f}$ is a nilpotent

subalgebra of \Im/\Im_k for every $k \ge 0$. $(\mathcal{G}, 2)$ $\mathcal{G} = \Im^{(0)}(\mathcal{G})$.

Note that if $\dim \mathcal{J} < \infty$ above \mathcal{G} is a usual Cartan subalgebra. The statement to be proved in this chapter is as follows:

Let \Im be a closed Lie subalgebra of \Im 0, and \Im 1 = \Im 1 \Im 2. For every $u \in \Im$ the adjoint action ad(u) leaves each \Im 1 invariant, hence ad(u) induces a linear mapping $a_k(u)$ of \Im/\Im_k into itself. ad(u) is then regarded as the inverse limit of the system $\{a_k(u)\}_{k \geq 0}$. Define a linear mapping $e^{t \cdot ad(u)}: \Im \mapsto \Im$ by the inverse limit of $\{e^{t \cdot a_k(u)}\}_{k \geq 0}$. Since ad(u) is a derivation of \Im 1, $e^{t \cdot ad(u)}$ is a one parameter family of automorphisms of \Im 2. The group \Im 3 is called the group of inner automorphisms of \Im 4. The purpose of this section is to investigate the structure of \Im 3.

Let $\hat{\mathcal{O}}$ be the ring of all formal power series $\sum_{|\alpha| \geq 0} a_{\alpha} \times^{\alpha}$ and $\hat{\mathcal{O}}_k$ the ideal given by $\hat{\mathcal{O}}_k = \{\sum_{|\alpha| \geq k+1} a_{\alpha} \times^{\alpha} \}$. $\hat{\mathcal{O}}/\hat{\mathcal{O}}_k$ is then a finite dimensional algebra over \mathbf{C} . We denote by $\tilde{\pi}_k$, π_k the projections $\hat{\mathcal{O}} \mapsto \hat{\mathcal{O}}/\hat{\mathcal{O}}_k$, $\hat{\mathcal{O}}/\hat{\mathcal{O}}_{k+1} \mapsto \hat{\mathcal{O}}/\hat{\mathcal{O}}_k$ respectively. Every $\mathbf{u} \in \mathcal{F}_0$ acts naturally on $\hat{\mathcal{O}}$ as a derivation such that $\mathbf{u} \hat{\mathcal{O}}_k \subset \hat{\mathcal{O}}_k$ for every \mathbf{k} . Conversely, $\mathbf{u} \in \mathcal{F}_0$ can be characterised by the above property. Every $\mathbf{u} \in \mathcal{F}_0$ induces, therefore, a derivation $\mathbf{u}^{(k)}$ of the algebra $\hat{\mathcal{O}}/\hat{\mathcal{O}}_k$ and $\mathbf{u}^{(k)}$ is canonically identified with $\tilde{\mathcal{P}}_k \mathbf{u}$. Conversely,

for every derivation δ of $\hat{\mathcal{O}}/\hat{\mathcal{O}}_k$ such that $\delta \hat{\mathcal{O}}_o/\hat{\mathcal{O}}_k \subset \hat{\mathcal{O}}_o/\hat{\mathcal{O}}_k$ there is an element $u \in \mathcal{J}_o$ such that $\delta = \hat{p}_k u$.

Since a derivation $u: \hat{O} \mapsto \hat{O}$ can be regarded as an inverse limit of derivations $\{ \tilde{p}_k u : \hat{O} / \hat{O}_k \mapsto \hat{O} / \hat{O}_k \}$, we define an automorphism exp u of \hat{O} by an inverse limit of $\{ e^{\tilde{p}_k u} \}$. We denote by G the group generated by $\{ \exp u : u \in \Im \}$.

Define an automorphism Ad(exp u) of 3 by

- (2) $(Ad(\exp u)v)f = (\exp u)v(\exp-u)f$, $f \in \widehat{\mathcal{O}}$.
- Since $(d/dt)_{t=0}$ (exp tu) f = uf, we see easily that
 - (3) $\frac{d}{dt} Ad(\exp tu)v = [u, Ad(\exp tu)v].$

On the other hand, $e^{t \cdot ad(u)}$ satisfies the same differential equation. Thus, by uniqueness, we obtain

(4) $Ad(\exp u) = e^{ad(u)}.$

Especially, if \Im is a closed Lie subalgebra of \Im _o, then Ad(exp u) \Im = \Im for every u \in \Im . Since $e^{\operatorname{ad}(u)}e^{\operatorname{ad}(v)} = \operatorname{Ad}(\exp u \cdot \exp v),$

we obtain that $\mathcal{O}(\mathfrak{F}) = \{ Ad(g) ; g \in G' \}$.

Let $G^{(k)}$ be the group generated by $\{e^{\widetilde{p}_k u}: u \in g\}$. Since $\widehat{O}/\widehat{O}_k$ is finite dimensional, $G^{(k)}$ is a Lie group with Lie algebra g/g_k . For every integer ℓ such that $\ell \leq k$, the group $G^{(k)}$ leaves g_{ℓ}/g_k invariant. Hence $\{g^{(k)}\}_{k \geq 0}$ forms an inverse system. We denote by G the inverse limit. Obviously, G' is a subgroup of G. However, note that if a sequence $(u_0,u_1,\dots,u_n,\dots)$ satisfies $u_{\ell}\in g_{\ell}$ for every $\ell \geq 0$, then $\ell \in g_{\ell}$ is a Lie group, G is a topological group under the inverse limit topology. The purpose of the remainder of this section is to show G = G' and that G is a Frechet-Lie group with

Lie algebra § .

Let $G_1^{(k)}$, $k \ge 1$, be the group generated by $\{e^{\widetilde{p}_{k}u} : u \in \mathcal{J}_i\}$, and G_1 the inverse limit of $\{G_1^{(k)}\}_{k \ge 1}$.

1.1 Lemma exp <u>is a bijective mapping of</u> \mathcal{J}_1 <u>onto</u> G_1 .

Proof. Let \exp_k be the exponential mapping of $\mathcal{J}_1/\mathcal{J}_k$ into $G_1^{(k)}$, i.e. $\exp_k u = e^{\widetilde{p}_k u}$. Since $\exp: \mathcal{J}_1 \mapsto G_1$ is defined by the inverse limit of $\{\exp_k\}$, we have only to show that $\exp_k: \mathcal{J}_1/\mathcal{J}_k \mapsto G_1^{(k)}$ is bijective. Since $\mathcal{J}_1/\mathcal{J}_k = \widetilde{p}_1\mathcal{J}_1$ is a nilpotent Lie algebra, we see that \exp_k is regular and surjective (cf. [3] p 229). However, the derivation $\widetilde{p}_k u : \widehat{O}/\widehat{O}_k \mapsto \widehat{O}/\widehat{O}_k$ is expressed by a triangular matrix with zeros in the diagonal. Therefore, one can define $\log(1+N)$ by $\sum_{k=1}^{\infty} (-1)^{n-1} N^n/n$, which gives the inverse of \exp_k . Thus \exp_k is bijective.

1.2 Corollary G' = G.

Proof. We have only to show $G' \supset G$. Since $G^{(1)} = G/G_1$ is generated by $\{\tilde{p}_1 u : u \in \mathcal{J}\}$, every $g \in G$ can be written in the form $g = \exp u_1 \cdot \exp u_2 \cdot \cdots \cdot \exp u_m \cdot h$, where $u_1, \dots, u_m \in \mathcal{J}$ and $h \in G_1$. Thus, the above lemma shows $G \subseteq G'$.

We next prove that G is a Frechet-Lie group. Although such a structure of G has no direct relevance to our present purpose, there is an advantage of making analogies easy from the theory of finite dimensional Lie groups.

Let $\mathfrak{C}: \ \widetilde{p}_1 \mathfrak{J} \mapsto \mathfrak{J}$ be a linear mapping such that $\ \widetilde{p}_1 \mathfrak{C} \ \widetilde{u} = \widetilde{u}$ for $\ \widetilde{u} \in \widetilde{p}_1 \mathfrak{J}$. It is not hard to see that $\ \xi(u) = \exp \mathfrak{C} \ \widetilde{p}_1 u \cdot \exp (u - \mathfrak{C} \ \widetilde{p}_1 u)$ gives a homeomorphism of an open neighborhood $\ U$ of $\ 0$ of $\ \mathcal{J}$ onto an open neighborhood $\ \widetilde{U}$ of the identity $\ e$ of $\ G$. Since $\ G$ is a topological group, there is an open neighborhood $\ V$ of $\ 0$ of $\ \mathcal{J}$ such that

 $\xi(V)^{-1} = \xi(V)$, $\xi(V)^2 \subset \xi(U)$. We set $\eta(u,v) = \xi^{-1}(\xi(u)\xi(v))$ and $i(u) = \xi^{-1}(\xi(u)^{-1})$ for $u, v \in V$. We have next to prove the differentiability of η and i. However, the differentiability is defined by inverse limits of differentiable mappings, hence that of η and i are trivial in our case. Thus, we get the following:

1.3 Lemma G is a Frechet-Lie group with Lie algebra η .

1.B. Simultaneous normalization and eigenspace decomposition

For any $u \in \mathcal{F}_0$, the linear mapping $u^{(k)}: \hat{\mathcal{O}}/\hat{\mathcal{O}}_k \mapsto \hat{\mathcal{O}}/\hat{\mathcal{O}}_k$ splits uniquely into a sum of semi-simple part $u_s^{(k)}$ and nilpotent part $u_N^{(k)}$ such that $[u_s^{(k)}, u_N^{(k)}] = 0$. Using eigenspace decomposition of $\hat{\mathcal{O}}/\hat{\mathcal{O}}_k$, we see that $u_s^{(k)}$ is also a derivation of $\hat{\mathcal{O}}/\hat{\mathcal{O}}_k$ hence so is $u_N^{(k)}$. For $u^{(k+1)}$, we have that $[p_k u_s^{(k+1)}, p_k u_N^{(k+1)}] = 0$, $p_k u_N^{(k+1)}$ is nilpotent, and that $p_k u_s^{(k+1)}$ is semi-simple by considering eigenspace decomposition of $\hat{\mathcal{O}}/\hat{\mathcal{O}}_{k+1}$. Therefore, $p_k u_s^{(k+1)} = u_s^{(k)}$ and $p_k u_N^{(k+1)} = u_N^{(k)}$. Hence, taking inverse limit, we get formal vector fields u_s , u_N which will be called the <u>semi-simple part</u> and the <u>nilpotent part</u> of u respectively. A formal vector field is called to be semi-simple if it has no nilpotent part.

Let \mathcal{S}^k be a nilpotent subalgebra of $\mathcal{F}_o/\mathcal{F}_k$ for an arbitrarily fixed k. Set $\mathcal{S}^k_s = \{u_s^{(k)} : u^{(k)} \in \mathcal{S}^k\}$, and denote by p_k^l the forgetful projection of $\mathcal{F}_o/\mathcal{F}_k$ onto $\mathcal{F}_o/\mathcal{F}_\ell$ that is, $p_k^l = p_\ell p_{\ell+1} \cdots p_{k-1}$. Since $p_k^l \mathcal{S}^k$ is a nilpotent subalgebra of $\mathcal{F}_o/\mathcal{F}_l$, there is a basis $(f_1^{(1)}, \dots, f_n^{(1)})$ of $\hat{\mathcal{F}}_o/\hat{\mathcal{G}}_l$ such that every $u^{(1)} \in p_k^l \mathcal{S}^k$ is represented by an upper triangular matrix. Let $(\mathcal{F}_l(u^{(1)}), \dots, \mathcal{F}_n(u^{(1)}))$ be the diagonal part. \mathcal{F}_j is then a linear mapping of $p_k^l \mathcal{S}^k$ into \mathfrak{C} for every \mathfrak{f} , which one may regard as a

linear mapping of g^k into c. Since $u_s^{(1)}$ is the semi-simple part of $u^{(1)}$, it must satisfy

(5)
$$u_s^{(1)} f_j^{(1)} = \mu_j(u^{(1)}) f_j^{(1)}$$
.

By a simple linear algebra, we see that there are $f_1^{(k)}, \dots, f_n^{(k)} e$ \hat{O}_0 / \hat{O}_k such that

(5)
$$u_s^{(k)} f_j^{(k)} = \mu_j(u^{(k)}) f_j^{(k)}, \quad \pi_k^{\ell} f_j^{(k)} = f_j^{(\ell)} \quad (1 \le j \le n)$$

for every $\mathbf{u}^{(k)} \in \mathcal{S}^k$, where π_k^{ℓ} is the forgetful projection of $\hat{\mathcal{O}}_0/\hat{\mathcal{O}}_k$ onto $\hat{\mathcal{O}}_0/\hat{\mathcal{O}}_{\ell}$, that is, $\pi_k^{\ell} = \pi_{\ell} \cdot \pi_{\ell+1} \cdots \pi_{k-1}$.

Since $f_{j}^{(k)} \in \hat{\mathbb{Q}}_{0} / \hat{\mathbb{Q}}_{k}$, $f_{j}^{(k)}$ is expressed in the form

(7) $f_{j}^{(k)} = \sum_{0 \leq |\alpha| \leq k} a_{j,\alpha} x^{\alpha}$.

Set $y_j = \sum_{0 \le |k| \le k} a_{j,k} \times \infty$. Since $f_1^{(1)}, \dots, f_n^{(1)}$ are linearly independent, these give a formal change of variables and every $u_s^{(k)}$ can be written in the form

(8)
$$u_s^{(k)} = \sum_{i=1}^{n} \mu_i(u^{(k)}) y_i \partial /\partial y_i$$
.

Since $[\mathcal{S}_{s}^{k}, \mathcal{S}^{k}] = 0$, because \mathcal{S}^{k} is nilpotent, every $u^{(k)} \in \mathcal{S}^{k}$ should be written in the form

(9)
$$u^{(k)} = \sum_{l=1}^{r} \sum_{\substack{\langle \alpha, \mu \rangle = \mu_{l} \\ 0 \le |\alpha| \le k}} a_{i,\alpha} y^{\alpha} \partial / \partial y_{i}$$

where $\langle \alpha, \mu \rangle = {\alpha_1 \mu_1 + \cdots + \alpha_n \mu_n}$. It should be noted that the semisimple part $u_s^{(k)}$ of $u^{(k)}$ has been changed into a linear diagonal vector field such as (8).

Let \mathcal{S}^{k+1} be another nilpotent subalgebra of $\mathcal{F}_o/\mathcal{F}_{k+1}$ such that $p_k \mathcal{S}^{k+1} \subset \mathcal{S}^k$, and let $\mathcal{S}^{k+1}_s = \left\{u_s^{(k+1)} : u^{(k+1)} \in \mathcal{S}^{k+1}\right\}$. Since $p_{k+1}^1 \mathcal{S}^{k+1} \subset p_k^1 \mathcal{S}^k$, the equality (5) holds also for every $u^{(1)} \in p_{k+1}^1 \mathcal{S}^{k+1}$ and the equality (6) does for every $p_k \mathcal{S}^{k+1}$. By a simple linear algebra, we see that there are $f_1^{(k+1)}, \dots, f_n^{(k+1)} \in \hat{\mathcal{O}}_o/\hat{\mathcal{O}}_{k+1}$ such that

(10)
$$u_s^{(k+1)} f_j^{(k+1)} = \mu_j(u^{(k+1)}) f_j^{(k+1)}, \quad \pi_k f_j^{(k+1)} = f_j^{(k)}.$$
Note that $f_j^{(k+1)} = f_j^{(k)} + \sum_{|\alpha| = k+1} a_{j,\alpha} x^{\alpha}$. Hence by putting

$$(11) y_j = \sum_{0 < |\alpha| \le k+1} a_{j,\alpha} x^{\alpha}$$

instead of (7), we get the same equations as (8) and (9) with respect & Moreover we have

(12)
$$u_s^{(k+1)} = \sum_{i=1}^{N} \mathcal{M}_i(u^{(k+1)}) y_i \partial \partial y_i$$
,

(13)
$$u^{(k+1)} = \sum_{i=1}^{n} \sum_{\langle \alpha, \mu \rangle = \mu_i} a_{i,\alpha} y^{\alpha} \partial / \partial y_i$$

(13) $u^{(k+1)} = \sum_{i=1}^{n} \sum_{\substack{\langle \emptyset, \mu \rangle = \mu_i \\ 0 < |\alpha| \le k+1}} a_{i,\alpha} y^{\emptyset} \partial/\partial y_{i}$ for every $u^{(k+1)} \in \mathcal{A}^{k+1}$. Especially we obtain the following:

1.4 Lemma Notations and assumptions being as above, the forgetful projection $p_k : \mathcal{S}_s^{k+1} \mapsto \mathcal{S}_s^k$ is injective.

Let $\{\mathscr{S}^k\}_{k\geq 1}$ be a series of nilpotent subalgebras \mathscr{S}^k of $\mathcal{F}_{0}/\mathcal{F}_{k}$ such that $p_{k}\mathcal{S}^{k+1}\subset\mathcal{S}^{k}$ for every $k\geq 1$. We denote by \mathcal{S} the inverse limit, and set $\mathscr{Q}_s = \{u_s : u \in \mathscr{S} \}$. Note that $\dim \mathscr{G}_s^k \leq n$ for every $k \ge 1$. Thus, there is an integer k_0 such that $p_k : 0 \le k+1$ $\mapsto \int_{S}^{k}$ is bijective for every $k \geq k$. By a method of inverse limit, we see that there is a formal change of variables

(14)
$$y_j = f_j(x_1, \dots, x_n)$$
 $1 \le j \le n$, $f_j \in \hat{O}_0$ such that (8) and (9) hold for every $u^{(k)} \in \mathcal{S}^k$ $(k \ge 1)$, and

(15)
$$u_s = \sum_{i=1}^n \mu_i(u) y_i \partial \partial y_i,$$

(16)
$$u = \sum_{i=1}^{n} \sum_{\langle x, \mu \rangle = \mu_{i}} a_{i, x} y^{\alpha} \partial \partial y_{i}$$
 for every $u \in \mathcal{S}$.

Now, let \mathcal{J} be a closed subalgebra of $\mathcal{J}_{\mathbf{o}}$, and suppose the above \mathcal{J}^k 's are subalgebras of $\mathfrak{I}/\mathfrak{I}_k$ respectively. Hence, the inverse limit & is a closed subalgebra of 3. We next consider the eigenspace decomposition of \Im with respect to ad(\lozenge). Since

ad(u): $\mathcal{F}_0 \mapsto \mathcal{F}_0$ leaves \mathcal{F}_0 invariant for every $u \in \mathcal{S}$, and $[ad(u), ad(u_s)] = 0$, we see that $ad(u_s) : \mathcal{F}_0 \mapsto \mathcal{F}_0$ is the semisimple part of ad(u) and hence $ad(u_s) \mathcal{F}_0 \subset \mathcal{F}_0$. Therefore, we have only to consider the eigenspace decomposition with respect to $ad(\mathcal{S}_s)$.

For a linear mapping λ of $\tilde{p}_1 \not Q_s$ into c, i.e. $\lambda \in (\tilde{p}_1 \not Q_s)^*$, we denote by \mathcal{F}_{λ} the subspace

$$\{u \in \mathcal{J}_{o} : u = \sum_{i=1}^{N} \sum_{\langle v_{i}, u \rangle \sim \mu_{i} = \lambda} a_{i, v_{i}} y^{v_{i}} \partial_{y_{i}} \}.$$

Note that $\mathcal{J}_{\lambda} = \{0\}$ for allmost all $\lambda \in (\tilde{p}_1 \mathcal{S}_s)^*$ except countably many λ 's. By $\pi(\mathcal{S})$ we denote the set of all $\lambda \in (\tilde{p}_1 \mathcal{S}_s)^*$ such that $\mathcal{J}_{\lambda} \neq \{0\}$. If $\tilde{p}_1 \mathcal{S}_s = \{0\}$, then we set $\pi(\mathcal{S}) = 0$, because all \mathcal{P}_j 's are zeros.

1.5 Lemma If $\tilde{p}_1 \not >_s = 0$, then $\mathfrak{J}^{(o)}(\not >_s) = \mathfrak{J}$.

Proof. By (16), every $u \in \mathscr{S}$ can be written in the form $u = u_1 + u_2$ such that

$$u_1 = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_j^i \ y_j \ \partial/\partial y_i \ , \quad u_2 = \sum_{i=1}^{n} \sum_{|\alpha| \geq 2} a_{i,\alpha} \ y^{\alpha} \ \partial/\partial y_i \ .$$
 The reason for the shape of u_1 is that the linear part of u is an upper triangular matrix. Therefore, for every $k \geq 1$, there is an integer m_k such that $ad(u)^{m_k} \ \partial_0 \subset \mathcal{F}_k$ for every $u \in \mathcal{S}$. This means $\mathcal{F}_1 = \mathcal{F}_1^{(0)}(\mathcal{S}_1)$ by definition.

Now, we set $g^{(\lambda)}(\beta) = g \cap g_{\lambda}$ for every $\lambda \in \Pi(g)$.

1.6 Lemma Every $u \in \mathcal{G}$ can be rearranged in the form

$$u = \sum_{\lambda \in \Pi(S)} u_{\lambda}, u_{\lambda} \in \mathcal{F}_{\lambda}$$

Moreover, every u_{λ} is contained in $g^{(\lambda)}(g)$.

Proof. Since the first assertion is trivial, we have only to show the second one. Since $\Pi(S)$ is a countable set, there is $v_o \in S_s$ such that $\lambda(v_o^{(1)}) \neq \lambda'(v_o^{(1)})$ for any $\lambda, \lambda' \in \Pi(S)$ such that $\lambda \neq \lambda'$. For every k, let $u^{(k)}$ be the truncation of $u \in S$ at the

order k. $u^{(k)}$ is canonically identified with $\tilde{p}_k u$. $u^{(k)}$ can be rearranged in the form $u^{(k)} = \sum_{\lambda \in \mathbb{N}(\mathcal{S})} u^{(k)}_{\lambda}$, where each $u^{(k)}_{\lambda}$ is the truncation of u_{λ} at the order k. Since $\mathbb{Z}/\mathfrak{F}_k$ is finite dimensional, only finite number of $u^{(k)}_{\lambda}$'s do not vanish. Apply $ad(v^{(k)}_{\mathbf{O}})^{\ell}$ to $u^{(k)}$. Since $ad(\mathcal{S}_{\mathbf{S}})$ $\mathbb{Z} \subset \mathfrak{F}$, we have

 $\text{ad}\left(v_{o}^{\left(k\right)}\right)^{\ell}u^{\left(k\right)} = \sum_{\lambda \in \Pi\left(\mathcal{S}\right)}\left(v_{o}\right)^{\ell}u_{\lambda}^{\left(k\right)} \in \mathfrak{F}/\mathfrak{J}_{k}$ Hence, considering Vandermonde's matrix, we get $u_{\lambda}^{\left(k\right)} \in \mathfrak{F}/\mathfrak{J}_{k}$. Thus, taking inverse limit, we get $u_{\lambda} \in \mathfrak{F}$, hence the desired result.

1.7 Corollary $\tilde{p}_k g^{(0)}(s)$ is the zero-eigenspace of $ad(\tilde{p}_k s)$: $g/g_k \mapsto g/g_k.$

Proof. It is trivial that $\tilde{p}_k \mathfrak{J}^{(o)}(s)$ is contained in the zero-eigenspace of $ad(\tilde{p}_k s)$, for $[s, \mathfrak{J}^{(o)}(s)] = \{0\}$. Thus, we have only to show the converse. The zero-eigenspace of $ad(\tilde{p}_k s)$ is equal to that of $ad(\tilde{p}_k s)$, that is, the space of all $v^{(k)} \in \mathfrak{J}/\mathfrak{J}_k$ such that $[\tilde{p}_k s, v^{(k)}] = \{0\}$. Thus, $v^{(k)}$ should be written in the form (9). Let $v \in \mathfrak{J}$ be an element such that such that $\tilde{p}_k v = v^{(k)}$, and let $v = \sum_{\lambda \in \mathbb{T}(s)} v_\lambda$ be the decomposition in accordance with the above lemma. Then it is clear that $\tilde{p}_k v_0 = v^{(k)}$. Since $v_0 \in \mathfrak{J}^{(o)}(s)$, we get the desired result.

1.C Existence and conjugacy of Cartan subalgebras

Let ${\mathcal J}$ be a closed subalgebra of ${\mathcal J}_o.$ If ${\mathcal J}/{\mathcal J}_1=\{0\}$, then ${\mathcal J}/{\mathcal J}_k$ is nilpotent for every $k \ge 1$, for $[{\mathcal J}_k,{\mathcal J}_\ell] \subset {\mathcal J}_{k+\ell}$. Therefore, by 1.5 Lemma, we see that ${\mathcal J}$ itself is the only Cartan subalgebra of ${\mathcal J}$. Thus, the conjugacy is trivial in this case.

Now, suppose $\Im/\Im_1 \neq \{0\}$, and let \Im^1 be a Cartan subalgebra of \Im/\Im_1 .

1.8 Lemma Let f^1, \dots, f^k be a series of Cartan subalgebras of f^1, \dots, f^k be a series of Cartan subalgebras of f^1, \dots, f^k be a series of Cartan subalgebras of $f^k = f^{k-1}$ for $f^k = f^{k-1}$ for $f^k = f^{k-1}$ for $f^k = f^k$.

By the well-known conjugacy of Cartan subalgebras of \Im/\Im_k , there is an inner automorphism A such that $A(p_k f') = f^k$. Since there is a natural projection of $G^{(k+1)}$ onto $G^{(k)}$ (cf. 1.A), there is an inner automorphism A' of \Im/\Im_{k+1} which induces naturally A. Thus, by setting A' $f' = f^{k+1}$, $f' = f^{k+1}$ is a Cartan subalgebra of \Im/\Im_{k+1} such that $f' = f^{k+1}$.

By the above lemma, we have a series $\left\{ \xi^k \right\}_{k \geq 1}$ of Cartan subalgebras of \Im / \Im_k such that $p_k \xi^{k+1} = \xi^k$. Let ξ be the inverse limit of ξ^k .

1.9 Lemma Notations and assumptions being as above, & is a Cartan

subalgebra of g.

Proof. Since $\tilde{p}_k f = f^k$, $\tilde{p}_k f$ is a nilpotent subalgebra of $\mathfrak{I}/\mathfrak{I}_k$ for every $k \geq 1$. By 1.7 Corollary, $\tilde{p}_k \mathfrak{I}^{(o)}(f)$ is the zero-eigenspace of $ad(p_k f)$. Since $\tilde{p}_k f = f^k$ is a Cartan subalgebra, we have $\tilde{p}_k \mathfrak{I}^{(o)}(f) = f^k$ and hence $\mathfrak{I}^{(o)}(f) = f$. Thus, f is a Cartan subalgebra of f.

We next consider the converse of the above lemma.

Proof. By 1.7 Corollary, the zero-eigenspace of $\mathrm{ad}(\widetilde{p}_k f)$ is equal to $\widetilde{p}_k f^{(o)}(f)$. Since f is a Cartan subalgebra of f, we see $\widetilde{p}_k f^{(o)}(f) = \widetilde{p}_k f$. Thus, $\widetilde{p}_k f$ is a Cartan subalgebra of f f f.

As in 1.A, we denote by $G^{(k)}$ the Lie group generated by $\left\{e^{\widetilde{p}_k u}: u \in \mathcal{J}\right\}$. Let $\mathcal{T}_k: G^{(k+1)} \mapsto G^{(k)}$ be the natural projection. We shall next prove the conjugacy of Cartan subalgebras, which completes the proof of Proposition A. Let f, \hat{f} be Cartan subalgebras of \mathcal{J} . By the argument in the first part of this section, we may assume $\mathcal{J}/\mathcal{J}_1 \neq \{0\}$. Since $\tilde{p}_1 f$, $\tilde{p}_1 f$ are Cartan subalgebras of $\mathcal{J}/\mathcal{J}_1$, there is $g_1 \in G^{(1)}$ such that $\mathrm{Ad}(g_1)(\tilde{p}_1 f) = \tilde{p}_1 \hat{f}$. Therefore, one may assume without loss of generality that $\tilde{p}_1 f = \tilde{p}_1 \hat{f}$. Let $G_k^{(k)}$ be the Lie group generated by $\left\{e^{\widetilde{p}_k u}: u \in \mathcal{J}_k\right\}$ for any ℓ , $\ell \leq k$.

1.11 Lemma Let f, \hat{f} be Cartan subalgebras of \mathcal{J} such that $\tilde{p}_k f = \tilde{p}_k \hat{f}$. Then, there is $g_{k+1} \in G_k^{(k+1)}$ such that $\mathrm{Ad}(g_{k+1})(\tilde{p}_{k+1}f) = \tilde{p}_k \hat{f}$.

Proof. Since $\tilde{p}_k f = \tilde{p}_k \hat{f}$, $\tilde{p}_{k+1} f$ and $\tilde{p}_{k+1} \hat{f}$ are Cartan subalgebras of $p_k^{-1} \tilde{p}_k f = p_k^{-1} \tilde{p}_k \hat{f}$. Let

 $p_k^{-1} \tilde{p}_k \xi = \tilde{p}_{k+1} \xi \oplus \sum_{\lambda \neq 0} \mathfrak{J}'_{\lambda}, \quad p_k^{-1} p_k = \tilde{p}_{k+1} \hat{\xi} \oplus \sum_{\lambda \neq 0} \tilde{\mathfrak{J}}'_{\lambda}$

be the eigenspace decompositions with respect to $\operatorname{ad}(\tilde{p}_{k+1}f)$ and $\operatorname{ad}(\tilde{p}_{k+1}f)$ respectively. Since $\operatorname{p}_k\tilde{p}_{k+1}f = \operatorname{p}_k\tilde{p}_{k+1}f = \operatorname{p}_kf$, we see that $\sum g_\lambda' \subset g_k/g_{k+1}$ and $\sum g_\lambda'' \subset g_k/g_{k+1}$. It is well-known (cf. [6] pp59-66) that there are $\operatorname{v}_1, \dots, \operatorname{v}_m \in \sum_{\lambda \neq 0} g_\lambda'$, $\operatorname{v}_1, \dots, \operatorname{v}_k \in \sum_{\lambda \neq 0} g_\lambda''$ such that

 $\begin{array}{lll} & \text{Ad}\,(\text{exp}\ v_1)\cdots\ \text{Ad}\,(\text{exp}\ v_m)\text{Ad}\,(\text{exp}\ w_1)\cdots\ \text{Ad}\,(\text{exp}\ w\)\,\widetilde{p}_{k+1}^{}f=\widetilde{p}_{k+1}^{}\widehat{f}\\ & \text{Since}\ \ \text{exp}\ v_i^{},\ \text{exp}\ w_j^{}\in G_k^{(k+1)},\ \text{we see that there is}\ \ g_{k+1}^{}\in G_k^{(k+1)}\\ & \text{such that}\ \ \text{Ad}\,(g_{k+1}^{})\,(\widetilde{p}_{k+1}^{}f)\,=\,\widetilde{p}_{k+1}^{}\cdot\widehat{f}\\ & \end{array}.$

Let G_k be the subgroup of G generated by $\{e^u:u\in \mathcal{G}_k\}$ For Cartan subalgebras g, g of g, the above lemma shows that there are elements $g_1,g_2,\ldots,g_k,\ldots$ such that $g_k\in G_k$ and

 $Ad(g_1)Ad(g_2)\cdots Ad(g_k)\hat{g} = g \mod g_{k+1}.$

Note that $g_1g_2\cdots g_k\cdots\in G$, hence putting $g=g_1g_2\cdots g_k\cdots$, we see Ad(g) g=g. This shows the conjugacy of Cartan subalgebras. Proposition A is thereby proved.

- § 2 Cartan subalgebras at expansive singularities
- 2.A Semi-simple expansive vector fields

In this section, notations are as in the introduction. A germ of holomorphic vector field $u \in \mathcal{X}(V)$ is called <u>expansive</u>, if the eigenvalues of the linear term of u at 0 lie in the same open half plane in \mathbb{C} about the origin. u is called to be <u>semi-simple expansive</u> if u is expansive and semi-simple as a formal vector field. The purpose of this section is to show the following:

2.1 Lemma Let $u \in \mathfrak{X}(V)$ be a semi-simple expansive vector field.

Then, there is a germ $y_j = f_j(x_1, \dots, x_n)$, $1 \le j \le n$, of biholomorphic change of variables such that u can be written in the form

$$u = \sum_{i=1}^{n} \hat{\mu}_{i} y_{i} \partial / \partial y_{i}$$

Proof. By a suitable change of variables $y_j = \sum_{0 \le |x| \le k} a_{j, x} x^{x}$ such as in (7), we have that u can be written in the form

$$u = \sum_{i=1}^{n} \hat{\mu}_{i} y_{i} \partial/\partial y_{i} + w, \quad w \in \mathcal{X}_{k}(v)$$

for sufficiently large k. For the proof that u is linearizable, it is enough to show that there are holomorphic functions f_1, \dots, f_n in y_1, \dots, y_n such that $uf_j = \hat{\mu}_j f_j$ ($1 \le j \le n$) and $f_j = y_j + \text{higher}$ order terms. Set $f_j = y_j + g_j$ and consider the equation $u(y_j + g_j) = \hat{\mu}_j (y_j + g_j)$. Then we get

(17)
$$(u - \hat{\mu}_j) g_j = -wy_j$$
.

Since k is sufficiently large, we have

(18)
$$\lim_{t\to\infty} e^{-t(u-\hat{\mu}_j)} w y_j = 0$$

and

(19)
$$-\int_{0}^{\infty} e^{-t(u-\hat{\gamma}_{j})} w y_{j} dt$$

exists as a germ of holomorphic functions (cf. [5]). Set $g_j = -\int_{0}^{\infty} e^{-t(u-\hat{\mu}_j)} w y_j dt$. Then,

$$(u - \hat{\mu}_{j})g_{j} = \int_{a}^{\infty} \frac{d}{dt}e^{-t(u - \hat{\mu}_{j})}w y_{j} dt = [e^{-t(u - \hat{\mu}_{j})}w y_{j}]_{a}^{\infty} = -w y_{j}.$$

2.B Lie algebras containing semi-simple expansive vector fields.

Let \Im be a closed subalgebra of \Im_{o} such that \Im contains a semi-simple expansive vector field X.

2.2 Lemma Let X be a semi-simple expansive vector field in \Im . Then, there is a Cartan subalgebra f of \Im containing X.

Proof. By the same proof as in the above lemma, we see that X can be linearizable by a suitable formal change of variables, and hence we may assume that X can be written in the form $X = \sum_{i=1}^{n} \hat{\mu}_i y_i \partial/\partial y_i$, Re $\hat{\mu}_i > 0$. Let $\Im^{(o)}(X) = \{u \in \Im : [X,u] = 0\}$. Since every $u \in \Im^{(o)}(X)$ can be written in the form

(20)
$$u = \sum_{i=1}^{N} \sum_{\langle \alpha, \hat{\mu} \rangle = \hat{\mu}_{i}} a_{i,\alpha} y^{\alpha} \partial \partial y_{i},$$

we see that $\mathfrak{J}^{(o)}(x)$ is a finite dimensional Lie subalgebra of \mathfrak{J} . Since $\operatorname{ad}(X): \mathfrak{J}^{(o)}(X) \longmapsto \mathfrak{J}^{(o)}(X)$ is of diagonal type, there is a Cartan subalgebra \mathfrak{f} of $\mathfrak{J}^{(o)}(X)$ containing X. We shall show that \mathfrak{f} is a Cartan subalgebra of \mathfrak{J} . For that purpose we have only to show $\mathfrak{J}^{(o)}(\mathfrak{f})=\mathfrak{f}$. Since $x\in \mathfrak{f}$, we see $\mathfrak{J}^{(o)}(\mathfrak{f})\subset \mathfrak{J}^{(o)}(X)$ and hence $\mathfrak{J}^{(o)}(\mathfrak{f})$ is the zero-eigenspace of $\operatorname{ad}(\mathfrak{f})$ in $\mathfrak{J}^{(o)}(X)$. However since \mathfrak{f} is a Cartan subalgebra of $\mathfrak{J}^{(o)}(X)$, we have $\mathfrak{f}=\mathfrak{J}^{(o)}(\mathfrak{f})$.

Proof. By the above lemma, there is a finite dimensional Cartan subalgebra of of . However by Proposition A it implies that all Cartan subalgebras are finite dimensional and every Cartan subalgebra contains a semi-simple expansive vector field. Note that

$$\mathcal{J}_{\lambda} = \{ u \in \mathcal{J}_{0} : u = \sum_{i=1}^{n} \sum_{\langle v, \mu \rangle - \mu_{i} = \lambda} a_{i, \alpha} y^{\alpha} \partial y_{i} \}$$

Since ξ contains an expansive vector field, we see that $\dim\, \hat{J}_\lambda < \omega$ and hence $\dim\, \mathcal{J}^{(\lambda)}(\,\xi\,\,) < \omega$.

2.4 Corollary Notations being as in the introduction, if $\chi(V)$ contains a semi-simple expansive vector field X, then there is a Cartan subalgebra f of g(V) such that g(X). Moreover, for that g(X) is contained in g(Y) for every g(Y). Proof. Since g(X) is contained in g(Y) for every g(Y). Proof. Since g(Y) is a suitable biholomorphic change of variables. Therefore, every g(Y) is contained in g(Y), because g(Y) is a polynomial vector field in g(Y).

2.C Isomorphisms of g(V) onto g(V').

Suppose there is a bicontinuous isomorphism Φ of $\Im(V)$ onto $\Im(V')$.

2.5 Lemma Let \mathfrak{f} be a Cartan subalgebra of $\Im(V)$. Then, so is $\Phi(\mathfrak{f})$ of $\Im(V')$.

Proof. Set $\mathfrak{f}' = \Phi(\mathfrak{f})$. Since $\Phi: \Im(V) \mapsto \Im(V')$ is continuous, for every k' there is an integer k = k(k') such that $\Phi(\Im_k(V)) \subset \Im_{k'}(V')$. Thus, $\widetilde{p}_{k'}$ is a nilpotent subalgebra of $\Im(V')/\Im_{k'}(V')$ and $\Im^{(o)}(\mathfrak{f}') \supset \Phi(\Im^{(o)}(\mathfrak{f}))$. Thus, replacing Φ by Φ^{-1} , we get the desired result.

Let V, V' be germs of varieties in Cⁿ, C^{n'} respectively.

Now, suppose that V and V' have expansive singularities at the origins respectively. By 2.4 Corollary, $\chi(V)$ and $\chi(V')$ contain Cartan subalgebras of $\chi(V)$ and $\chi(V')$ respectively.

2.6 Corollary Assumptions being as above, let $\chi(V)$ be a Cartan subalgebra of $\chi(V)$ contained in $\chi(V)$. Suppose there is a bicontinuous isomorphism $\chi(V)$ onto $\chi(V')$. Then, there is a bicontinuous isomorphism $\chi(V)$ onto $\chi(V')$ such that $\chi(\chi(V))$ that is, $\chi(\chi(V))$ is a Cartan subalgebra of $\chi(V')$ contained in $\chi(V')$.

Proof. By the above lemma, $\chi(\chi(V))$ is a Cartan subalgebra of $\chi(V')$ contained in $\chi(V')$. By 2,4 Corollary, there is a Cartan subalgebra $\chi(V')$ of $\chi(V')$ contained in $\chi(V')$. By Proposition A, there is $\chi(V')$ is a bicontinuous isomorphism. Thus, $\chi(V)$ is a bicontinuous isomorphism.

In the remainder of this section, we assume that there is a bicontinuous isomorphism $\Phi: \mathfrak{I}(V) \mapsto \mathfrak{I}(V')$ such that $\Phi(\mathfrak{f}) = \mathfrak{f}'$ where \mathfrak{f} , \mathfrak{f}' are Cartan subalgebras of $\mathfrak{I}(V)$, $\mathfrak{I}(V')$ respectively such that $\mathfrak{f} \in \mathfrak{I}(V)$ and $\mathfrak{f}' \in \mathfrak{I}(V')$. By 2.3-4 Corollaries, there is a local coordinate system (y_1, \dots, y_n) , related biholomorphically to the original one such that every $\mathfrak{I}^{(\lambda)}(\mathfrak{f})$ is a finite dimensional space of polynomial vector fields in y_1, \dots, y_n . We choose such a local coordinate system $(z_1, \dots, z_{n'})$ for $\mathfrak{I}(V')$. Let $\Phi(V; y_1, \dots, y_n)$ (resp. $\Phi(V'; z_1, \dots, z_{n'})$) be the totality of $u \in \mathfrak{I}(V)$ (resp. $\mathfrak{I}(V')$) such that u can be expressed as a polynomial vector field in y_1, \dots, y_n (resp. z_1, \dots, z_n), $\Phi(V; y_1, \dots, y_n)$ and $\Phi(V'; z_1, \dots, z_n)$ are Lie subalgebras of $\mathfrak{I}(V)$, $\mathfrak{I}(V')$ respectively. Since $\mathfrak{I}^{(\lambda)}(\mathfrak{f}) \subset \Phi(V; y_1, \dots, y_n)$ for every $\mathfrak{I}(\mathfrak{f})$, we get the

following:

2.7 Corollary Notations and assumptions being as above, the above isomorphism $\Phi: \mathcal{J}(V) \mapsto \mathcal{J}(V')$ induces an isomorphism of $\mathcal{D}(V; y_1, \cdots, y_n)$ onto $\mathcal{D}(V'; z_1, \cdots, z_n)$.

Proof. Note that $\Phi(\mathcal{J}^{(\lambda)}(\mathcal{J})) = \mathcal{J}^{(\lambda)}(\mathcal{J}')$, because $\mathcal{J}^{(\lambda)}(\mathcal{J})$ is an eigenspace of $\mathrm{ad}(\mathcal{J})$. Every $\mathrm{u} \in \mathcal{D}(V; y_1, \cdots, y_n)$ can be written in the form $\mathrm{u} = \sum_{\lambda \in \mathbb{I}(\mathcal{J})} \mathrm{u}_{\lambda}$, but the summation in this case is a finite sum. Since $\Phi(\mathrm{u}) = \sum_{\lambda \in \mathbb{I}(\mathcal{J})} \Phi(\mathrm{u}_{\lambda})$ and $\Phi(\mathrm{u}_{\lambda}) \in \mathcal{J}^{(\lambda)}(\mathcal{J}')$, we see that $\Phi(\mathrm{u}) \in \mathcal{D}(V'; z_1, \cdots, z_n)$. Replacing Φ by Φ^{-1} , we get the desired result.

Let $\mathbb{C}[y_1, \dots, y_n]$ be the ring of all polynomials in y_1, \dots, y_n . Then, since $\mathbb{C}(V)$ is an $\mathbb{C}(V; y_1, \dots, y_n)$ is a $\mathbb{C}[y_1, \dots, y_n]$ -module.

3 Theorem of Pursell-Shanks' type

In this chapter, we consider two Lie algebras $\mathcal{P}(V;y_1,\cdots,y_n)$ and $\mathcal{P}(V';z_1,\cdots,z_n)$ of polynomial vector fields such that they are $\mathbb{C}[y_1,\cdots,y_n]$ and $\mathbb{C}[z_1,\cdots,z_n]$ -module respectively and that there is an isomorphism Φ of $\mathcal{P}(V;y_1,\cdots,y_n)$ onto $\mathcal{P}(V';z_1,\cdots,z_n)$. The goal is as follows:

Theorem II Notations and assumptions being as above, there is a bi
holomorphic mapping φ of \mathbb{C}^n onto $\mathbb{C}^{n'}$ such that $d\varphi \& (V; y_1, \cdots y_n)$ = $\& (V'; z_1, \cdots, z_n)$. Moreover, $\varphi(V) = V'$ as germs of varieties.

Note at first that Theorem II implies Theorem I in the introduction, for 2.6-7 Corollaries show that an isomorphism between g(v) and g(v) induces an isomorphism between $g(v; y_1, \dots, y_n)$ and $g(v; z_1, \dots, z_n)$.

3.A Characterization of maximal subalgebras

Let \S be a subalgebra of $\&(v; y_1, \cdots, y_n)$. We denote by $\S^{(\infty)}$ the ideal consisting of all $u \in \S$ such that $ad(v_1) \cdots ad(v_k) u \in \S$ for every $k \ge 0$ and any $v_1, \cdots, v_k \in \&(v; y_1, \cdots, y_n)$. Let $V_{\&}$ be the set of all points $q \in \mathbb{C}^n$ such that $\&(v; y_1, \cdots, y_n)$ does not span n-dimensional vector space at q, that is, $\dim \&(v; y_1, \cdots, y_n)$ (q) < n. For a point $p \in \mathbb{C}^n$, let $\&ppi_p$ be the isotropy subalgebra of $\&ppi_p(v; y_1, \cdots, y_n)$ at p, i.e. $\&ppi_p = \{u \in \&ppi_p(v; y_1, \cdots, y_n) : u(p) = 0\}$.

3.1 Lemma For a point $p \in \mathbb{C}^n - V_{\&}$, $\&ppi_p = \{u \in \&ppi_p(v; y_1, \cdots, y_n) : u(p) = 0\}$.

Proof. Since $p \in \mathbb{C}^n - V_{\&}$, there are $u_1, \cdots, u_n \in \&ppi_p(v; y_1, \cdots, y_n)$

such that $u_j(p) = \partial / \partial y_j |_p$ for $1 \le j \le n$. Consider $(ad(u_j)^{l_1} \cdots ad(u_n)^{l_n})(p) = 0$

for any $l_1, \dots l_n$, and we get easily that $\beta_p^{(\infty)} = \{0\}$.

We next prove the maximality of \mathcal{O}_p . Let \mathfrak{f} be a subalgebra of $\mathcal{O}(V;y_1,\dots,y_n)$ such that $\mathfrak{f}\supsetneq\mathcal{O}_p$. There is then an element $v\in\mathfrak{f}$ such that $v(p)\neq 0$. By a suitable linear change of variables, we may assume that v is written in the form

 $(21) \qquad v = g \; \partial/\partial y_1 \; + \; \sum_{j=2}^n \; h_j \; \partial/\partial y_j, \quad g(p) \neq 0, \; h_j(p) = 0.$ Let (p_1, \cdots, p_n) be the coordinate of p. Then, $(y_1 - p_1)u_j \in \mathcal{O}_p$ for $1 \leq j \leq n$. Therefore, $[v, (y_1 - p_1)u_j] = v(y_1)u_j + (y_1 - p_1)[v, u_j] \in \mathcal{G}$. Since $v(y_1)(p) = g(p) \neq 0$, we have $g(p) = g(v; y_1, \cdots, y_n)(p)$ and hence $g(v; y_1, \cdots, y_n)$.

Let \mathcal{W}_{\wp} be the set of all points q such that \mathcal{P}_q is a maximal subalgebra and $\mathcal{P}_q^{(\infty)} = \{0\}$. By the above lemma, \mathcal{W}_{\wp} contains $\mathbb{C}^n - V_{\wp}$. The goal of this section is as follows:

3.2 Proposition Let \Im be a maximal, finite codimensional subalgebra of $\wp(V; y_1, \dots, y_n)$ such that $\Im^{(\infty)} = \{0\}$. Then, there is a unique point $p \in \mathcal{U}_{\wp}$ such that $\Im = \wp_p$.

Let \mathfrak{J} be a subalgebra of $\mathfrak{F}(V; y_1, \cdots, y_n)$, and let $J = \{f \in \mathbb{C}[y_1, \cdots, y_n] : f \mathfrak{F}(V; y_1, \cdots, y_n) \subset \mathfrak{J} \}$. Obviously, J is an ideal of $\mathbb{C}[y_1, \cdots, y_n]$, for $\mathfrak{F}(V; y_1, \cdots, y_n)$ is a $\mathbb{C}[y_1, \cdots, y_n]$ -module.

3.3 Lemma Let \mathfrak{J} be a subalgebra of $\mathfrak{F}(V; y_1, \cdots, y_n)$ such that $\mathbb{C}[y_1, \cdots, y_n] \mathfrak{J} = \mathfrak{F}(V; y_1, \cdots, y_n)$. Then $J \mathfrak{F}(V; y_1, \cdots, y_n)$ is an ideal of $\mathfrak{F}(V; y_1, \cdots, y_n)$ contained in \mathfrak{J} .

Proof. By definition $J \& (V; y_1, \cdots, y_n) \subset \emptyset$. Since (uf)v = [u, fv] - f[u, v], we have $\emptyset J \subset J$, hence $(\mathbb{C}[y_1, \cdots, y_n] \ \emptyset) J \subset J$. By the assumption, we get $\& (V; y_1, \cdots, y_n) J \subset J$. Therefore, $J \& (V; y_1, \cdots, y_n)$ is an ideal of $\& (V; y_1, \cdots, y_n)$.

3.4 Lemma Let \Im be a finite codimensional subalgebra of $\wp(V; y_1, \ldots, y_n)$. Then, $J \neq \{0\}$.

Proof. Set $\mathfrak{J}^{(1)} = \{u \in \mathfrak{J} : [u, p(v; y_1, ..., y_n)] \subset \mathfrak{J} \}$. Since codim $\mathfrak{J} < \infty$ and ad(u) for every $u \in \mathfrak{J}$ induces a linear mapping of $\{v; y_1, ..., y_n\} / \mathfrak{J}$ into itself, we see that codim $\mathfrak{J}^{(1)} < \infty$ and hence in particular $\mathfrak{J}^{(1)} \neq \{0\}$.

Let v be a non-trivial element in $g^{(1)}$, and let f be a polynomial such that $vf\neq 0$. Consider a sequence $fv,\,f^2v,\,f^3v,\cdots$. Since codim $g^{(1)}<\infty$, there is a polynomial P(t) in t such that $P(f)v\in \mathcal{G}^{(1)}$.

We next prove that if v and gv are contained in $g^{(1)}$, then $(vg)^2 \in J$. For that purpose, let w be an arbitrary element of $(v; y_1, \dots, y_n)$. Then, we have

$$[v,gw] = (vg)w + g[w,v] \in \mathcal{G}$$
$$[gv,w] = -(wg)v + g[w,v] \in \mathcal{G}$$

Hence

(22) $(vg)w + (wg)v \in \mathcal{J}$

for every $w \in \mathcal{O}(V; y_1, \dots, y_n)$. Replacing w by (wg)v, we have $(vg)(wg)v \in \mathcal{J}$. Replacing w in (22) by (vg)w, we have also $(vg)^2w + (vg)(wg)v \in \mathcal{J}$

Hence $(vg)^2w \in \mathcal{J}$. Thus, $(vg)^2 \in \mathcal{J}$.

Set g = P(f). Then, v, $gv \in g^{(1)}$ and $vg \neq 0$ because of $vf \neq 0$. Thus, we get $J \neq \{0\}$.

3.5 Corollary Let \mathfrak{J} be a maximal finite codimensional subalgebra of $(V; y_1, \dots, y_n)$ such that $\mathfrak{J}^{(\infty)} = \{0\}$. Then, \mathfrak{J} is a $\mathbb{C}[y_1, \dots, y_n]$ -module.

Proof. We have only to show that $\mathbb{C}[y_1,\ldots,y_n]$ $\mathfrak{T} \subsetneq \emptyset(V;y_1,\ldots,y_n)$, because if so, the maximality of \mathfrak{T} shows that $\mathbb{C}[y_1,\ldots,y_n]$ $\mathfrak{T} = \mathfrak{T}$. Thus, assume that $\mathbb{C}[y_1,\ldots,y_n]$ $\mathfrak{T} = \emptyset(V;y_1,\ldots,y_n)$. Then by the above lemma, we get that $\mathfrak{T}^{(\infty)} \supset \mathfrak{T} \emptyset(V;y_1,\ldots,y_n) \neq 0$, contradicting the assumption.

Now, we have only to consider a maximal finite codimensional subalgebra \P of $\mathbb{C}(V;y_1,\ldots,y_n)$ such that $\mathbb{C}(\infty)=\{0\}$ and $\mathbb{C}(x_1,\ldots,x_n)$ -module. Let $\mathbb{C}(x_1,\ldots,x_n)$ is a

3.6 Lemma For a $\mathbb{C}[y_1, \dots, y_n]$ -submodule \mathbb{S} of $\mathbb{S}(V; y_1, \dots, y_n)$, if $\mathbb{S} + \mathbb{M}_{\mathbb{S}} \mathbb{S}(V; y_1, \dots, y_n) = \mathbb{S}(V; y_1, \dots, y_n)$

for every $p \in \mathbb{C}^n$, then $\mathfrak{J} = \mathfrak{O}(V; y_1, \dots, y_n)$.

Proof. By Nakayama's lemma, we see that for each $p \in \mathbb{C}^n$, there is $f_p \in \mathbb{C}[y_1, \dots, y_n]$ such that $f_p(p) \neq 0$ and $f_p(p) \in \mathbb{C}[y_1, \dots, y_n] = \mathbb{G}$. Since the ideal $f_p(p) \neq 0$ and $f_p(p) \in \mathbb{C}^n$ has no common zero, we see that $f_p(p) = \mathbb{C}[y_1, \dots, y_n]$ and hence there are $f_p(p) = \mathbb{C}[y_1, \dots, y_n]$ and hence there are $f_p(p) = \mathbb{C}[y_1, \dots, y_n]$ such that $f_p(p) = \mathbb{C}[y_1, \dots, y_n]$ such that $f_p(p) = \mathbb{C}[y_1, \dots, y_n]$ such that $f_p(p) = \mathbb{C}[y_1, \dots, y_n]$. Therefore, $f_p(p) = \mathbb{C}[y_1, \dots, y_n] = \mathbb{C}[y_1, \dots, y_n] = \mathbb{C}[y_1, \dots, y_n] = \mathbb{C}[y_1, \dots, y_n] = \mathbb{C}[y_1, \dots, y_n]$.

3.7 Corollary Let \Im be a maximal, finite codimensional subalgebra of $\&(V; y_1, \dots, y_n)$ such that $\Im^{(\infty)} = \{0\}$. Then, there exists uniquely a point $p \in \mathcal{W}_{\&}$ such that $\Im = \&_p$.

Proof. By 3.5 Corollary, g is a $C[y_1, \dots, y_n]$ -module, and hence

there is a point $p \in \mathbb{C}^n$ such that $\Im + M_p \otimes (V; y_1, \dots, y_n) \subseteq \mathscr{C}(V; y_1, \dots, y_n)$. Thus, $\Im \supset M_p \otimes (V; y_1, \dots, y_n)$ by the maximality of \Im . It is easy to see that such a point is unique, because $M_p + M_q = \mathbb{C}[y_1, \dots, y_n]$ if $p \neq q$.

By the above argument, we see that $\Im \subset \wp_p$, and hence $\Im = \wp_p$ by the maximality of \Im . Since $\Im^{(\infty)} = \{0\}$, we see $p \in \mathcal{Q}_\wp$ by definition.

This completes the proof of 3.2 Proposition.

3.B A diffeomorphism induced from Φ .

Let $\mathscr{C}(\mathsf{V}';\mathsf{z}_1,\ldots,\mathsf{z}_n)$ be another Lie algebra of polynomial vector fields on \mathfrak{C}^n . Subsets $\mathsf{V}_{\mathscr{C}'}$, $\mathscr{U}_{\mathscr{C}'}$ are defined by the same way as in $\mathscr{C}(\mathsf{V};\mathsf{y}_1,\ldots,\mathsf{y}_n)$. Suppose there is an isomorphism Φ of $\mathscr{C}(\mathsf{V};\mathsf{y}_1,\ldots,\mathsf{y}_n)$ onto $\mathscr{C}(\mathsf{V}';\mathsf{z}_1,\ldots,\mathsf{z}_n)$. For a point $\mathsf{P}\in\mathscr{U}_{\mathscr{C}}$, \mathscr{P}_{P} is a maximal finite codimensional subalgebra such that $\mathscr{C}_{\mathsf{P}}^{(\infty)} = 0$. Then, $\Phi(\mathscr{C}_{\mathsf{P}})$ has the same property, hence there is a point $\Phi(\mathsf{P})\in\mathscr{V}_{\mathscr{C}}$ such that $\Phi(\mathscr{C}_{\mathsf{P}}) = \mathscr{C}_{\mathsf{P}}'(\mathsf{P})$, where $\mathscr{C}_{\mathsf{P}}'(\mathsf{P})$ is defined by the same manner as in $\mathscr{C}(\mathsf{V};\mathsf{Y}_1,\ldots,\mathsf{Y}_n)$. $\mathscr{C}:\mathscr{V}_{\mathscr{C}}\mapsto\mathscr{V}_{\mathscr{C}}$ is a bijective mapping. The goal of

this section is as follows:

3.8 Proposition Notations and assumptions being as above, assume further that $(v; y_1, \dots, y_n)$ (resp. $(v'; z_1, \dots, z_n)$) contains a vector field $(v; y_1, \dots, y_n)$ (resp. $(v'; z_1, \dots, z_n)$) contains a vector field $(v; y_1, \dots, y_n)$ (resp. $(v'; z_1, \dots, z_n)$) contains a vector field $(v; y_1, \dots, y_n)$ (resp. $(v'; z_1, \dots, z_n)$) $(v'; z_1, \dots, z_n)$) $(v'; z_1, \dots, z_n)$ (resp. $(v'; z_1, \dots, z_n)$) $(v'; z_1, \dots, z_n)$)

Note that the existence of X and X' are obtained by 2.1 Lemma.

Let Ψ_{δ} be the totality of \mathfrak{C} -valued functions f on \mathcal{W}_{δ} such that fu can be extended to an element of $\delta(V; y_1, \ldots, y_n)$ for every $u \in \delta(V; y_1, \ldots, y_n)$. Remark that the extension of fu is unique, because \mathcal{W}_{δ} is dence in \mathfrak{C}^n . Ψ_{δ} is a ring and $\delta(V; y_1, \ldots, y_n)$ is an Ψ_{δ} -module. For $\delta(V'; z_1, \ldots, z_n)$, we define Ψ_{δ} by the same manner as above.

3.9 Lemma Notations and assumptions being as above, φ induces an isomorphism of $\psi_{\delta'}$ onto ψ_{δ} .

Proof. Let $f \in \Psi_{\beta'}$ and p an arbitrary point in \mathcal{W}_{β} . By definition, $f \oint (u)$ can be extended to an element of $\oint (V'; z_1, \ldots, z_n)$, which will be denoted by the same notation. $f \oint (u) - f(\mathfrak{P}(p)) \oint (u) \in \mathfrak{P}'_{\mathfrak{P}(p)}$, hence $\Phi^{-1}(f \oint (u) - f(\mathfrak{P}(p)) \oint (u)) \in \mathfrak{P}_p$, that is, $\Phi^{-1}(f \oint (u) - f(\mathfrak{P}(p)) \oint (u)) (p) = 0$. Therefore, $\Phi^{-1}(f \oint (u)) (p) = f(\mathfrak{P}(p)) u$, that is, $\Phi^{-1}(f \oint (u)) = (\mathfrak{P}^*f) u$. Since the left hand member is contained in $f(V; y_1, \ldots, y_n)$, we see $f(v) \in \Psi_{\beta}$. It is easy to see that $f(v) \in \Psi_{\beta}$ is an isomorphism.

3.10 Lemma Under the same assumption as in the statement of 3.8 Proposition, we have $f(v) \in \mathcal{P}_{\beta}$ is a bi-holomorphic diffeomorphism of $f(v) \in \mathcal{P}_{\beta}$ onto $f(v) \in \mathcal{P}_{\beta}$.

Proof. Obviously $\Psi_{\wp} \supset \mathbb{C}[y_1, \ldots, y_n]$. For any $f \in \Psi_{\wp}$, fx is an element of $\wp(V; y_1, \ldots, y_n)$. Thus, $fy_1, \ldots, fy_n \in \mathbb{C}[y_1, \ldots, y_n]$. Hence

it is not hard to see $f \in \mathbb{C}[y_1, \dots, y_n]$. 3.11 Lemma $\mathcal{G}(C^n - V_{\mathcal{F}}) = C^{n'} - V_{\mathcal{F}}'$.

Proof. By the above lemma, we have n=n'. Let p be a point of \mathbb{C}^n-V_{ℓ} . Then $\operatorname{codim} \mathcal{P}_p=n$, hence $\operatorname{codim} \mathcal{P}_{\phi(p)}'=n$, because $\mathcal{P}_{\phi(p)}'=\Phi(\mathcal{P}_p)$. Therefore, we see $\mathcal{P}(\mathbb{C}^n-V_{\ell})=\mathbb{C}^{n'}-V_{\ell'}$.

This completes the proof of 3.8 Proposition.

3.C Recapture of the germ.

Recall that V is a germ of variety with 0 as an expansive singularity. Hence there is $X = \sum_{i=1}^n \hat{\mathcal{P}}_i y_i \partial_i \partial_i y_i \in \mathfrak{X}(V)$ such that $\operatorname{Re} \hat{\mathcal{P}}_i > 0$ for $1 \le i \le n$. Since X is a linear vector field, exp tX is a bi-holomorphic diffeomorphism of \mathbb{C}^n onto itself. Remark that $(\exp tX)V = V$ as germs of varietis, for $X \cup (V) \subset J(V)$ where J(V) is the ideal of V in O. Let $V = \bigcup_{t \in \mathbb{R}} (\exp tX)V$. Though V is a germ of variety at 0, the expansive property of X yields that V is a closed subset of \mathbb{C}^n such that $(\exp tX)V = V$. Obviously, V = V as germs of varieties.

In this section, we shall prove that $V_{\wp} = \widetilde{V}$, hence $V_{\wp} = V$ as germs of varieties. Let $\widehat{J}(V)$ be the closure of J(V) in $\widehat{\mathcal{O}}$. Note that J(V) is also the closure of J(V) in J_{\wp} . Hence J(V) J(V) J(V). Recall that J(V), J(V),

(23)
$$f = \sum_{\nu} f_{\nu}, \quad f_{\nu} = \sum_{\langle \alpha, \hat{\mu} \rangle = \nu} a_{\alpha} Y^{\sigma}.$$

Then, f_{ν} is a polynomial such that $Xf_{\nu} = {}^{\nu}f_{\nu}$. By the same proof

as in 1.6 Lemma, we see that $f_{\nu} \in \hat{J}(V)$. We denote by $I_{\mathcal{E}}$ the ideal of $\mathbb{C}[y_1,\ldots,y_n]$ generated by all f_{ν} 's with $f \in \hat{J}(V)$.

Proof. Let $f \in \mathcal{J}(V)$. f can be rearranged in the form $f = \sum_{i=1}^{\infty} f_{\nu_i}$, $f_{\nu_i} = \sum_{\langle v_i, \hat{\mu} \rangle = \nu_i} a_{\kappa} y^{\kappa}$. We may assume $0 < \nu_i < \nu_2 < \cdots < \nu_k < \cdots$. First of all, we shall show $f_{\nu_i} \in \mathcal{J}(V)$. Note that $e^{\nu_i t} (\exp-tX) f = \sum e^{-(\nu_j - \nu_i) t} f_{\nu_j} \in \mathcal{J}(V)$ for t > 0. Suppose f is defined on a neighborhood N of 0 in \mathbb{C}^n . Then, $(\exp-tX)f$ is defined on $(\exp tX)N$. Note that $\bigcup_{t>0} (\exp tX)N = \mathbb{C}^n$ and $\bigcup_{t>0} (\exp tX) (N_{\cap}V) = \widetilde{V}$. Since $e^{\nu_i t} (\exp-tX) f = 0$ on $(\exp tX) (N_{\cap}V)$, taking $\lim_{t\to\infty}$ we see that $f_{\nu_i} = 0$ on \widetilde{V} . Since $\widetilde{V} = V$ as germs of varieties, we have $f_{\nu_i} \in \mathcal{J}(V)$. Repeating the same procedure to $f - f_{\nu_i}$, we have $f_{\nu_i} \in \mathcal{J}(V)$, and so on. Hence $f_{\nu_i} \in \mathcal{J}(V)$.

Let $f \in \hat{J}(V)$. Then, there is a sequence $\{f^{(m)}\}$ in J(V) such that $\lim_{n \to \infty} f^{(m)} = f$ in the topology of formal power series. For any eigenvalue V of $X : \hat{O} \mapsto \hat{O}$, we see $f_{V}^{(m)} \in J(V)$, and $\lim_{n \to \infty} f_{V}^{(m)} = f_{V}$ as polynomials, because the degrees of $f_{V}^{(m)}$, f_{V} are bounded from above by a number related only to $\hat{P}_{1}, \ldots, \hat{P}_{n}$ and \hat{V} . Since $f_{V}^{(m)} \mid V \equiv 0$, we have $f_{V} \mid V \equiv 0$, hence $f_{V} \in J(V)$. Recall that the f_{V} 's generate I_{D} . Thus, we see $I_{D} \subset J(V)$.

3.12 Lemma Notations and assumptions being as above, a polynomial vector field u with u(0) = 0 is contained in $\phi(v; y_1, \dots, y_n)$ if and only if $uI_{\delta} \subset I_{\delta}$.

Proof. For $u \in \mathfrak{J}(V)$, $f \in \hat{\mathfrak{J}}(V)$, let $u = \sum_{\lambda} u_{\lambda}$, $f = \sum_{\nu} f_{\nu}$ be the decompositions of eigenvectors with respect to ad(X), X respectively. Then, $u_{\lambda} \in \mathfrak{G}(V; y_{1}, \ldots, y_{n})$, $f_{\nu} \in I_{\mathfrak{G}}$. Since $Xu_{\lambda} f_{\nu} = [X, u_{\lambda}] f_{\nu} + u_{\lambda} X f_{\nu} = (\lambda + \nu) u_{\lambda} f_{\nu}$, $u_{\lambda} f_{\nu}$ is also an eigenvector of X. Since $uf \in \hat{\mathfrak{J}}(V)$, the $u_{\lambda} f_{\nu}$'s appear in the eigenspace decomposition of uf, and hence $u_{\lambda} f_{\nu} \in I_{\mathfrak{G}}$. Thus, we have $\{ (V; y_{1}, \ldots, y_{n}) I_{\mathfrak{G}} \in I_{\mathfrak{G}} \}$.

Conversely, if $uI_{\mathfrak{p}}\subset I_{\mathfrak{p}}$ for a polynomial vector field u with u(0)=0. Then, $u\hat{\mathfrak{J}}(V)\subset\hat{\mathfrak{J}}(V)$ by taking the closure in the formal power series. Note that $u\hat{\mathfrak{J}}(V)\subset 0\cap\hat{\mathfrak{J}}(V)$. We next prove that $\hat{\mathfrak{J}}(V)=0\cap\hat{\mathfrak{J}}(V)$. For that purpose, we have only to show $\hat{\mathfrak{J}}(V)\supset 0\cap\hat{\mathfrak{J}}(V)$, because the converse is trivial. Let $f\in 0\cap\hat{\mathfrak{J}}(V)$, and $f=\sum_{\nu}f_{\nu}$ the eigenvector decomposition of f with respect to X. Then, by 3.11 Lemma, we have $f_{\nu}\in I_{\mathfrak{p}}\subset \hat{\mathfrak{J}}(V)$. Thus, $f_{\nu}=0$ on V, hence f=0 on V. This means $f\in \hat{\mathfrak{J}}(V)$. Thus, $uI_{\mathfrak{p}}\subset I_{\mathfrak{p}}$ yields $u\in \mathfrak{X}(V)\subset \mathfrak{T}(V)$. However u is a polynomial vector field in y_1,\ldots,y_n , hence $u\in \hat{\mathfrak{p}}(V;y_1,\ldots,y_n)$.

3.13 Lemma $V_{\ell} = V_{I_{\ell}}$: the locus of zeros of I_{ℓ} . Proof. Let p be a point in $\mathbb{C}^n - V_{\ell}$. By definition there are u_1 , ..., $u_n \in \mathcal{C}(V; y_1, \ldots, y_n)$ such that $u_1(p), \cdots, u_n(p)$ are linearly independent. Assume for a while that $p \in V_{I_{\ell}}$. Since $u_i I_{\ell} \subset I_{\ell}$, we have

$$(u_1^{l_1} u_2^{l_2} \dots u_n^{l_n} f) (p) = 0$$

for every f \in I and any l, l, ..., l . Thus, f = 0, contradicting the fact I \neq $\{0\}$. Therefore, $V_{\beta} \supset V_{I_{\beta}}$.

Conversely, let $p \in \mathbb{C}^n - V_{\mathbb{I}_p}$. There is then $g \in \mathbb{I}_p$ such that $g(p) \neq 0$. By 3.12 Lemma, $g \not / y_1, \ldots, g \not / y_n \in \mathbb{P}(V; y_1, \ldots, y_n)$, which are linearly independent at p. Hence $p \in \mathbb{C}^n - V_p$. Thus, $V_{\mathbb{I}_p} \supset V_p$.

3.14 Lemma $V_{I_{fe}} = V$ as germs of varieties.

Proof. By 3.11 Lemma, we have $\partial I_{k} \subset J(V)$, hence $V_{I_{k}} \supset V$. Assume for a while that $V_{I_{k}} \supsetneq V$. Then there is $f \in J(V)$ such that $f \not\equiv 0$ on V. Let $f = \sum_{\nu} f_{\nu}$ be the eigenvector decomposition of f. Then $f_{\nu} \in I_{k}$. Therefore $f_{\nu} = 0$ on V, hence f = 0 on V contradicting the assuption. Thus, we get $V_{I_{k}} = V$ as germs of varieties, and hence $V_{I_{k}} = \widetilde{V}$.

Department of Mathematics
Tokyo Metropolitan University
Fukazawa, Setagaya,
Tokyo, 158
Japan.

References

- [1] I.Amemiya, Lie algebras of vector fields and complex structures, J.Math.Soc.Japan, 27 (1975) 545-549.
- [2] R.Gunning, H.Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., 1965.
- [3] S.Helgason, Differential geometry and symmetric spaces, Academic Press, 1962.
- [4] A.Koriyama, Y.Maeda, H.Omori, On Lie algebras of vector fields, Trans. A.M.S. 226 (1977) 89-117.
- [5] A.Koriyama, Y.Maeda, H.Omori, On Lie algebras of vector fields on expansive sets, Japan. J.Math. 3 (1-77) 57-80.
- [6] Y.Matsushima, Theory of Lie algebras (in Japanese), Kyoritsu Press, 1960.
- [7] H.Omori, On the volume elements on an expansive set, to appear in Tokyo J.Math. vol 1.
- [8] L.E.Pursell, M.E.Shanks, The Lie algebra of a smooth manifold, Proc. Amer.Math.Soc. 5 (1954) 468-472.
- [9] H.Rossi, Vector fields on analytic spaces, Ann.Math.78,1963,455-467.
- [10] S.Sternberg, Local contractions and a theorem of Poincare, Amer. J.Math., 79 (1957) 809-824.