A METHOD OF CLASSIFYING EXPANSIVE SINGULARITIES

By Hideki Omori

Introduction

To study singularities is in a sense to study the classification of germs of varieties. It is therefore important to give a method of classification. The purpose of this paper is to show the classification of a class of germs of varieties, which will be called expansive singularities in this paper, is included in that of Lie algebras of formal vector fields. As a matter of course, the classification of the latter does not seem easy. However, note that such a Lie algebra is given by an inverse limit of finite dimensional Lie algebras of polynomial vector fields truncated at the order k, $k \geq 0$. Therefore such Lie algebras can be understood by step by step method in the order k.

Let \mathbb{C}^n be the Cartesian product of n copies of complex numbers \mathbb{C} with natural coordinate system (x_1, \ldots, x_n). By \mathcal{O}, we mean the ring of all convergent power series in x_1, \ldots, x_n centered at the origin 0. Let V be a germ of variety in \mathbb{C}^n at 0, and $\mathcal{J}(V)$ the ideal of V in \mathcal{O} (cf. [2] pp. 86-7 for the definitions). Two germs V, V' are called bi-holomorphically equivalent if there is a germ of holomorphic diffeomorphism φ such that $\varphi(0) = 0$ and $\varphi(V) = V'$.

Let \mathfrak{X} be the Lie algebra of all germs of holomorphic vector fields at 0, and $\mathfrak{X}(V)$ the subalgebra defined by

$$\mathfrak{X}(V) = \left\{ u \in \mathfrak{X} : u \mathcal{J}(V) \subseteq \mathcal{J}(V) \right\}.$$
$\mathcal{X}(V)$ is then an O-module. If there are v_1, \ldots, v_s, linearly independent at 0, then Corollary 3.4 of [9] shows that V is bi-holomorphically equivalent to the direct product $\mathbb{C}^s \times W$, where $W \subset \mathbb{C}^{n-s}$. Thus, for the structure of singularities we have only to consider the germ W.

Taking this fact into account, we may restrict our concern to the varieties such that all $u \in \mathcal{X}(V)$ vanishes at 0, which we assume throughout this paper, i.e. $\mathcal{X}(V)(0) = \{0\}$.

$u \in \mathcal{X}(V)$ ($u(0) = 0$) is called a semi-simple expansive vector field, if after a suitable bi-holomorphic change of variables at 0, u can be written in the form

$$u = \sum_{i=1}^{s} \hat{\mu}_i v_i \partial / \partial v_i,$$

where $\hat{\mu}_1, \ldots, \hat{\mu}_s$ lie in the same open half-plane in \mathbb{C} about the origin. (See also §2.4 for a justification of this definition.) The origin 0 is called to be an expansive singularity, if $\mathcal{X}(V)$ contains a semi-simple expansive vector field. If V is given by the locus of zeros of a weighted homogeneous polynomial, then V has an expansive singularity at 0. The advantage of existence of such a vector field u is that one can extend through $\exp tu$ a germ V to a subvariety \tilde{V} in \mathbb{C}^n. In this paper we restrict our concern to the germs of varieties with expansive singularities at the origin.

For such $\mathcal{X}(V)$, we set $\mathcal{X}_k(V) = \{ u \in \mathcal{X}(V) : j^k u = 0 \}$, where $j^k u$ is the k-th jet at 0. Since $\mathcal{X}(V) = \mathcal{X}_0(V)$, $\mathcal{X}_k(V)$ is a finite codimensional ideal of $\mathcal{X}(V)$ such that $[\mathcal{X}_k(V), \mathcal{X}_\ell(V)] \subset \mathcal{X}_{k+\ell}(V)$ and $\bigcap \mathcal{X}_k(V) = \{0\}$. We denote by $\mathcal{G}(V)$ the inverse limit of $\{ \mathcal{X}(V)/\mathcal{X}_k(V) \}_{k=0}^\infty$ with the inverse limit topology. Since $\mathcal{X}(V)/\mathcal{X}_k(V)$ is finite dimensional, $\mathcal{G}(V)$ is a Fréchet space such that the Lie bracket product $\lbrack , \rbrack : \mathcal{G}(V) \times \mathcal{G}(V) \rightarrow \mathcal{G}(V)$ is
continuous. Namely, $\mathfrak{g}(V)$ is a Frechet-Lie algebra. It is obvious that $\mathfrak{g}(V)$ is a Lie algebra of formal vector fields, where a formal vector field u is a vector field $u = \sum_{i=1}^{n} u_i \partial / \partial x_i$ such that each u_i is a formal power series in x_1, \ldots, x_n without constant terms. The statement to be proved in this paper is as follows:

Theorem I Let V, V' be germs of varieties with expansive singularities at the origins of \mathbb{C}^n, $\mathbb{C}^{n'}$ respectively. Notations and assumptions being as above, V and V' are bi-holomorphically equivalent, if and only if $\mathfrak{g}(V)$ and $\mathfrak{g}(V')$ are isomorphic as topological Lie algebras.

By the above result, we see especially that any isomorphism Φ of $\mathfrak{g}(V)$ onto $\mathfrak{g}(V')$ preserves orders, that is, $\Phi \mathfrak{g}_k(V) = \mathfrak{g}_k(V')$ for every k. Hence, to classify $\mathfrak{g}(V)$ is to classify the inverse system $\{ \mathcal{X}(V)/\mathcal{X}_k(V) \}_{k \geq 0}$. Note that $\mathcal{X}(V)/\mathcal{X}_k(V)$ is an extension of $\mathcal{X}(V)/\mathcal{X}_{k-1}(V)$ with an abelian kernel $\mathcal{X}_{k-1}(V)/\mathcal{X}_k(V)$. Such extensions can be classified by representations and second cohomologies (cf. [6]).

The proof of the above theorem is divided into several steps as follows:

Step 1. We define the concept of Cartan subalgebras and prove the conjugacy of Cartan subalgebras.

Step 2. Using the assumption that V (resp. V') has an expansive singularity at 0, we prove that there is a Cartan subalgebra \mathfrak{g} of $\mathfrak{g}(V)$ such that $\mathfrak{g} \subseteq \mathcal{X}(V)$ (resp. $\mathfrak{g}' \subseteq \mathcal{X}(V')$). By a suitable biholomorphic change of variables, every element of \mathfrak{g} (resp. \mathfrak{g}') can be changed simultaneously into a normal form, which is a polynomial vector field. Moreover, every eigenvector with respect to $\text{ad}(\mathfrak{g})$ is a polynomial vector field.
Step 3. Now, suppose there is an isomorphism $\hat{\phi}$ of $\mathfrak{g}(V)$ onto $\mathfrak{g}(V')$. Then, by definition $\hat{\phi}(\xi')$ is a Cartan subalgebra of $\mathfrak{g}(V')$. Hence by Steps 1, 2 we may assume that $\hat{\phi}(\xi') \subset \mathcal{L}(V')$. Thus, considering the eigenspace decomposition of $\mathfrak{g}(V)$, $\mathfrak{g}(V')$ with respect to $\text{ad}(\xi')$ $\text{ad}(\xi')$ respectively, we see that $\hat{\phi}$ induces an isomorphism of \mathfrak{g} onto \mathfrak{g}', where \mathfrak{g} (resp. \mathfrak{g}') is the totality of $u \in \mathfrak{g}(V)$ (resp. $\mathfrak{g}(V')$) which can be expressed as a polynomial vector field with respect to the local coordinate system which normalizes ξ (resp. ξ').

Step 4. From isomorphism $\hat{\phi} : \mathfrak{g} \rightarrow \mathfrak{g}'$, we conclude by the same procedure as in [5] that there is a bi-holomorphic diffeomorphism φ of \mathbb{C}^n onto $\mathbb{C}^{n'}$ such that $\varphi(0) = 0$ and $d\varphi \varphi = \varphi'$. The main idea of making such φ is roughly in the fact that every maximal subalgebra of \mathfrak{g} corresponds to a point. However, since $\mathfrak{g}(0) = \{0\}$, the situation is much more difficult than that of [1]. Existence of expansive vector field plays an important role at this step as well as in the above steps.

Step 5. Recapturing V from the Lie algebra \mathfrak{g}, we can conclude $\mathfrak{g}(V) = V'$.

The theorem is proved by this way. Note that the converse is trivial.
§ 1 Conjugacy of Cartan subalgebras

We denote a formal power series \(f \) in a form \(f = \sum_{k=0}^{\infty} a_k x^k \), where \(a_k \in \mathcal{C}, \quad \alpha = (\alpha_1, \ldots, \alpha_n), \quad |\alpha| = \alpha_1 + \ldots + \alpha_n \) and \(x^\alpha = x_1^{\alpha_1} x_2^{\alpha_2} \ldots x_n^{\alpha_n} \).

We denote by \(\mathcal{F} \) the Lie algebra of all formal vector fields and \(\mathcal{F}_k \) the subalgebra

\[
\{ u \in \mathcal{F} ; \quad u = \sum_{i=1}^{\infty} \sum_{k \geq k \geq 0} a_{i,k} x_i^k \partial x_i \}
\]

\(\mathcal{F} \) is then regarded as the inverse limit of the system \(\{ \mathcal{F}/\mathcal{F}_k ; p_k \} \), where \(p_k : \mathcal{F}/\mathcal{F}_{k+1} \rightarrow \mathcal{F}/\mathcal{F}_k \) is the natural projection. We denote by \(\bar{p}_k \) the projection of \(\mathcal{F} \) onto \(\mathcal{F}/\mathcal{F}_k \). \(p_k \) and \(\bar{p}_k \) are sometimes called forgetful mappings. Since \(\mathcal{F}/\mathcal{F}_k \) is a finite dimensional vector space over \(\mathcal{C} \), \(\mathcal{F} \) is a Frechet space, and the Lie bracket product is continuous.

Let \(\mathcal{G} \) be a closed Lie subalgebra of \(\mathcal{F} \), and \(\mathcal{F}_k = \mathcal{F}_k \cap \mathcal{F} \).

The closedness of \(\mathcal{G} \) implies that \(\mathcal{G} \) is the inverse limit of the system \(\{ \mathcal{G}/\mathcal{F}_k ; p_k \} \) for any \(\mathcal{F}_k \geq 0 \). In this paper, we restrict our concern to a closed subalgebra \(\mathcal{G} \) of \(\mathcal{G}_0 \). For any subalgebra \(\mathcal{H} \) of \(\mathcal{G} \), we denote by \(\mathcal{N}(\mathcal{H}) \) the normalizer of \(\mathcal{H} \), i.e. \(\mathcal{N}(\mathcal{H}) = \{ u \in \mathcal{G} ; [u, \mathcal{H}] \subset \mathcal{H} \} \), and by \(\mathcal{G}^{(0)}(\mathcal{H}) \) the 0-eigenspace of \(\text{ad}(\mathcal{H}) \), i.e. \(\mathcal{G}^{(0)}(\mathcal{H}) \) is the totality of \(v \in \mathcal{G} \) satisfying that there are non-negative integers \(m_k, k \geq 0 \), (depending on \(v \)) such that \(\text{ad}(s)^{m_k} \cdot v \in \mathcal{G}_k \) for all \(s \in \mathcal{G} \) and for all \(k \geq 0 \), where \(\text{ad}(u)v = [u,v] \). If \(\mathcal{H} \) is nilpotent, then \(\mathcal{G}^{(0)}(\mathcal{H}) \subset \mathcal{N}(\mathcal{H}) \). Therefore, if \(\mathcal{G}^{(0)}(\mathcal{H}) = \mathcal{H} \), then \(\mathcal{N}(\mathcal{H}) = \mathcal{H} \). The converse is also true if \(\dim \mathcal{G}^{(0)}(\mathcal{H}) < \infty \) (cf. [6]).

A subalgebra \(\mathcal{G} \) of \(\mathcal{G} \) is called a Cartan subalgebra of \(\mathcal{G} \), if the following conditions are satisfied:

1. \(\mathcal{G} \) is a closed subalgebra of \(\mathcal{G} \) such that \(\mathcal{F}_k \mathcal{G} \) is a nilpotent
subalgebra of $\mathfrak{g}/\mathfrak{g}_k$ for every $k \geq 0$.

$\mathfrak{g}_0 = \mathfrak{g}^{(0)}(\mathfrak{g})$.

Note that if $\dim \mathfrak{g} \leq \omega$ above \mathfrak{p}_k is a usual Cartan subalgebra. The statement to be proved in this chapter is as follows:

Proposition A Let \mathfrak{g} be a closed subalgebra of \mathfrak{f}_0. Then, there exists a Cartan subalgebra \mathfrak{g}_0 of \mathfrak{g}. For Cartan subalgebras \mathfrak{g}_0, $\tilde{\mathfrak{g}}_0$ of \mathfrak{g}, there is an inner automorphism A of \mathfrak{g} such that $A\tilde{\mathfrak{g}}_0 = \tilde{\mathfrak{g}}_0$.

1.A. Automorphisms of \mathfrak{g}.

Let \mathfrak{g} be a closed Lie subalgebra of \mathfrak{f}_0, and $\mathfrak{g}_k = \mathfrak{g} \cap \mathfrak{f}_k$. For every $u \in \mathfrak{g}$, the adjoint action $\text{ad}(u)$ leaves each \mathfrak{g}_k invariant, hence $\text{ad}(u)$ induces a linear mapping $a_k(u)$ of $\mathfrak{g}/\mathfrak{g}_k$ into itself. $\text{ad}(u)$ is then regarded as the inverse limit of the system $\{a_k(u)\}_{k \in \omega}$. Define a linear mapping $e^{t \cdot \text{ad}(u)} : \mathfrak{g} \rightarrow \mathfrak{g}$ by the inverse limit of $\{e^{t \cdot a_k(u)}\}_{k \in \omega}$. Since $\text{ad}(u)$ is a derivation of \mathfrak{g}, $e^{t \cdot \text{ad}(u)}$ is a one parameter family of automorphisms of \mathfrak{g}. The group $\mathcal{O}(\mathfrak{g})$ generated by $\{e^{\text{ad}(u)} ; u \in \mathfrak{f}\}$ is called the group of inner automorphisms of \mathfrak{g}. The purpose of this section is to investigate the structure of $\mathcal{O}(\mathfrak{g})$.

Let $\hat{\mathfrak{g}}$ be the ring of all formal power series $\sum_{k \in \mathbb{Z}} a_k x^k$ and $\hat{\mathfrak{g}}_k$ the ideal given by $\hat{\mathfrak{g}}_k = \{ \sum_{k \leq k+1} a_k x^k \}$. $\hat{\mathfrak{g}}/\hat{\mathfrak{g}}_k$ is then a finite dimensional algebra over \mathbb{C}. We denote by $\tilde{\mathfrak{g}}_k, \pi_k$ the projections $\hat{\mathfrak{g}} \rightarrow \hat{\mathfrak{g}}/\hat{\mathfrak{g}}_k, \hat{\mathfrak{g}}/\hat{\mathfrak{g}}_{k+1} \rightarrow \hat{\mathfrak{g}}/\hat{\mathfrak{g}}_k$ respectively. Every $u \in \mathfrak{f}_0$ acts naturally on $\hat{\mathfrak{g}}$ as a derivation such that $u \hat{\mathfrak{g}}_k \subseteq \hat{\mathfrak{g}}_k$ for every k. Conversely, $u \in \mathfrak{f}_0$ can be characterised by the above property. Every $u \in \mathfrak{f}_0$ induces, therefore, a derivation $u^{(k)}$ of the algebra $\hat{\mathfrak{g}}/\hat{\mathfrak{g}}_k$ and $u^{(k)}$ is canonically identified with $\tilde{\mathfrak{g}}_k u$. Conversely,
for every derivation δ of $\hat{\mathcal{O}}/\hat{\mathcal{O}}_k$ such that $\delta \, \hat{\mathcal{O}}/\hat{\mathcal{O}}_k \subset \hat{\mathcal{O}}/\hat{\mathcal{O}}_k$ there is an element $u \in \mathcal{F}_o$ such that $\delta = \tilde{\nu}_k u$.

Since a derivation $u : \hat{\mathcal{O}} \to \hat{\mathcal{O}}$ can be regarded as an inverse limit of derivations $\{ \tilde{\nu}_k u : \hat{\mathcal{O}}/\hat{\mathcal{O}}_k \to \hat{\mathcal{O}}/\hat{\mathcal{O}}_k \}$, we define an automorphism $\exp u$ of $\hat{\mathcal{O}}$ by an inverse limit of $\{ e^{\tilde{\nu}_k u} \}$. We denote by G' the group generated by $\{ \exp u : u \in \mathcal{F}_k \}$.

Define an automorphism $\text{Ad}(\exp u)$ of \mathcal{F}_k by

$$
(2) \quad (\text{Ad}(\exp u)v)f = (\exp u)v(\exp^{-1}u)f, \quad f \in \hat{\mathcal{O}}.
$$

Since $d/dt \big|_{t=0} (\exp tu)f = uf$, we see easily that

$$
(3) \quad \frac{d}{dt} \text{Ad}(\exp tu)v = \{ u, \text{Ad}(\exp tu)v \}.
$$

On the other hand, $e^{t \cdot \text{ad}(u)}$ satisfies the same differential equation. Thus, by uniqueness, we obtain

$$
(4) \quad \text{Ad}(\exp u) = e^{\text{ad}(u)}.
$$

Especially, if \mathcal{F}_k is a closed Lie subalgebra of \mathcal{F}_o, then $\text{Ad}(\exp u) \mathcal{F}_k = \mathcal{F}_k$ for every $u \in \mathcal{F}_k$. Since $e^{\text{ad}(u)} e^{\text{ad}(v)} = \text{Ad}(\exp u \cdot \exp v)$, we obtain that $O(\mathcal{F}_k) = \{ \text{Ad}(g) : g \in G' \}$.

Let $G^{(k)}$ be the group generated by $\{ e^{\tilde{\nu}_k u} : u \in \mathcal{F}_k \}$. Since $\hat{\mathcal{O}}/\hat{\mathcal{O}}_k$ is finite dimensional, $G^{(k)}$ is a Lie group with Lie algebra $\mathcal{F}_k/\mathcal{F}_k$. For every integer l such that $l \leq k$, the group $G^{(k)}$ leaves $\mathcal{F}_l/\mathcal{F}_k$ invariant. Hence $\{ G^{(k)} \}_{k \geq 0}$ forms an inverse system. We denote by G the inverse limit. Obviously, G' is a subgroup of G.

However, note that if a sequence $(u_0, u_1, \ldots, u_n, \ldots)$ satisfies $u_l \in \mathcal{F}_k$ for every $l \geq 0$, then $\exp u_0 \cdot \exp u_1 \cdot \ldots \cdot \exp u_n \cdots$ is an element of G. Since $G^{(k)}$ is a Lie group, G is a topological group under the inverse limit topology. The purpose of the remainder of this section is to show $G = G'$ and that G is a Frechet-Lie group with
Lie algebra \mathfrak{g}.

Let $G^{(k)}_1$, $k \geq 1$, be the group generated by \(\{ e^{\tilde{P}_k u} : u \in \mathfrak{g} \} \), and G_1 the inverse limit of \(\{ G^{(k)}_1 \} \) for $k \geq 1$.

1.1 Lemma \exp is a bijective mapping of \mathfrak{g}_1 onto G_1.

Proof. Let \exp_k be the exponential mapping of $\mathfrak{g}_1/\mathfrak{g}_k$ into $G^{(k)}_1$, i.e. $\exp_k u = e^{\tilde{P}_k u}$. Since $\exp : \mathfrak{g}_1 \rightarrow G_1$ is defined by the inverse limit of $\{ \exp_k \}$, we have only to show that $\exp_k : \mathfrak{g}_1/\mathfrak{g}_k \rightarrow G^{(k)}_1$ is bijective. Since $\mathfrak{g}_1/\mathfrak{g}_k = \tilde{P}_1 \mathfrak{g}_1$ is a nilpotent Lie algebra, we see that \exp_k is regular and surjective (cf. [3] p 229). However, the derivation $\tilde{P}_k u : \hat{\mathfrak{g}}_k \rightarrow \hat{\mathfrak{g}}_k$ is expressed by a triangular matrix with zeros in the diagonal. Therefore, one can define $\log(1 + N)$ by $\sum_{n=1}^\infty (-1)^{n-1}N^n/n$, which gives the inverse of \exp_k. Thus \exp_k is bijective.

1.2 Corollary $G' = G$.

Proof. We have only to show $G' \supseteq G$. Since $G^{(1)} = G/G_1$ is generated by $\{ \tilde{p}_1 u : u \in \mathfrak{g} \}$, every $g \in G$ can be written in the form $g = \exp u_1 \cdot \exp u_2 \cdots \cdot \exp u_m \cdot h$, where $u_1, \ldots, u_m \in \mathfrak{g}$ and $h \in G_1$. Thus, the above lemma shows $G \subseteq G'$.

We next prove that G is a Frechet-Lie group. Although such a structure of G has no direct relevance to our present purpose, there is an advantage of making analogies easy from the theory of finite dimensional Lie groups.

Let $\varphi : \tilde{P}_1 \mathfrak{g} \rightarrow \mathfrak{g}$ be a linear mapping such that $\tilde{P}_1 \varphi \tilde{u} = \hat{u}$ for $\tilde{u} \in \tilde{P}_1 \mathfrak{g}$. It is not hard to see that $\xi(u) = \exp \varphi \tilde{P}_1 u \cdot \exp (u - \xi \tilde{P}_1 u)$ gives a homeomorphism of an open neighborhood U of 0 of \mathfrak{g} onto an open neighborhood \tilde{U} of the identity e of G. Since G is a topological group, there is an open neighborhood V of 0 of \mathfrak{g} such that
\(\xi(V)^{-1} = \xi(V), \quad \xi(V)^2 \subset \xi(U) \). We set \(\eta(u,v) = \xi^{-1}(\xi(u)\xi(v)) \) and \(i(u) = \xi^{-1}(\xi(u)^{-1}) \) for \(u, v \in V \). We have next to prove the differentiability of \(\eta \) and \(i \). However, the differentiability is defined by inverse limits of differentiable mappings, hence that of \(\eta \) and \(i \) are trivial in our case. Thus, we get the following:

1.3 Lemma G is a Frechet-Lie group with Lie algebra \(\mathfrak{g} \).

1.3. Simultaneous normalization and eigenspace decomposition

For any \(u \in \mathfrak{g}_0 \), the linear mapping \(u^{(k)} : \hat{\mathfrak{g}}/\hat{\mathfrak{g}}_k \rightarrow \hat{\mathfrak{g}}/\hat{\mathfrak{g}}_k \) splits uniquely into a sum of semi-simple part \(u^{(k)}_S \) and nilpotent part \(u^{(k)}_N \) such that \([u^{(k)}_S, u^{(k)}_N] = 0\). Using eigenspace decomposition of \(\hat{\mathfrak{g}}/\hat{\mathfrak{g}}_k \), we see that \(u^{(k)}_S \) is also a derivation of \(\hat{\mathfrak{g}}/\hat{\mathfrak{g}}_k \) hence so is \(u^{(k)}_N \). For \(u^{(k+1)} \), we have that \([p^{(k+1)}_S, p^{(k+1)}_N] = 0\), \(p^{(k+1)}_S \) is nilpotent, and that \(p^{(k+1)}_S \) is semi-simple by considering eigenspace decomposition of \(\hat{\mathfrak{g}}/\hat{\mathfrak{g}}_{k+1} \). Therefore, \(p^{(k+1)}_S = u^{(k)}_S \) and \(p^{(k+1)}_N = u^{(k)}_N \). Hence, taking inverse limit, we get formal vector fields \(u_S, u_N \) which will be called the semi-simple part and the nilpotent part of \(u \) respectively. A formal vector field is called to be semi-simple if it has no nilpotent part.

Let \(\mathfrak{g}^k \) be a nilpotent subalgebra of \(\mathfrak{g}_0/\mathfrak{g}_k \) for an arbitrarily fixed \(k \). Set \(\mathfrak{g}^k_S = \{ u^{(k)} \in \mathfrak{g}^k : u^{(k)} \in \mathfrak{g}_k \} \), and denote by \(p^k \) the forgetful projection of \(\mathfrak{g}_0/\mathfrak{g}_k \) onto \(\mathfrak{g}_0/\mathfrak{g}_1 \), that is, \(p^k = p^k_{1}p^k_{4} \cdots p^k_{k-1} \). Since \(p^k_{1} \mathfrak{g}^k \) is a nilpotent subalgebra of \(\mathfrak{g}_0/\mathfrak{g}_1 \), there is a basis \(\{ f^{(1)}_1, \ldots, f^{(1)}_n \} \) of \(\hat{\mathfrak{g}}_0/\hat{\mathfrak{g}}_1 \) such that every \(u^{(1)} \in p^k_{1} \mathfrak{g}^k \) is represented by an upper triangular matrix. Let \(\{ \mu_{j}^{1}(u^{(1)}), \ldots, \mu_{n}^{1}(u^{(1)}) \} \) be the diagonal part. \(\mu_{j}^{1} \) is then a linear mapping of \(p^k_{1} \mathfrak{g}^k \) into \(\mathfrak{g} \) for every \(j \), which one may regard as a
linear mapping of \mathcal{O}^k into \mathcal{C}. Since $u^{(1)}_s$ is the semi-simple part of $u^{(1)}$, it must satisfy
\[
(5) \quad u^{(1)}_s f_j^{(1)} = \mu_j^{(1)}(u^{(1)}) f_j^{(1)}.
\]
By a simple linear algebra, we see that there are $f_1^{(k)}, \ldots, f_n^{(k)} \in \hat{\mathcal{O}}_0 / \hat{\mathcal{O}}_k$ such that
\[
(5) \quad u^{(k)}_s f_j^{(k)} = \mu_j^{(k)}(u^{(k)}) f_j^{(k)}, \quad \pi_k^{(k)} f_j^{(k)} = f_j^{(k)} \quad (1 \leq j \leq n)
\]
for every $u^{(k)} \in \mathcal{O}_k$, where $\pi_k^{(k)}$ is the forgetful projection of $\hat{\mathcal{O}}_0 / \hat{\mathcal{O}}_k$ onto $\hat{\mathcal{O}}_0 / \hat{\mathcal{O}}_k$, that is, $\pi_k^{(k)} = \pi_{k-1} \cdots \pi_1$.

Since $f_j^{(k)} \in \hat{\mathcal{O}}_0 / \hat{\mathcal{O}}_k$, $f_j^{(k)}$ is expressed in the form
\[
(7) \quad f_j^{(k)} = \sum_{\alpha \in \mathbb{N}^{\leq k}} a_j^{(k)} x^\alpha.
\]
Set $y_j = \sum_{\alpha \in \mathbb{N}^{\leq k}} a_j^{(k)} x^\alpha$. Since $f_1^{(1)}, \ldots, f_n^{(1)}$ are linearly independent, these give a formal change of variables and every $u^{(k)}_s$ can be written in the form
\[
(8) \quad u^{(k)}_s = \sum_{i=1}^n \mu_i^{(k)}(u^{(k)}) y_i \partial / \partial y_i.
\]
Since $[\mathcal{O}_s^k, \mathcal{O}_s^k] = 0$, because \mathcal{O}_s^k is nilpotent, every $u^{(k)} \in \mathcal{O}_s^k$ should be written in the form
\[
(9) \quad u^{(k)} = \sum_{i=1}^n \sum_{\alpha, \lambda \in \mathbb{N}^{\leq k}} a_i^{(k)} \alpha y_i^{\alpha} \partial / \partial y_i
\]
where $\langle \alpha, \lambda \rangle = \alpha_1^{(k)} + \cdots + \alpha_n^{(k)}$. It should be noted that the semi-simple part $u^{(1)}_s$ of $u^{(1)}$ has been changed into a linear diagonal vector field such as (8).

Let \mathcal{O}_s^{k+1} be another nilpotent subalgebra of $\mathcal{O}_0 / \mathcal{O}_s^{k+1}$ such that $P_k \mathcal{O}_s^{k+1} \subset \mathcal{O}_s^{k+1}$, and let $\mathcal{O}_s^{k+1} = \{u^{(k+1)}_s ; u^{(k+1)} \in \mathcal{O}_s^{k+1}\}$.

Since $P_k^{(k+1)} \mathcal{O}_s^{k+1} \subset P_k^{(k+1)} \mathcal{O}_s^{k+1}$ and the equality (5) holds also for every $u^{(1)} \in P_k^{(k+1)} \mathcal{O}_s^{k+1}$ and the equality (6) does for every $P_k \mathcal{O}_s^{k+1}$. By a simple linear algebra, we see that there are $f_1^{(k+1)}, \ldots, f_n^{(k+1)} \in \hat{\mathcal{O}}_0 / \hat{\mathcal{O}}_{k+1}$ such that
\[
-10-

\(u^{(k+1)}_{s} f^{(k+1)}_{j} = \mu_{j}(u^{(k+1)}) f^{(k+1)}_{j}, \quad \Pi_{k} f^{(k+1)}_{j} = f^{(k)}_{j}. \)

Note that \(f^{(k+1)}_{j} = f^{(k)}_{j} + \sum_{|a|=k+1} a_{j,\alpha} x^{\alpha}. \) Hence by putting \(y_{j} = \sum_{0 \leq |w| \leq k+1} a_{j,\alpha} x^{\alpha} \) instead of (7), we get the same equations as (8) and (9) with respect to \(\mathcal{A}^{k}. \) Moreover we have

\[
\begin{align*}
(12) \quad u^{(k+1)}_{s} &= \sum_{i=1}^{n} \mu_{i}(u^{(k+1)}) y_{i} \partial / \partial y_{i}, \\
(13) \quad u^{(k+1)} &= \sum_{i=1}^{n} \sum_{|a_{\mu}| \leq k+1} a_{i,\alpha} y^{\alpha} \partial / \partial y_{i}
\end{align*}
\]

for every \(u^{(k+1)} \in \mathcal{A}^{k+1}. \) Especially we obtain the following:

1.4 Lemma Notations and assumptions being as above, the forgetful projection \(p_{k} : \mathcal{A}^{k+1}_{S} \rightarrow \mathcal{A}^{k}_{S} \) is injective.

Let \(\{ \mathcal{A}^{k}_{S} \}_{k \geq 1} \) be a series of nilpotent subalgebras \(\mathcal{A}^{k} \) of \(\mathcal{A}_{S}^{k} \) such that \(p_{k} \mathcal{A}^{k+1} \subset \mathcal{A}^{k} \) for every \(k \geq 1. \) We denote by \(\mathcal{A} \) the inverse limit, and set \(\mathcal{A}_{S} = \{ u_{S} ; u \in \mathcal{A} \}. \) Note that \(\dim \mathcal{A}_{S}^{k} \leq n \) for every \(k \geq 1. \) Thus, there is an integer \(k_{0} \) such that \(p_{k} : \mathcal{A}^{k+1}_{S} \rightarrow \mathcal{A}^{k}_{S} \) is bijective for every \(k \geq k_{0}. \) By a method of inverse limit, we see that there is a formal change of variables

\[
\begin{align*}
(14) \quad y_{j} &= f_{j}(x_{1}, \ldots, x_{n}) \quad 1 \leq j \leq n, \quad f_{j} \in \mathcal{A}_{S}^{0} \\
\text{such that (8) and (9) hold for every } u^{(k)} \in \mathcal{A}^{k} (k \geq 1), \text{ and}
\end{align*}
\]

\[
\begin{align*}
(15) \quad u_{S} &= \sum_{i=1}^{n} \mu_{i}(u) y_{i} \partial / \partial y_{i}, \\
(16) \quad u &= \sum_{i=1}^{n} \sum_{|a_{\mu}| = k} a_{i,\alpha} y^{\alpha} \partial / \partial y_{i}
\end{align*}
\]

for every \(u \in \mathcal{A}^{k}_{S}. \)

Now, let \(\mathcal{G} \) be a closed subalgebra of \(\mathcal{A}_{S}, \) and suppose the above \(\mathcal{A}^{k}_{S} \)'s are subalgebras of \(\mathcal{G} / \mathcal{A}^{k}_{S} \) respectively. Hence, the inverse limit \(\mathcal{G} \) is a closed subalgebra of \(\mathcal{A}. \) We next consider the eigenspace decomposition of \(\mathcal{G} \) with respect to \(\text{ad}(\mathcal{G}). \) Since
ad(u) : \mathcal{F}_o \rightarrow \mathcal{F}_o leaves \mathcal{G} invariant for every \(u \in \mathcal{G} \), and \([\text{ad}(u), \text{ad}(u^*_s)] = 0\), we see that \(\text{ad}(u^*_s) : \mathcal{F}_o \rightarrow \mathcal{F}_o \) is the semi-simple part of \(\text{ad}(u) \) and hence \(\text{ad}(u^*_s) \mathcal{G} \subseteq \mathcal{G} \). Therefore, we have only to consider the eigenspace decomposition with respect to \(\text{ad}(\mathcal{G}_s) \).

For a linear mapping \(\lambda \) of \(\tilde{\mathcal{P}}_1 \mathcal{G}_s \) into \(\mathcal{C} \), i.e. \(\lambda \in (\tilde{\mathcal{P}}_1 \mathcal{G}_s)^* \), we denote by \(\mathcal{F}_\lambda \) the subspace

\[
\{ u \in \mathcal{F}_o : u = \sum_{i=1}^{n} \sum_{i'=1}^{m} a_{i,i'} y_i^* \partial / \partial y_{i'} \}.
\]

Note that \(\mathcal{F}_\lambda = \{0\} \) for almost all \(\lambda \in (\tilde{\mathcal{P}}_1 \mathcal{G}_s)^* \) except countably many \(\lambda \)'s. By \(\mathcal{F}(\mathcal{G}) \) we denote the set of all \(\lambda \in (\tilde{\mathcal{P}}_1 \mathcal{G}_s)^* \) such that \(\mathcal{F}_\lambda \neq \{0\} \). If \(\tilde{\mathcal{P}}_1 \mathcal{G}_s = \{0\} \), then we set \(\mathcal{F}(\mathcal{G}) = \{0\} \), because all \(\lambda_j \)'s are zeros.

1.5 Lemma If \(\tilde{\mathcal{P}}_1 \mathcal{G}_s = \{0\} \), then \(\mathcal{G}^{(o)}(\mathcal{G}) = \mathcal{G} \).

Proof. By (16), every \(u \in \mathcal{G} \) can be written in the form \(u = u_1 + u_2 \) such that

\[
u_1 = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i,j} y_i \partial / \partial y_j, \quad u_2 = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i,j} y_i \partial / \partial y_j.
\]

The reason for the shape of \(u_1 \) is that the linear part of \(u \) is an upper triangular matrix. Therefore, for every \(k \geq 1 \), there is an integer \(m_k \) such that \(\text{ad}(u) m_k \mathcal{F}_o \subseteq \mathcal{F}_k \) for every \(u \in \mathcal{G} \). This means \(\mathcal{G} = \mathcal{G}^{(o)}(\mathcal{G}) \) by definition.

Now, we set \(\mathcal{G}^{(\lambda)}(\mathcal{G}) = \mathcal{G} \cap \mathcal{F}_\lambda \) for every \(\lambda \in \mathcal{F}(\mathcal{G}) \).

1.6 Lemma Every \(u \in \mathcal{G} \) can be rearranged in the form

\[
u = \sum_{\lambda \in \mathcal{F}(\mathcal{G})} u_\lambda, \quad u_\lambda \in \mathcal{G}^{(\lambda)}.
\]

Moreover, every \(u_\lambda \) is contained in \(\mathcal{G}^{(\lambda)}(\mathcal{G}) \).

Proof. Since the first assertion is trivial, we have only to show the second one. Since \(\mathcal{F}(\mathcal{G}) \) is a countable set, there is \(v_0 \in \mathcal{G}_s \) such that \(\lambda(v_0^{(1)}) \neq \lambda'(v_0^{(1)}) \) for any \(\lambda, \lambda' \in \mathcal{F}(\mathcal{G}) \) such that \(\lambda \neq \lambda' \). For every \(k \), let \(u(k) \) be the truncation of \(u \in \mathcal{G} \) at the
order \(k \), \(u^{(k)} \) is canonically identified with \(\tilde{p}_k u \). \(u^{(k)} \) can be rearranged in the form
\[
\sum_{\lambda \in \Pi(\mathfrak{g})} u_{\lambda}^{(k)} = u^{(k)}
\]
where each \(u_{\lambda}^{(k)} \) is the truncation of \(u_{\lambda} \) at the order \(k \). Since \(\mathfrak{g}/\mathfrak{g}_k \) is finite dimensional, only finite number of \(u^{(k)}_{\lambda} \)'s do not vanish. Apply \(\text{ad}(v^{(k)}_o) \) to \(u^{(k)} \). Since \(\text{ad}(\mathfrak{g}_S) \mathfrak{g} \subset \mathfrak{g} \), we have
\[
\text{ad}(v^{(k)}_o)u^{(k)} = \sum_{\lambda \in \Pi(\mathfrak{g})} \left(v^{(k)}_o \right) u_{\lambda}^{(k)} \in \mathfrak{g}/\mathfrak{g}_k
\]
Hence, considering Vandermonde's matrix, we get \(u^{(k)}_{\lambda} \in \mathfrak{g}/\mathfrak{g}_k \). Thus, taking inverse limit, we get \(u_{\lambda} \in \mathfrak{g} \), hence the desired result.

1.7 Corollary \(\tilde{p}_k \mathfrak{g}^{(o)}(\mathfrak{g}) \) is the zero-eigenspace of \(\text{ad}(\tilde{p}_k \mathfrak{g}) \) :
\(\mathfrak{g}/\mathfrak{g}_k \mapsto \mathfrak{g}/\mathfrak{g}_k \).
Proof. It is trivial that \(\tilde{p}_k \mathfrak{g}^{(o)}(\mathfrak{g}) \) is contained in the zero-eigenspace of \(\text{ad}(\tilde{p}_k \mathfrak{g}) \), for \([\mathfrak{g}_S, \mathfrak{g}^{(o)}(\mathfrak{g})] = \{0\} \). Thus, we have only to show the converse. The zero-eigenspace of \(\text{ad}(\tilde{p}_k \mathfrak{g}) \) is equal to that of \(\text{ad}(\tilde{p}_k \mathfrak{g}_S) \), that is, the space of all \(v^{(k)} \in \mathfrak{g}/\mathfrak{g}_k \) such that \([\tilde{p}_k \mathfrak{g}_S, v^{(k)}] = \{0\} \). Thus, \(v^{(k)} \) should be written in the form (9). Let \(v \in \mathfrak{g} \) be an element such that such that \(\tilde{p}_k v = v^{(k)} \), and let \(v = \sum_{\lambda \in \Pi(\mathfrak{g})} v_{\lambda} \) be the decomposition in accordance with the above lemma. Then it is clear that \(\tilde{p}_k v_o = v^{(k)} \). Since \(v_o \in \mathfrak{g}^{(o)}(\mathfrak{g}) \), we get the desired result.

1.8 Existence and conjugacy of Cartan subalgebras

Let \(\mathfrak{g} \) be a closed subalgebra of \(\tilde{\mathfrak{g}}_o \). If \(\mathfrak{g}/\mathfrak{g}_1 \neq \{0\} \), then \(\mathfrak{g}/\mathfrak{g}_k \) is nilpotent for every \(k \geq 1 \), for \([\mathfrak{g}_k, \mathfrak{g}_l] \subseteq \mathfrak{g}_{k+l} \). Therefore, by 1.5 Lemma, we see that \(\mathfrak{g} \) itself is the only Cartan subalgebra of \(\mathfrak{g} \). Thus, the conjugacy is trivial in this case.

Now, suppose \(\mathfrak{g}/\mathfrak{g}_1 \neq \{0\} \), and let \(\mathfrak{g}_1^1 \) be a Cartan subalgebra of \(\mathfrak{g}/\mathfrak{g}_1 \).
1.8 Lemma Let $\mathfrak{g}_1, \ldots, \mathfrak{g}_k$ be a series of Cartan subalgebras of $\mathfrak{g}/\mathfrak{g}_1, \ldots, \mathfrak{g}/\mathfrak{g}_k$ respectively such that $p_{k-1} \mathfrak{g}_d = \mathfrak{g}_d$ for $2 \leq k \leq k$. Then, there is a Cartan subalgebra \mathfrak{g}_d^{k+1} of $\mathfrak{g}/\mathfrak{g}_k$ such that $p_{k} \mathfrak{g}_d^{k+1} = \mathfrak{g}_d^{k}$.

Proof. Let \mathfrak{g}_d' be a Cartan subalgebra of $\mathfrak{g}/\mathfrak{g}_k$. We prove at first that $p_{k} \mathfrak{g}_d'$ is a Cartan subalgebra of $\mathfrak{g}/\mathfrak{g}_k$. Since \mathfrak{g}_d' is nilpotent, so is $p_{k} \mathfrak{g}_d'$. Let $\mathfrak{g}_d' = \{u_{(k+1)} \mathfrak{g}_d, u_{(k+1)} \mathfrak{g}_d'\}$, and let $v(k)$ be an element of the zero-eigenspace of $p_{k} \mathfrak{g}_d'$. Then, $[v(k), p_{k} \mathfrak{g}_d'] = 0$ and hence $v(k)$ can be written in the form (9). Let $v^{(k+1)}$ be an element of $\mathfrak{g}/\mathfrak{g}_k$ such that $p_{k} v^{(k+1)} = v(k)$. Using the eigenspace decomposition of $\mathfrak{g}/\mathfrak{g}_k$ with respect to $\text{ad}(\mathfrak{g}_d')$, we see that $v^{(k+1)} = \sum \lambda \in \mathfrak{g}_d' v_{\lambda}^{(k+1)}$. Note that this decomposition is given by only rearranging of the terms of $v^{(k+1)}$ (cf. 1.6 Lemma). Hence it is clear that $p_{k} v_{\lambda}^{(k+1)} = v_{\lambda}^{(k+1)}$ is an element of the zero-eigenspace of \mathfrak{g}_d'. However, since \mathfrak{g}_d' is a Cartan subalgebra of $\mathfrak{g}/\mathfrak{g}_k$ we get $v_{\lambda}^{(k+1)} \in \mathfrak{g}_d'$. Thus, $v(k) \in p_{k} \mathfrak{g}_d'$. Hence $p_{k} \mathfrak{g}_d'$ is a Cartan subalgebra of $\mathfrak{g}/\mathfrak{g}_k$.

By the well-known conjugacy of Cartan subalgebras of $\mathfrak{g}/\mathfrak{g}_k$, there is an inner automorphism A such that $A(p_{k} \mathfrak{g}_d') = \mathfrak{g}_d^k$. Since there is a natural projection of $G(k+1)$ onto $G(k)$ (cf. 1.4), there is an inner automorphism A' of $\mathfrak{g}/\mathfrak{g}_k$ which induces naturally A. Thus, by setting $A' \mathfrak{g}_d' = \mathfrak{g}_d^{k+1}$, \mathfrak{g}_d^{k+1} is a Cartan subalgebra of $\mathfrak{g}/\mathfrak{g}_k$ such that $p_{k} \mathfrak{g}_d^{k+1} = \mathfrak{g}_d^k$.

By the above lemma, we have a series $\{\mathfrak{g}_d^k\}_{k \geq 1}$ of Cartan subalgebras of $\mathfrak{g}/\mathfrak{g}_k$ such that $p_{k} \mathfrak{g}_d^{k+1} = \mathfrak{g}_d^k$. Let \mathfrak{g}_d be the inverse limit of \mathfrak{g}_d^k.

1.9 Lemma Notations and assumptions being as above, \mathfrak{g}_d is a Cartan
subalgebra of \mathfrak{g}.

Proof. Since $\tilde{p}_{k}^{o} = \tilde{p}_{k}^{k}$, \tilde{p}_{k}^{o} is a nilpotent subalgebra of $\mathfrak{g}/\mathfrak{g}_{k}$ for every $k \geq 1$. By 1.7 Corollary, $\tilde{p}_{k}^{o}{\mathfrak{o}}(\tilde{p}_{j}^{k})$ is the zero-eigenspace of $\text{ad}(\tilde{p}_{k}^{o})$. Since $\tilde{p}_{k}^{o} = \tilde{p}_{k}^{k}$ is a Cartan subalgebra, we have $\tilde{p}_{k}^{o}{\mathfrak{o}}(\tilde{p}_{j}^{k}) = \tilde{p}_{j}^{k}$ and hence $\mathfrak{g}_{k}{\mathfrak{o}}(\tilde{p}_{j}^{k}) = \tilde{p}_{j}^{k}$. Thus, \tilde{p}_{j}^{k} is a Cartan subalgebra of \mathfrak{g}_{k}.

We next consider the converse of the above lemma.

1.10 Lemma Let \tilde{p}_{j}^{k} be a Cartan subalgebra of \mathfrak{g}_{j}. Then, \tilde{p}_{k}^{j} is a Cartan subalgebra of \mathfrak{g}_{k} for every $k \geq 1$.

Proof. By 1.7 Corollary, the zero-eigenspace of $\text{ad}(\tilde{p}_{k}^{j})$ is equal to $\tilde{p}_{k}^{o}{\mathfrak{o}}(\tilde{p}_{j}^{k})$. Since \tilde{p}_{j}^{k} is a Cartan subalgebra of \mathfrak{g}_{j}, we see $\tilde{p}_{k}^{o}{\mathfrak{o}}(\tilde{p}_{j}^{k}) = \tilde{p}_{k}^{j}$. Thus, \tilde{p}_{k}^{j} is a Cartan subalgebra of $\mathfrak{g}/\mathfrak{g}_{k}$.

As in 1.A, we denote by $G^{(k)}$ the Lie group generated by $\{ e^{\tilde{p}_{k}u} : u \in \mathfrak{g}_{j} \}$. Let $\pi_{k} : G^{(k+1)} \rightarrow G^{(k)}$ be the natural projection. We shall next prove the conjugacy of Cartan subalgebras, which completes the proof of Proposition A. Let \tilde{p}_{j}^{k}, \tilde{p}_{j}^{l} be Cartan subalgebras of \mathfrak{g}_{j}. By the argument in the first part of this section, we may assume $\mathfrak{g}_{j}/\mathfrak{g}_{1} \not\simeq \{ 0 \}$. Since \tilde{p}_{j}^{j}, \tilde{p}_{j}^{l} are Cartan subalgebras of $\mathfrak{g}_{j}/\mathfrak{g}_{1}$, there is $g_{1} \in G^{(1)}$ such that $\text{Ad}(g_{1})(\tilde{p}_{j}^{j}) = \tilde{p}_{j}^{j}$. Therefore, one may assume without loss of generality that $\tilde{p}_{j}^{j} = \tilde{p}_{j}^{1}$. Let $G_{k}^{(k)}$ be the Lie group generated by $\{ e^{\tilde{p}_{k}u} : u \in \mathfrak{g}_{j} \}$ for any j, $l \leq k$.

1.11 Lemma Let \tilde{p}_{j}^{k}, \tilde{p}_{j}^{l} be Cartan subalgebras of \mathfrak{g}_{j} such that $\tilde{p}_{k}^{j} = \tilde{p}_{k}^{1}$. Then, there is $g_{k+1} \in G_{k}^{(k+1)}$ such that $\text{Ad}(g_{k+1})(\tilde{p}_{k+1}^{j}) = \tilde{p}_{k+1}^{j}$.

Proof. Since $\tilde{p}_{k}^{j} = \tilde{p}_{k}^{1}$, \tilde{p}_{k+1}^{j} and \tilde{p}_{k+1}^{j} are Cartan subalgebras of \mathfrak{p}_{k}^{j}. Let $\mathfrak{p}_{k}^{j} = \mathfrak{p}_{k}^{1}$.
\[p_k^{-1} \rho_\lambda \rho_\mu = \hat{\rho}_k \rho_\mu \oplus \sum_{\lambda \in \mu} g_\lambda', \quad p_k^{-1} \rho_\lambda = \hat{\rho}_k \rho_\mu \oplus \sum_{\lambda \in \mu} g_\lambda'' \]

be the eigenspace decompositions with respect to \(\text{ad}(\hat{\rho}_k) \) and \(\text{ad}(\hat{\rho}_k \rho_\mu) \) respectively. Since \(p_k \rho_\mu \rho_\mu + 1 \rho_\mu = p_k \rho_\mu \rho_\mu + 1 \rho_\mu = p_k \rho_\mu \), we see that \(\sum g_\lambda' \subset g_\lambda' / g_\lambda'_{k+1} \) and \(\sum g_\lambda'' \subset g_\lambda'' / g_\lambda''_{k+1} \). It is well-known (cf. [6] pp59-66) that there are \(v_1, \ldots, v_m \in \sum g_\lambda' \), \(w_1, \ldots, w_k \in \sum g_\lambda'' \) such that

\[\text{Ad}(\exp v_1) \cdots \text{Ad}(\exp v_m) \text{Ad}(\exp w_1) \cdots \text{Ad}(\exp w_k) \hat{p}_k + 1 \rho_\mu = \hat{p}_k + 1 \rho_\mu \]

Since \(\exp v_1, \exp w_j \in g_{k+1} \), we see that there is \(g_{k+1} \in g_{k+1} \)

such that

\[\text{Ad}(g_{k+1})(\hat{p}_k + 1 \rho_\mu) = \hat{p}_k + 1 \rho_\mu \].

Let \(g_k \) be the subgroup of \(G \) generated by \(\{ e^u : u \in g_k \} \). For Cartan subalgebras \(f_\lambda \), \(f_\mu \) of \(g_\lambda \), the above lemma shows that there are elements \(g_1, g_2, \ldots, g_k, \ldots \) such that \(g_k \in g_k \) and

\[\text{Ad}(g_1) \text{Ad}(g_2) \cdots \text{Ad}(g_k)(\hat{f}_\mu) = \hat{f}_\mu \mod g_{k+1} \].

Note that \(g_1 g_2 \cdots g_k \cdots \in G \), hence putting \(g = g_1 g_2 \cdots g_k \cdots \), we see

\[\text{Ad}(g)(\hat{f}_\mu) = \hat{f}_\mu \].

This shows the conjugacy of Cartan subalgebras.

Proposition A is thereby proved.
§2 Cartan subalgebras at expansive singularities

2.A Semi-simple expansive vector fields

In this section, notations are as in the introduction. A germ of holomorphic vector field \(u \in \mathcal{X}(V) \) is called \textit{expansive}, if the eigenvalues of the linear term of \(u \) at 0 lie in the same open half plane in \(\mathbb{C} \) about the origin. \(u \) is called to be \textit{semi-simple expansive} if \(u \) is expansive and semi-simple as a formal vector field. The purpose of this section is to show the following:

2.1 Lemma \textbf{Let} \(u \in \mathcal{X}(V) \) be a semi-simple expansive vector field. Then, there is a germ \(y_j = f_j(x_1, \ldots, x_n), 1 \leq j \leq n, \) of biholomorphic change of variables such that \(u \) can be written in the form

\[
u = \sum_{i=1}^{n} \hat{\lambda}_j y_i \partial / \partial y_i
\]

Proof. By a suitable change of variables \(y_j = \sum_{\ell=1}^{k} a_{j\ell} y^\ell \) such as in (7), we have that \(u \) can be written in the form

\[
u = \sum_{i=1}^{n} \hat{\lambda}_j y_i \partial / \partial y_i + w, \quad w \in \mathcal{X}_k(V)
\]

for sufficiently large \(k \). For the proof that \(u \) is linearizable, it is enough to show that there are holomorphic functions \(f_1, \ldots, f_n \) in \(y_1, \ldots, y_n \) such that \(uf_j = \hat{\lambda}_j f_j \) (1 \leq j \leq n) and \(f_j = y_j + \text{higher order terms} \). Set \(f_j = y_j + g_j \) and consider the equation \(u(y_j + g_j) = \hat{\lambda}_j (y_j + g_j) \). Then we get

\[
(17) \quad (u - \hat{\lambda}_j) g_j = -wy_j.
\]

Since \(k \) is sufficiently large, we have

\[
(18) \quad \lim_{t \to \infty} e^{-t(u - \hat{\lambda}_j)w} y_j = 0
\]

and

\[
(19) \quad -\int_{0}^{\infty} e^{-t(u - \hat{\lambda}_j)w} y_j \, dt
\]
exists as a germ of holomorphic functions (cf. [5]). Set \(g_j = - \int_0^\infty e^{-t(u - \hat{\mu}_j)^w} y_j \, dt \). Then,

\[
(u - \hat{\mu}_j)g_j = \int_0^\infty \frac{d}{dt} e^{-t(u - \hat{\mu}_j)^w} y_j \, dt = [e^{-t(u - \hat{\mu}_j)^w} y_j]_0^\infty = -w y_j.
\]

2.2 Lemma Let \(X \) be a semi-simple expansive vector field in \(\mathcal{G} \). Then, there is a Cartan subalgebra \(\mathcal{H}_x \) of \(\mathcal{G} \) containing \(X \).

Proof. By the same proof as in the above lemma, we see that \(X \) can be linearizable by a suitable formal change of variables, and hence we may assume that \(X \) can be written in the form \(X = \sum_{i=1}^k \hat{\mu}_i y_i \frac{\partial}{\partial y_i} \), \(\text{Re} \, \hat{\mu}_i > 0 \). Let \(\mathcal{G}^{(o)}(X) = \{ u \in \mathcal{G} : [X,u] = 0 \} \). Since every \(u \in \mathcal{G}^{(o)}(X) \) can be written in the form

\[
(20) \quad u = \sum_{i=1}^k \sum_{q, \lambda, \mu} \hat{\mu}_i \, a_{i, q} \, y^q \, \frac{\partial}{\partial y_i},
\]

we see that \(\mathcal{G}^{(o)}(X) \) is a finite dimensional Lie subalgebra of \(\mathcal{G} \).

Since \(\text{ad}(X) : \mathcal{G}^{(o)}(X) \to \mathcal{G}^{(o)}(X) \) is of diagonal type, there is a Cartan subalgebra \(\mathcal{H}_x \) of \(\mathcal{G}^{(o)}(X) \) containing \(X \). We shall show that \(\mathcal{H}_x \) is a Cartan subalgebra of \(\mathcal{G} \). For that purpose we have only to show \(\mathcal{G}^{(o)}(\mathcal{H}_x) = \mathcal{G} \). Since \(X \in \mathcal{H}_x \), we see \(\mathcal{G}^{(o)}(\mathcal{H}_x) \subset \mathcal{G}^{(o)}(X) \) and hence \(\mathcal{G}^{(o)}(\mathcal{H}_x) \) is the zero-eigenspace of \(\text{ad}(\mathcal{H}_x) \) in \(\mathcal{G}^{(o)}(X) \).

However since \(\mathcal{H}_x \) is a Cartan subalgebra of \(\mathcal{G}^{(o)}(X) \), we have \(\mathcal{H}_x = \mathcal{G}^{(o)}(\mathcal{H}_x) \).

2.3 Corollary If \(\mathcal{G} \) has a semi-simple expansive vector field, then every Cartan subalgebra \(\mathcal{H}_x \) of \(\mathcal{G} \) is finite dimensional and \(\mathcal{G}^{(\lambda)}(\mathcal{H}_x) \) is finite dimensional for every \(\lambda \in \mathfrak{g}(\mathcal{H}_x) \).
Proof. By the above lemma, there is a finite dimensional Cartan subalgebra of \mathfrak{g}. However by Proposition A it implies that all Cartan subalgebras are finite dimensional and every Cartan subalgebra contains a semi-simple expansive vector field. Note that

$$\mathfrak{g}_\lambda = \{ u \in \mathfrak{g} : u = \sum_{k=1}^n \sum_{\alpha \in \Phi^+} \lambda \alpha \cdot \alpha \cdot \gamma^\alpha / \gamma^\alpha \}$$

Since \mathfrak{g}_λ contains an expansive vector field, we see that $\dim \mathfrak{g}_\lambda < \infty$ and hence $\dim \mathfrak{g}^{(\lambda)}(\mathfrak{g}) < \infty$.

2.4 Corollary Notations being as in the introduction, if $\mathfrak{X}(V)$ contains a semi-simple expansive vector field X, then there is a Cartan subalgebra \mathfrak{g} of $\mathfrak{g}(V)$ such that $\mathfrak{g} \subset \mathfrak{X}(V)$. Moreover, for that \mathfrak{g}_λ, $\mathfrak{g}^{(\lambda)}(\mathfrak{g})$ is contained in $\mathfrak{X}(V)$ for every $\lambda \in \Pi(\mathfrak{g})$.

Proof. Since $X \in \mathfrak{X}(V)$, 2.1 Lemma shows that X can be written in the form $X = \sum \hat{\gamma}^\alpha / \gamma^\alpha$ by a suitable biholomorphic change of variables. Therefore, every $u \in \mathfrak{g}^{(\lambda)}(\mathfrak{g})$ is contained in $\mathfrak{X}(V)$, because u is a polynomial vector field in y_1, \ldots, y_n.

2.C Isomorphisms of $\mathfrak{g}(V)$ onto $\mathfrak{g}(V')$.

Let V, V' be germs of varieties in $\mathbb{C}^n, \mathbb{C}^{n'}$ respectively. Suppose there is a bicontinuous isomorphism ϕ of $\mathfrak{g}(V)$ onto $\mathfrak{g}(V')$.

2.5 Lemma Let \mathfrak{g} be a Cartan subalgebra of $\mathfrak{g}(V)$. Then, so is $\phi(\mathfrak{g})$ of $\mathfrak{g}(V')$.

Proof. Set $\mathfrak{g}' = \phi(\mathfrak{g})$. Since $\phi : \mathfrak{g}(V) \rightarrow \mathfrak{g}(V')$ is continuous, for every k' there is an integer $k = k(k')$ such that $\phi(\mathfrak{g}_k(V)) \subset \mathfrak{g}(k')(V')$. Thus, $\mathfrak{g}_k, \mathfrak{g}'$ is a nilpotent subalgebra of $\mathfrak{g}(V')/\mathfrak{g}(k')(V')$ and $\mathfrak{g}^{(0)}(\mathfrak{g}') \supset \phi(\mathfrak{g}^{(0)}(\mathfrak{g}))$. Thus, replacing ϕ by ϕ^{-1}, we get the desired result.
Now, suppose that \(V \) and \(V' \) have expansive singularities at the origins respectively. By 2.4 Corollary, \(\mathcal{X}(V) \) and \(\mathcal{X}(V') \) contain Cartan subalgebras of \(\mathcal{G}(V) \) and \(\mathcal{G}(V') \) respectively.

2.6 Corollary Assume as above, let \(\mathcal{H} \) be a Cartan subalgebra of \(\mathcal{G}(V) \) contained in \(\mathcal{X}(V) \). Suppose there is a bicontinuous isomorphism \(\phi \) of \(\mathcal{G}(V) \) onto \(\mathcal{G}(V') \). Then, there is a bicontinuous isomorphism \(\psi \) of \(\mathcal{G}(V) \) onto \(\mathcal{G}(V') \) such that \(\psi(\mathcal{H}) \subseteq \mathcal{X}(V') \), that is, \(\mathcal{H}' \) is a Cartan subalgebra of \(\mathcal{G}(V') \) contained in \(\mathcal{X}(V') \).

Proof. By the above lemma, \(\phi(\mathcal{H}) \) is a Cartan subalgebra of \(\mathcal{G}(V') \). By 2.4 Corollary, there is a Cartan subalgebra \(\mathcal{H}' \) of \(\mathcal{G}(V') \) contained in \(\mathcal{X}(V') \). By Proposition A, there is \(g \in G \) such that \(\text{Ad}(g) \phi(\mathcal{H}) = \mathcal{H}' \). Note that \(\text{Ad}(g) : \mathcal{G}(V') \rightarrow \mathcal{G}(V') \) is a bicontinuous isomorphism. Thus, \(\psi = \text{Ad}(g) \phi \) is the desired one.

In the remainder of this section, we assume that there is a bicontinuous isomorphism \(\phi : \mathcal{G}(V) \rightarrow \mathcal{G}(V') \) such that \(\phi(\mathcal{H}) = \mathcal{H}' \) where \(\mathcal{H}, \mathcal{H}' \) are Cartan subalgebras of \(\mathcal{G}(V), \mathcal{G}(V') \) respectively such that \(\mathcal{H} \subseteq \mathcal{X}(V) \) and \(\mathcal{H}' \subseteq \mathcal{X}(V') \). By 2.3-4 Corollaries, there is a local coordinate system \((y_1, \ldots, y_n) \), related biholomorphically to the original one such that every \(\mathcal{G}^{(\lambda)}(\mathcal{H}) \) is a finite dimensional space of polynomial vector fields in \(y_1, \ldots, y_n \). We choose such a local coordinate system \((x_1, \ldots, x_n) \) for \(\mathcal{G}(V') \). Let

\(\mathcal{H}(V; y_1, \ldots, y_n) \) (resp. \(\mathcal{H}(V'; z_1, \ldots, z_n) \)) be the totality of \(u \in \mathcal{G}(V) \) (resp. \(\mathcal{G}(V') \)) such that \(u \) can be expressed as a polynomial vector field in \(y_1, \ldots, y_n \) (resp. \(z_1, \ldots, z_n \)) \(\mathcal{H}(V; y_1, \ldots, y_n) \) and \(\mathcal{H}(V'; z_1, \ldots, z_n) \) are Lie subalgebras of \(\mathcal{X}(V), \mathcal{X}(V') \) respectively. Since \(\mathcal{G}^{(\lambda)}(\mathcal{H}) \subseteq \mathcal{H}(V; y_1, \ldots, y_n) \) for every \(\lambda \in \Pi(\mathcal{H}) \), we get the
following:

2.7 Corollary Notations and assumptions being as above, the above isomorphism \(\Phi : \mathcal{O}(V) \rightarrow \mathcal{O}(V') \) induces an isomorphism of \(\mathcal{O}(V; y_1, \ldots, y_n) \) onto \(\mathcal{O}(V'; z_1, \ldots, z_n) \).

Proof. Note that \(\Phi(\mathcal{O}(\lambda)(\ell)) = \mathcal{O}(\lambda)(\ell') \), because \(\mathcal{O}(\lambda)(\ell) \) is an eigenspace of \(\text{ad}(\ell) \). Every \(u \in \mathcal{O}(V; y_1, \ldots, y_n) \) can be written in the form \(u = \sum_{\lambda \in \mathfrak{g}} u_{\lambda} \), but the summation in this case is a finite sum. Since \(\Phi(u) = \sum_{\lambda \in \mathfrak{g}} \Phi(u_{\lambda}) \) and \(\Phi(u_{\lambda}) \in \mathcal{O}(\lambda)(\ell') \), we see that \(\Phi(u) \in \mathcal{O}(V'; z_1, \ldots, z_n) \). Replacing \(\Phi \) by \(\Phi^{-1} \), we get the desired result.

Let \(\mathcal{C}[y_1, \ldots, y_n] \) be the ring of all polynomials in \(y_1, \ldots, y_n \). Then, since \(\mathcal{O}(V) \) is an \(\mathcal{O} \)-module, \(\mathcal{O}(V; y_1, \ldots, y_n) \) is a \(\mathcal{C}[y_1, \ldots, y_n] \)-module.
3 Theorem of Pursell-Shanks' type

In this chapter, we consider two Lie algebras \(\mathfrak{g}(V; y_1, \ldots, y_n) \) and \(\mathfrak{g}(V'; z_1, \ldots, z_n') \) of polynomial vector fields such that they are \(\mathbb{C}[y_1, \ldots, y_n] \) and \(\mathbb{C}[z_1, \ldots, z_n] \)-module respectively and that there is an isomorphism \(\phi \) of \(\mathfrak{g}(V; y_1, \ldots, y_n) \) onto \(\mathfrak{g}(V'; z_1, \ldots, z_n') \). The goal is as follows:

Theorem II Notations and assumptions being as above, there is a biholomorphic mapping \(\varphi \) of \(\mathbb{C}^n \) onto \(\mathbb{C}^{n'} \) such that \(d\varphi(\mathfrak{g}(V; y_1, \ldots, y_n)) = \mathfrak{g}(V'; z_1, \ldots, z_n') \). Moreover, \(\varphi(V) = V' \) as germs of varieties.

Note at first that Theorem II implies Theorem I in the introduction, for 2.6-7 Corollaries show that an isomorphism between \(\mathfrak{g}(V) \) and \(\mathfrak{g}(V') \) induces an isomorphism between \(\mathfrak{g}(V; y_1, \ldots, y_n) \) and \(\mathfrak{g}(V'; z_1, \ldots, z_n') \).

3.A Characterization of maximal subalgebras

Let \(\mathfrak{g} \) be a subalgebra of \(\mathfrak{g}(V; y_1, \ldots, y_n) \). We denote by \(\mathfrak{g}^{(\infty)} \) the ideal consisting of all \(u \in \mathfrak{g} \) such that \(\text{ad}(v_1) \cdots \text{ad}(v_k)u \in \mathfrak{g} \) for every \(k \geq 0 \) and any \(v_1, \ldots, v_k \in \mathfrak{g}(V; y_1, \ldots, y_n) \). Let \(V_\mathfrak{g} \) be the set of all points \(q \in \mathbb{C}^n \) such that \(\mathfrak{g}(V; y_1, \ldots, y_n) \) does not span \(n \)-dimensional vector space at \(q \), that is, \(\dim \mathfrak{g}(V; y_1, \ldots, y_n)(q) < n \).

For a point \(p \in \mathbb{C}^n \), let \(\mathfrak{g}_p \) be the isotropy subalgebra of \(\mathfrak{g}(V; y_1, \ldots, y_n) \) at \(p \), i.e. \(\mathfrak{g}_p = \{ u \in \mathfrak{g}(V; y_1, \ldots, y_n) : u(p) = 0 \} \).

3.1 Lemma For a point \(p \in \mathbb{C}^n - V_\mathfrak{g} \), \(\mathfrak{g}_p \) is a maximal, finite codimensional subalgebra such that \(\mathfrak{g}_p^{(\infty)} = \{0\} \).

Proof. Since \(p \in \mathbb{C}^n - V_\mathfrak{g} \), there are \(u_1, \ldots, u_n \in \mathfrak{g}(V; y_1, \ldots, y_n) \)
such that \(u_j(p) = \partial / \partial y_j \bigg|_p \) for \(1 \leq j \leq n \). Consider

\[
(\text{ad}(u_1)_\ell, \ldots, \text{ad}(u_n)_\ell) (v)(p) = 0
\]

for any \(\ell_1, \ldots, \ell_n \), and we get easily that \(\mathfrak{g}_p^{(\omega)} = \{0\} \).

We next prove the maximality of \(\mathfrak{g}_p \). Let \(\mathfrak{g} \) be a subalgebra of \(\mathfrak{g}(V; y_1, \ldots, y_n) \) such that \(\mathfrak{g} \supseteq \mathfrak{g}_p \). There is then an element \(v \in \mathfrak{g} \) such that \(v(p) \neq 0 \). By a suitable linear change of variables, we may assume that \(v \) is written in the form

\[
v = g \partial / \partial y_1 + \sum_{j=2}^{n} h_j \partial / \partial y_j, \quad g(p) \neq 0, \quad h_j(p) = 0.
\]

Let \((p_1, \ldots, p_n) \) be the coordinate of \(p \). Then, \((y_1 - p_1)u_j \in \mathfrak{g}_p \) for \(1 \leq j \leq n \). Therefore, \([v, (y_1 - p_1)u_j] = v(y_1)u_j + (y_1 - p_1)[v, u_j] \in \mathfrak{g}_p \).

Since \(v(y_1)(p) = g(p) \neq 0 \), we have \(\mathfrak{g}_p(p) = \mathfrak{g}(V; y_1, \ldots, y_n)(p) \) and hence \(\mathfrak{g}_p = \mathfrak{g}(V; y_1, \ldots, y_n) \).

Let \(\mathcal{W}_\mathfrak{g} \) be the set of all points \(q \) such that \(\mathfrak{g}_q \) is a maximal subalgebra and \(\mathfrak{g}_q^{(\omega)} = \{0\} \). By the above lemma, \(\mathcal{W}_\mathfrak{g} \) contains \(\mathbb{C}^n - V_\mathfrak{g} \). The goal of this section is as follows:

3.2 Proposition Let \(\mathfrak{g} \) be a maximal, finite codimensional subalgebra of \(\mathfrak{g}(V; y_1, \ldots, y_n) \) such that \(\mathfrak{g}^{(\omega)} = \{0\} \). Then, there is a unique point \(p \in \mathcal{W}_\mathfrak{g} \) such that \(\mathfrak{g} = \mathfrak{g}_p \).

Let \(\mathfrak{g} \) be a subalgebra of \(\mathfrak{g}(V; y_1, \ldots, y_n) \), and let \(J = \{ f \in \mathbb{C}[y_1, \ldots, y_n] \mid f \mathfrak{g}(V; y_1, \ldots, y_n) \subseteq \mathfrak{g} \} \). Obviously, \(J \) is an ideal of \(\mathbb{C}[y_1, \ldots, y_n] \), for \(\mathfrak{g}(V; y_1, \ldots, y_n) \) is a \(\mathbb{C}[y_1, \ldots, y_n] \)-module.

3.3 Lemma Let \(\mathfrak{g} \) be a subalgebra of \(\mathfrak{g}(V; y_1, \ldots, y_n) \) such that \(\mathbb{C}[y_1, \ldots, y_n] \mathfrak{g} = \mathfrak{g}(V; y_1, \ldots, y_n) \). Then \(J \mathfrak{g}(V; y_1, \ldots, y_n) \) is an ideal of \(\mathfrak{g}(V; y_1, \ldots, y_n) \) contained in \(\mathfrak{g} \).
Proof. By definition \(J \mathcal{F}(V; y_1, \ldots, y_n) \subset \mathcal{G} \). Since \((uf)v = [u, fv] - f[u, v]\), we have \(\mathcal{G} J \subset J \), hence \((\mathcal{G}[y_1, \ldots, y_n])_J J \subset J \). By the assumption, we get \(\mathcal{F}(V; y_1, \ldots, y_n) J \subset J \). Therefore, \(J \mathcal{F}(V; y_1, \ldots, y_n) \) is an ideal of \(\mathcal{F}(V; y_1, \ldots, y_n) \).

By the above lemma, we see also that \(J \mathcal{F}(V; y_1, \ldots, y_n) \subset \mathcal{G}^{(\infty)} \).

The next lemma is due to Amamiya [1]. The proof is seen also in [5], however we repeat the proof for the sake of selfcontainedness.

3.4 Lemma. Let \(\mathcal{G} \) be a finite codimensional subalgebra of \(\mathcal{F}(V; y_1, \ldots, y_n) \). Then, \(J \neq \{0\} \).

Proof. Set \(\mathcal{G}^{(1)} = \{ u \in \mathcal{G} : [u, \mathcal{F}(V; y_1, \ldots, y_n)] \subset \mathcal{G} \} \). Since \(\text{codim} \mathcal{G} < \infty \) and \(\text{ad}(u) \) for every \(u \in \mathcal{G} \) induces a linear mapping of \(\mathcal{F}(V; y_1, \ldots, y_n)/\mathcal{G} \) into itself, we see that \(\text{codim} \mathcal{G}^{(1)} < \infty \) and hence in particular \(\mathcal{G}^{(1)} \neq \{0\} \).

Let \(v \) be a non-trivial element in \(\mathcal{G}^{(1)} \), and let \(f \) be a polynomial such that \(vf \neq 0 \). Consider a sequence \(f v, f^2 v, f^3 v, \ldots \). Since \(\text{codim} \mathcal{G}^{(1)} < \infty \), there is a polynomial \(P(t) \) in \(t \) such that \(P(f)v \in \mathcal{G}^{(1)} \).

We next prove that if \(v \) and \(gv \) are contained in \(\mathcal{G}^{(1)} \), then \((vg)^2 \in J \). For that purpose, let \(w \) be an arbitrary element of \(\mathcal{F}(V; y_1, \ldots, y_n) \). Then, we have

\[
[v, gw] = (vg)w + g[w, v] \in \mathcal{G}
\]

\[
[gv, w] = -(wg)v + g[w, v] \in \mathcal{G}
\]

Hence

\[(22) \quad (vg)w + (wg)v \in \mathcal{G}\]

for every \(w \in \mathcal{F}(V; y_1, \ldots, y_n) \). Replacing \(w \) by \((wg)v \), we have

\((vg)(wg)v \in \mathcal{G}\). Replacing \(w \) in (22) by \((vg)w \), we have also

\((vg)^2w + (vg)(wg)v \in \mathcal{G}\)

Hence \((vg)^2w \in \mathcal{G}\). Thus, \((vg)^2 \in J\).
Set \(g = P(f) \). Then, \(v, g v \in \mathfrak{g}^{(1)} \) and \(v g \neq 0 \) because of \(v f \neq 0 \). Thus, we get \(J \neq \{0\} \).

3.5 Corollary Let \(\mathfrak{g} \) be a maximal finite codimensional subalgebra of \(\mathfrak{g}(V; y_1, \ldots, y_n) \) such that \(\mathfrak{g}^{(\infty)} = \{0\} \). Then, \(\mathfrak{g} \) is a \(\mathbb{C}[y_1, \ldots, y_n] \)-module.

Proof. We have only to show that \(\mathbb{C}[y_1, \ldots, y_n] \mathfrak{g} \subseteq \mathfrak{g}(V; y_1, \ldots, y_n) \), because if so, the maximality of \(\mathfrak{g} \) shows that \(\mathbb{C}[y_1, \ldots, y_n] \mathfrak{g} = \mathfrak{g} \). Thus, assume that \(\mathbb{C}[y_1, \ldots, y_n] \mathfrak{g} = \mathfrak{g}(V; y_1, \ldots, y_n) \). Then by the above lemma, we get that \(\mathfrak{g}^{(\infty)} \cap J \mathfrak{g}(V; y_1, \ldots, y_n) \neq 0 \), contradicting the assumption.

Now, we have only to consider a maximal finite codimensional subalgebra \(\mathfrak{g} \) of \(\mathfrak{g}(V; y_1, \ldots, y_n) \) such that \(\mathfrak{g}^{(\infty)} = \{0\} \) and \(\mathfrak{g} \) is a \(\mathbb{C}[y_1, \ldots, y_n] \)-module. Let \(M_p = \{ f \in \mathbb{C}[y_1, \ldots, y_n] : f(p) = 0 \} \).

3.6 Lemma For a \(\mathbb{C}[y_1, \ldots, y_n] \)-submodule \(\mathfrak{g} \) of \(\mathfrak{g}(V; y_1, \ldots, y_n) \), if
\[
\mathfrak{g} + M_p \mathfrak{g}(V; y_1, \ldots, y_n) = \mathfrak{g}(V; y_1, \ldots, y_n)
\]
for every \(p \in \mathbb{C}^n \), then \(\mathfrak{g} = \mathfrak{g}(V; y_1, \ldots, y_n) \).

Proof. By Nakayama's lemma, we see that for each \(p \in \mathbb{C}^n \), there is \(f_p \in \mathbb{C}[y_1, \ldots, y_n] \) such that \(f_p(p) \neq 0 \) and \(f_p \mathfrak{g}(V; y_1, \ldots, y_n) = \mathfrak{g} \).

Since the ideal \(\mathfrak{J} \) generated by \(\{ f_p : p \in \mathbb{C}^n \} \) has no common zero, we see that \(\mathfrak{J} = \mathbb{C}[y_1, \ldots, y_n] \) and hence there are \(f_{p_1}, f_{p_2}, \ldots, f_p \), \(g_1, g_2, \ldots, g_t \in \mathbb{C}[y_1, \ldots, y_n] \) such that \(1 = \sum_{j=1}^{t} g_j f_{p_j} \). Therefore,
\[
\mathfrak{g}(V; y_1, \ldots, y_n) = (\sum_{j=1}^{t} g_j) \mathfrak{g} \subseteq \mathfrak{g}.
\]

3.7 Corollary Let \(\mathfrak{g} \) be a maximal, finite codimensional subalgebra of \(\mathfrak{g}(V; y_1, \ldots, y_n) \) such that \(\mathfrak{g}^{(\infty)} = \{0\} \). Then, there exists uniquely a point \(p \in \mathfrak{g}(V; y_1, \ldots, y_n) \) such that \(\mathfrak{g} = \mathfrak{g}(V; y_1, \ldots, y_n) \).

Proof. By 3.5 Corollary, \(\mathfrak{g} \) is a \(\mathbb{C}[y_1, \ldots, y_n] \)-module, and hence
there is a point $p \in \mathbb{C}^n$ such that $\mathcal{J} + M_p\mathcal{O}(V; y_1, \ldots, y_n) \subseteq \mathcal{O}(V; y_1, \ldots, y_n)$. Thus, $\mathcal{J} \supseteq M_p\mathcal{O}(V; y_1, \ldots, y_n)$ by the maximality of \mathcal{J}.

It is easy to see that such a point is unique, because $M_p + M_q = \mathbb{C}[y_1, \ldots, y_n]$ if $p \neq q$.

If $\mathcal{O}(V; y_1, \ldots, y_n)(p) = \{0\}$, then $M_p\mathcal{O}(V; y_1, \ldots, y_n)$ is an ideal of $\mathcal{O}(V; y_1, \ldots, y_n)$, hence it must be contained in $\mathcal{J}(\infty)$. Thus, by the assumption, it must be $\{0\}$, contradicting the assumption. Therefore we get $\mathcal{O}(V; y_1, \ldots, y_n)(p) \neq \{0\}$. Now, there is $u \in \mathcal{O}(V; y_1, \ldots, y_n)$ such that $u(p) \neq 0$ and $f \in \mathbb{C}[y_1, \ldots, y_n]$ such that $f(p) = 0$ and $(uf)(p) \neq 0$. For every $v \in \mathcal{O}(V; y_1, \ldots, y_n)$, fv is an element of \mathcal{J}. Therefore if u were contained in \mathcal{J}, then $[u, fv] \in \mathcal{J}$. Thus, $(uf)v \in \mathcal{J}$. It follows that $(uf)(p)v \in (uf - (uf)(p))v + \mathcal{J} \subset \mathcal{J}$. Since $(uf)(p) \neq 0$, we get $v \in \mathcal{J}$, hence $\mathcal{J} = \mathcal{O}(V; y_1, \ldots, y_n)$, contradicting the assumption.

By the above argument, we see that $\mathcal{J} \subseteq \mathcal{O}_p$, and hence $\mathcal{J} = \mathcal{O}_p$ by the maximality of \mathcal{J}. Since $\mathcal{J}(\infty) = \{0\}$, we see $p \notin \mathcal{W}_\mathcal{O}$ by definition.

This completes the proof of 3.2 Proposition.

3.8 A diffeomorphism induced from Φ.

Let $\mathcal{O}(V'; z_1, \ldots, z_n)$ be another Lie algebra of polynomial vector fields on \mathbb{C}^n'. Subsets $V'_\mathcal{O}$, $\mathcal{W}_\mathcal{O}$ are defined by the same way as in $\mathcal{O}(V; y_1, \ldots, y_n)$. Suppose there is an isomorphism Φ of $\mathcal{O}(V; y_1, \ldots, y_n)$ onto $\mathcal{O}(V'; z_1, \ldots, z_n)$. For a point $p \in \mathcal{W}_\mathcal{O}$, \mathcal{O}_p is a maximal finite codimensional subalgebra such that $\mathcal{O}_p(\infty) = 0$. Then, $\Phi(\mathcal{O}_p)$ has the same property, hence there is a point $\Phi(p) \in \mathcal{W}_\mathcal{O}'$ such that $\Phi(\mathcal{O}_p) = \mathcal{O}'_{\Phi(p)}$, where $\mathcal{O}'_{\Phi(p)}$ is defined by the same manner as in $\mathcal{O}(V; y_1, \ldots, y_n)$. $\Phi : \mathcal{W}_\mathcal{O} \rightarrow \mathcal{W}_\mathcal{O}'$ is a bijective mapping. The goal of
this section is as follows:

3.8 Proposition Notations and assumptions being as above, assume further that \(\mathcal{O}(V; y_1, \ldots, y_n) \) (resp. \(\mathcal{O}(V'; z_1, \ldots, z_n') \)) contains a vector field \(X \) (resp. \(X' \)) such that \(X = \sum_{j=1}^{n} \beta_j y_j \partial / \partial y_j \) (resp. \(X' = \sum_{j=1}^{n'} \beta'_j z_j \partial / \partial z_j \)). Then \(\varphi \) can be extended to a holomorphic diffeomorphism of \(\mathbb{C}^n \) onto \(\mathbb{C}^{n'} \) such that \(\varphi (V) = V' \).

Note that the existence of \(X \) and \(X' \) are obtained by 2.1 Lemma.

Let \(\mathcal{U}_\mathcal{O} \) be the totality of \(\mathbb{C} \)-valued functions \(f \) on \(\mathcal{U}_\mathcal{O} \) such that \(f u \) can be extended to an element of \(\mathcal{O}(V; y_1, \ldots, y_n) \) for every \(u \in \mathcal{U}_\mathcal{O} \). Remark that the extension of \(f u \) is unique, because \(\mathcal{U}_\mathcal{O} \) is dense in \(\mathbb{C}^n \). \(\mathcal{U}_\mathcal{O} \) is a ring and \(\mathcal{O}(V; y_1, \ldots, y_n) \) is an \(\mathcal{U}_\mathcal{O} \) module. For \(\mathcal{O}(V'; z_1, \ldots, z_n') \), we define \(\mathcal{U}_\mathcal{O}' \) by the same manner as above.

3.9 Lemma Notations and assumptions being as above, \(\varphi \) induces an isomorphism of \(\mathcal{U}_\mathcal{O} \) onto \(\mathcal{U}_\mathcal{O}' \).

Proof. Let \(f \in \mathcal{U}_\mathcal{O} \) and \(p \) an arbitrary point in \(\mathcal{U}_\mathcal{O} \). By definition, \(f(\mathcal{O}) \) can be extended to an element of \(\mathcal{O}(V'; z_1, \ldots, z_n') \), which will be denoted by the same notation. \(f(\mathcal{O}) - f(p) \in \mathcal{O}(\mathcal{O}') \), hence \(f^{-1}(f(u)) - f^{-1}(f(p)) \in \mathcal{O}(\mathcal{O}') \), that is, \(f^{-1}(f(u)) = f^{-1}(f(p)) \) if \(u = 0 \). Therefore, \(f^{-1}(f(u)) = f^{-1}(f(p)) \), that is, \(f^{-1}(f(u)) = f^{-1}(f(p)) \).

Since the left hand member is contained in \(\mathcal{O}(V; y_1, \ldots, y_n) \), we see \(\varphi f \in \mathcal{U}_\mathcal{O} \). It is easy to see that \(\varphi \) is a bi-holomorphic diffeomorphism of \(\mathbb{C}^n \) onto \(\mathbb{C}^{n'} \).

3.10 Lemma Under the same assumption as in the statement of 3.8

Proposition, we have \(\mathcal{U}_\mathcal{O} = C[y_1, \ldots, y_n] \). Hence \(\varphi \) is a bi-holomorphic diffeomorphism of \(\mathbb{C}^n \) onto \(\mathbb{C}^{n'} \).

Proof. Obviously \(\mathcal{U}_\mathcal{O} \supset C[y_1, \ldots, y_n] \). For any \(f \in \mathcal{O} \), \(fX \) is an element of \(\mathcal{O}(V; y_1, \ldots, y_n) \). Thus, \(f_1, \ldots, f_n \in C[y_1, \ldots, y_n] \). Hence
it is not hard to see \(f \in \mathcal{C}[y_1, \ldots, y_n] \).

3.11 Lemma \(\phi(c^n - V_{\phi}) = c^{n'} - V_{\phi'} \).

Proof. By the above lemma, we have \(n = n' \). Let \(p \) be a point of \(c^n - V_{\phi} \). Then \(\text{codim} \mu(\hat{\phi}^p) = n \), hence \(\text{codim} \mu(\hat{\phi}^p) = n \), because \(\mu(\hat{\phi}^p) = \mu(c^n - V_{\phi}) \). Therefore, we see \(\phi(c^n - V_{\phi}) = c^{n'} - V_{\phi'} \).

This completes the proof of 3.8 Proposition.

3.C Recapture of the germ.

Recall that \(V \) is a germ of variety with \(0 \) as an expansive singularity. Hence there is \(X = \sum_{i = 1}^n \mu_i y_i \partial / \partial y_i \in \mathfrak{X}(V) \) such that \(\text{Re} \mu_i > 0 \) for \(1 \leq i \leq n \). Since \(X \) is a linear vector field, \(\exp tX \) is a bi-holomorphic diffeomorphism of \(c^n \) onto itself. Remark that \(\exp tX) \ V = V \) as germs of varieties, for \(X \mathfrak{J}(V) \subseteq \mathfrak{J}(V) \) where \(\mathfrak{J}(V) \) is the ideal of \(V \) in \(\mathcal{O} \). Let \(\tilde{V} = \bigcup_{t \in \mathbb{R}} (\exp tX) \ V \). Though \(V \) is a germ of variety at \(0 \), the expansive property of \(X \) yields that \(\tilde{V} \) is a closed subset of \(c^n \) such that \((\exp tX) \tilde{V} = \tilde{V} \). Obviously, \(\tilde{V} = V \) as germs of varieties.

In this section, we shall prove that \(V_{\phi} = \tilde{V} \), hence \(V_{\phi} = V \) as germs of varieties. Let \(\hat{\mathfrak{J}}(V) \) be the closure of \(\mathfrak{J}(V) \) in \(\hat{\mathcal{O}} \). Note that \(\mathfrak{J}(V) \) is also the closure of \(\mathfrak{X}(V) \) in \(\hat{\mathfrak{J}}(V) \). Hence \(\mathfrak{J}(V) \subseteq \hat{\mathfrak{J}}(V) \). Recall that \(\mathfrak{J}(V; y_1, \ldots, y_n) \) is given by using the eigenspace decomposition of \(\mathcal{J}(V) \) with respect to \(\text{ad}(X) \), that is, every \(u \in \mathfrak{J}(V) \) can be rearranged in the form \(u = \sum u_\lambda \), as in 1.6 Lemma, and \(\mathfrak{J}(V; y_1, \ldots, y_n) \) is generated by the \(u_\lambda \)'s. Similarly, we decompose \(\hat{\mathfrak{J}}(V) \) into eigenspaces of \(X \). Let \(f \) be an element of \(\hat{\mathfrak{J}}(V) \). Then, \(f \) can be rearranged in the form

\[
(23) \quad f = \sum f_\nu, \quad f_\nu = \sum_{(a, \lambda) = \nu} a_\lambda y^\nu.
\]

Then, \(f_\nu \) is a polynomial such that \(Xf_\nu = \nu f_\nu \). By the same proof
as in 1.6 Lemma, we see that $f_u \in \hat{\mathcal{J}}(V)$. We denote by $I_{\hat{\mathcal{J}}}$ the ideal of $\mathbb{C}[y_1, \ldots, y_n]$ generated by all f_u's with $f \in \hat{\mathcal{J}}(V)$.

3.11 Lemma $I_{\hat{\mathcal{J}}} \subset \mathcal{J}(V)$.

Proof. Let $f \in \mathcal{J}(V)$. f can be rearranged in the form $f = \sum_{\nu}^\infty f_{\nu}$, $f_{\nu} = \sum_{\lambda}^\infty a_{\lambda} y^{\nu}$. We may assume $0 < \nu_1 < \nu_2 < \cdots < \nu_k < \cdots$. First of all, we shall show $f_{\nu_k} \in \mathcal{J}(V)$. Note that $e^{\nu_1 t} (\exp - tx) f = \sum e^{-(\nu_i\nu_{i+1}) t} f_{\nu_{i+1}} \in \mathcal{J}(V)$ for $t > 0$. Suppose f is defined on a neighborhood N of 0 in \mathbb{C}^n.

Then, $(\exp - tx)f$ is defined on $\exp tx)N$. Note that $\bigcup_{t > 0} (\exp tx)N = \mathbb{C}^n$ and $\bigcup_{t > 0} (\exp tx) (N \cap V) = \tilde{V}$. Since $e^{\nu t} (\exp - tx)f = 0$ on $(\exp tx) (N \cap V)$, taking $\lim_{t \to \infty}$ we see that $f_{\nu_k} = 0$ on \tilde{V}. Since $\tilde{V} = V$ as germs of varieties, we have $f_{\nu_k} \in \mathcal{J}(V)$. Repeating the same procedure to $f - f_{\nu_k}$, we have $f_{\nu_{k+1}} \in \mathcal{J}(V)$, and so on. Hence $f_{\nu_i} \in \mathcal{J}(V)$.

Let $f \in \hat{\mathcal{J}}(V)$. Then, there is a sequence $\{f^{(m)}_m\}$ in $\mathcal{J}(V)$ such that $\lim f^{(m)}_m = f$ in the topology of formal power series. For any eigenvalue ν of $X : \hat{\mathcal{O}} \to \hat{\mathcal{O}}$, we see $f^{(m)}_\nu \in \mathcal{J}(V)$, and $\lim_{m \to \infty} f^{(m)}_\nu = f_\nu$ as polynomials, because the degrees of $f^{(m)}_\nu$, f_ν are bounded from above by a number related only to ν_1, \ldots, ν_n and ν. Since $f^{(m)}_\nu |_V = 0$, we have $f_\nu |_V = 0$, hence $f_\nu \in \mathcal{J}(V)$. Recall that the f_ν's generate $I_{\hat{\mathcal{J}}}$. Thus, we see $I_{\hat{\mathcal{J}}} \subset \mathcal{J}(V)$.

3.12 Lemma Notations and assumptions being as above, a polynomial vector field u with $u(0) = 0$ is contained in $\mathcal{O}(V; y_1, \ldots, y_n)$ if and only if $u I_{\hat{\mathcal{J}}} \subset I_{\hat{\mathcal{J}}}$.

Proof. For $u \in \mathcal{O}(V)$, $f \in \hat{\mathcal{J}}(V)$, let $u = f_\lambda u_\lambda$, $f = f_\nu f_\nu$ be the decompositions of eigenvectors with respect to $\text{ad}(X)$, X respectively. Then, $u_\lambda \in \mathcal{O}(V; y_1, \ldots, y_n)$, $f_\nu \in I_{\hat{\mathcal{J}}}$. Since $X u_\lambda f_\nu = [X, u_\lambda] f_\nu + u_\lambda X f_\nu = (\lambda + \nu) u_\lambda f_\nu$, $u_\lambda f_\nu$ is also an eigenvector of X. Since $uf \in \hat{\mathcal{J}}(V)$, the $u_\lambda f_\nu$'s appear in the eigenspace decomposition of uf, and hence $u_\lambda f_\nu \in I_{\hat{\mathcal{J}}}$. Thus, we have $\mathcal{O}(V; y_1, \ldots, y_n) I_{\hat{\mathcal{J}}} \subset I_{\hat{\mathcal{J}}}$.

-29-
Conversely, if $uI_{\hat{\mathcal{F}}} \subset I_{\hat{\mathcal{F}}}$ for a polynomial vector field u with $u(0) = 0$. Then, $u\hat{\mathcal{J}}(V) \subset \hat{\mathcal{J}}(V)$ by taking the closure in the formal power series. Note that $u\mathcal{J}(V) \subset \mathcal{O} \cap \hat{\mathcal{J}}(V)$. We next prove that $\mathcal{J}(V) = \mathcal{O} \cap \hat{\mathcal{J}}(V)$. For that purpose, we have only to show $\mathcal{J}(V) \supset \mathcal{O} \cap \hat{\mathcal{J}}(V)$, because the converse is trivial. Let $f \in \mathcal{O} \cap \hat{\mathcal{J}}(V)$, and $f = \sum f_\nu$ the eigenvector decomposition of f with respect to X. Then, by 3.11 Lemma, we have $f_\nu \in I_{\hat{\mathcal{F}}} \subset \hat{\mathcal{J}}(V)$. Thus, $f_\nu = 0$ on V, hence $f = 0$ on V. This means $f \in \mathcal{J}(V)$. Thus, $uI_{\hat{\mathcal{F}}} \subset I_{\hat{\mathcal{F}}}$ yields $u \in \mathcal{X}(V) \subset \mathcal{O}(V)$. However u is a polynomial vector field in y_1, \ldots, y_n, hence $u \in \mathcal{O}(V; y_1, \ldots, y_n)$.

3.13 Lemma $V_{\hat{\mathcal{F}}} = V_{I_{\hat{\mathcal{F}}}}$: the locus of zeros of $I_{\hat{\mathcal{F}}}$.

Proof. Let p be a point in $\mathbb{C}^n - V_{\hat{\mathcal{F}}}$. By definition there are $u_1, \ldots, u_n \in \mathcal{O}(V; y_1, \ldots, y_n)$ such that $u_1(p), \ldots, u_n(p)$ are linearly independent. Assume for a while that $p \in V_{I_{\hat{\mathcal{F}}}}$. Since $u_1I_{\hat{\mathcal{F}}} \subset I_{\hat{\mathcal{F}}}$, we have

$$(u_{l_1}^1 u_{l_2}^2 \cdots u_{l_n}^n f)(p) = 0$$

for every $f \in I_{\hat{\mathcal{F}}}$ and any l_1, l_2, \ldots, l_n. Thus, $f = 0$, contradicting the fact $I_{\hat{\mathcal{F}}} \neq \{0\}$. Therefore, $V_{\hat{\mathcal{F}}} \supset V_{I_{\hat{\mathcal{F}}}}$.

Conversely, let $p \in \mathbb{C}^n - V_{I_{\hat{\mathcal{F}}}}$. There is then $g \in I_{\hat{\mathcal{F}}}$ such that $g(p) \neq 0$. By 3.12 Lemma, $g\partial/\partial y_1, \ldots, g\partial/\partial y_n \in \mathcal{O}(V; y_1, \ldots, y_n)$, which are linearly independent at p. Hence $p \in \mathbb{C}^n - V_{\hat{\mathcal{F}}}$. Thus, $V_{I_{\hat{\mathcal{F}}}} \supset V_{\hat{\mathcal{F}}}$.

3.14 Lemma $V_{I_{\hat{\mathcal{F}}}} = V$ as germs of varieties.

Proof. By 3.11 Lemma, we have $\mathcal{O}I_{\hat{\mathcal{F}}} \subset \mathcal{J}(V)$, hence $V_{I_{\hat{\mathcal{F}}}} \supset V$. Assume for a while that $V_{I_{\hat{\mathcal{F}}}} \supset V$. Then there is $f \in \mathcal{J}(V)$ such that $f \neq 0$ on V. Let $f = \sum f_\nu$ be the eigenvector decomposition of f. Then $f_\nu \in I_{\hat{\mathcal{F}}}$. Therefore $f_\nu = 0$ on V, hence $f = 0$ on V contradicting the assumption. Thus, we get $V_{I_{\hat{\mathcal{F}}}} = V$ as germs of varieties, and hence $V_{I_{\hat{\mathcal{F}}}} = V$.

-30-
By the above result, we get that \(\varphi : \mathbb{C}^n \rightarrow \mathbb{C}^{n'} \) maps \(\tilde{V} \) onto \(\tilde{V'} \) and \(\varphi(V) = V' \) as germs. This implies that \(\varphi^* \mathcal{J}(V') = \mathcal{J}(V) \) and hence \(d\varphi \mathcal{X}(V) = \mathcal{X}(V') \). This completes the proof of Theorem 1 in the introduction.
References