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A METHOD OF CLASSIFYING EXPANSIVE SINGULARITIES

By Hideki Omori

Introduction

To study singularities is in a sense to study the classification
of germs of varieties. It is therefore important to give a method of.
classification. The purpose of this paper is to show the classification
of a class of germs of varieties, which will be called expansive

singularities in this paper, is included in that of Lie algebras of

formal vector fields. As a matter of course, the classification of the
latter does not seem easy. However, note that such a Lie algéSra is
given by an inverse limit of finite dimensiénal Lie algebras of poly-
‘homial vector fields truncated at the order k, k2 0. Therefore such

Lie algebras CSn be understood by step by step method in the order k.

Let €% be the Cartesian product of n copies of complex numbers
€ with natural coordinate system (xl,...,xn). By & , we mean the
ring of all convergent power series in Xypees Xy centered at the

n

origin 0. Let V be a germ of variety in ~C at 0, and J(V)

the ideal of V in & ( cf.[2] pp86-7 for the definitions). Two

germs V{ V' are called bi-holomorphically equivalent if there is a
~germ of holomorphic diffeomorphism ¥ such that §(0) =0 and Py
= V! '
Let X ©be the Lie algebfa of all germs of holomorphic vector
fields at 0, and ¥(V) the subalgebra defined by
X = JueX; uwdwmcdwmi.
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¥ (V) is then an & -module. If tl:xere are ‘Vl""";s’ linearly indepgnd—-
~ent at 0, then Corollary 3,4 of [9] shows that V is bi-holomorphically,
equivalent to the direct product ¢ x W, where W C Cnfs. Thus, for the
structure of VSingularities/ x;ve have only to consider the germ W.

Taking this fact into account; we may restrict our concern to the
varieties such that ali u € ¥(v) vanishes at 0, which we assume

throughout this papér, i.e. X(V)(0) = iO} .

u € X(V) (u(0) = 0 ) is called a semi-simple expansive vector

field, if after a suitable bi-holomorphic change of variables at O,

u can be written in the form
n .

! A
where -ﬁl,‘..., ﬁn lie in the same open half}-—plane» in € about the
origin. ( See also §2.A for a justification of this definition.) The

origin 0 .is called to be an expansive singularlity, if X (V) contains

a semi~simple expansive vector field. If V is given by‘ the iocus

of zeros of a wéighted homogeneous polynomial, then V has an‘ expansive
"'siﬁgularlity at "D. The advantage of existencve of such a vector field
-u 1is that one can extend through exp tu a gel"m V to ;':1 subvariety

o~
V in c®

. In this paper we restrict our concern to the germs of
varieties with expansive singularities at the origin.
For such ¥X(V), we set ffk(v) = {u e X ; jku = 0'} , where

ku‘ is the k~th jet at 0. Since :{\(V) = {O(V) ’ Zk (V) is a finite

j
“codimens'ibn_al ideal of X (V) - such that [ X, n, X, N1 C xk_!_k (V)
and f\:{k (V) = {0}. wWe denote by g(v) the inverse 1limit of
I Xwy/ X (V)’g with the inverse limit topology. Since
—k kzo . “
'f(V)/ECk (V) is finite dimensional, g(v) is a Frechet space such

that the Lie bracket product [ , 1 .: g(V) x %(V) —> %(V) is
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continuous. Namely, %(V) is a Frechet-Lie algebra. It is obvious

that %(V) is a Lie algebra of formal vector fields, where a formal
: A

vector field wu is a vector field u = Z, ui’a/a X such that each

v, is a formal power series in RyresoaXy, without constant terms.

The statement to be proved in this paper is as follows :

Theorem I Let V, V' be germs of varieties with expansive singularitieg

at the origins of (I:n, c” respectively. Notations and assumptions

being as above, V and V' are bi-holomorphically equivalent, if and

only if cg(v) and 8(V') are isomorphic as topological Lie algebras.

By the above result, we see especially that any isomorphism ¢ of
() onto Z(V') preserves orders, that is, é%k(v) = O}k(v') for
every k. Hence, to classify g(v) is to classify the inverse system
{3( (v)/ Xk(v)} kzo® Note that X(V)/xk (V) is an extension of
x(v)/xk_l (V) with an abelian kernel xk—-l (V)/Ik (V). Such extensions

can be classified by representatiohs and second cohomologies (cf.[6]).

The proof of the above theorem is devided into several steps as
follows :
Step 1. We define the concept of Cartan subalgebras and prove the

conjugacy of Cartan subalgebras.

Step 2. Using the assumption thati V ( resp. V') has an expansive
singularity at O, we prove that there is a Cartan subalgebra g of
g(V) “such fhat ‘g C ¥ () ( resp. S’C_ ¥(V')). By a suitable bi-

holomorphic change of variables, every element of g ( resp. g’) can
be changed simultaneously into a normal form, which is a polynomial

vector field. Moreover, every“eigenvector with respect to ad(g ) is

a polynomial vector field.
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Step 3. Now, suppose there is an isomorphism b of g(v) onto % (v').
Then, by definition é (g_) is‘a Cartan subalgebra of g}(V'). Hence

by Steps 1, 2 we may assume that: o (S YC X {V'). Thus, considering
the eigenspace decomposition of g;ﬂﬂ, ¥(v') with respect to ad(% )

'ad(gf) respectively, we see that é induces an isomorphism of 63 onto
&’ ., where 5) ( resp. @’) is the totality of u € g(v) ( resp. g- (v'y))
which can be expressed as a polynomial vector field with respect to the

v
local coordinate system which normalizes % { resp. g ).

Step 4. From isomorphism <b :  —> @’ , we conclude by the same
procedure as in [5] that there is a bi-holomorphic diffeomorphism § of
c¢® onto €® such that $(0) =0 and 4% = ®7 . The main idea of
making such 3’ is.roughly in the fact that every maximal subalgebra of
§ corresponts to a point. However, since @(0) = {0}, the situation
is much more difficult than that of [1]. Existence of expansive vector
field playé’an important role at this step as well as in the above

steps.

Step 5. Recapturing V from the Lie algebra § , we can conclude

(V) = v'.

The theorem is proved by this way. Note that the converse is

trivial.
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§1 Conjugacy of Cartan subalgebras

We dengte a formal power series f in a form f = w\zoa“xd .
e q « £y
where ay€C, o = (o -, %), lel=o i+ .o. + & and x¥ = xl‘-xz*--- x::",

We denote-by F the Lie algebra of all formal vector fields and 3k .
the subalgebra
"
{u ceF ; u = i‘Z(&Z\;kai'“ XO(?/axi'}
J 1is then regarded as the inverse limit of the system {3/ gk : pkg,
where P ¢ g/g xk+1 S/Jk is the natural projection. We denote .
by "ék the projection of J onto g/c}k. p, and 'f)’k are sometimes
called forgetful mappings. Since 5/ 3k is. a finite dimensional
vector space over C, 3 is a Frechet space, and the Lie bracket
product is continuous.
Let g ‘be a closed. Lie subalgebra of 3: , and gk = gk(\%

The closedness of g implies that ‘g is the inverse limit of the
system {g/gv ; pk} k20" In this paper, we restrict our concern to

a closed subalgebra g of 730. For any subalgebra ,Qg of % ,'.we,
denote by ‘TC(;(S) the normalizer of 18 , e w(f) = {u e"} ;

{u, ,qﬁ 1C x’g} , .and by S(o) (,5) the O-eigenspace of ad(gg )y, i.e.
g(o) (23) is the totality of v € g satisfying that there are non-
negative integers m k2 0, (depending on v) such that ad (S)mk,v € g'k
for all S € 28 and for all k20, where ad(u)v = [u,v]. If ,qg is
,nilpotent,v then g(o) (28) ) 't‘((,g%). Therefore, if g(o) (,qg) = ,QS , then
'T((;Qg) = ;28 . The converse is also true if dim ‘6((0) (22) <00 (cf.[6]).

A subalgebra S of g is called a Cartan subalgebra of % , if

the following conditions are sitisfied :

(5 : 1) g is a closed subalgebra of g such that Pk% is a nilpotent
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subalgebra of g‘/gk for every k=20,

(5.2 §= g°%).
Note that if dim g<m above % is a usual Cartan subalgebra. The

'statement to be proved in this chapter is as follows :

Proposition A Let J be a closed subalgebra of 550. Then, there

A
exists a Cartan subalgebra g of g . For Cartan subalgebras S ,S

A
of g , there is an inner automorphism A of ¥ such that Ag =§ .

1.A. Automorphisms of "C'}' .

Let § be a closed Lie subalgebra of 2}0, and gck = ‘J(\Z}'k
For every u Gg the adjoint action ad(u) leaves each gk invariant,

hence ad(u) induces a linear mapping ak(u) of ‘g/gk into itself.

ad(u) is then regarded as the inverse limit of the system {ak(u)g kzo®

etcad (u)

Define a linear mapping K] O(S —> ‘g by the inverse limit of

t-a; (u) . . . . trad(u) .
{e k } kzo® Since ad(u) is a derivation of g , e is a
one parameter family'of automorphisms of g . The group GL(S)

generated by iead(u); u E‘gi is called the group of inner auto-

morphisms of % . The purpose of this section is to investigate the

structure of OL(%r) .
i

and

A
Let O’ “be the ring of all formal power series lelzoad x ¥
RN =

A

A
Gk the ideal given by Gk = {‘er(l,z_k«f-ta

dimensional algebra over . We denote by %k’ “k the projections

N ~
® x“}. O/Gk is then a finite
A A A A A é A
® — G/@k, 0 /Gk+l — /Gk respectively. Everiz ueé 30 acts
A A .
naturally on (@ as a derivation such that qu C Gk for every k.
Conversely, u € 30 can be characterised by the above property.

(k)

: 4
Every u € Jo induces, therefore, a derivation u of the algebra

A A
@/@k and u®)  is canonically identified with "éku. Conversely,
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~ A ~ A ~ ”~
for every derivation § of O/Gk such that § 60/ Gk C (90/@]{ there

is an element u € g'o such that: & = ’5 u.

k
A ~
Since a derivation u : 6 —-> G can be regarded as an inverse

o A ~ ~
G/Gk"‘> G/@k75 , we define an auto-

limit of derivations {f)’ku
morphism exp u of a’ by an inverse limit of iei’)km‘. 'We denote by
G' the group generated by iexp u ; u € g'g .
~Define an automorphism Ad(exp u) of J by
(2) (Ad(exp u)v)f = (exp u)v(exp-u)f, f € é‘ .

Since (d/dt)t=o (exp tu)f = uf, we see easily that

(3) gE Ad(exp tu)v = [ u, Ad(exp tu)v ].
t.ad (u) . . . . .,
On the other hand, e satisfies the same differential equation.

Thus, by unigueness, we obtain

(4) Ad(exp u) = 2d(1)

Especially, if %S is a closed Lie subalgebra of- 30, then

Ad(exp W) § = Y for every u € @ . Since

ead (u)ead v Ad (exp urexp v),

we obtain that CQU(J) = {Ad(g) ; geG' S .

(x)

o~
Let G be the group generated by iepku ; ue€ ‘3“;. Since

ey

AL A
) /6k is finite dimensional, is a Lie group with Lie algebra

O'a'/gk . For every integer & such that & =k, the group G(k). leaves

3&/3k invariant. Hence iG(k)S forms an inverse system. We

kzo
denote by G the inverse limit. Obviously, G' is a subgroup of G.

However, note that if a sequence (uo,ul,u-,un,-'--) satisfies u, € ‘39-

for every & z 0, then exp u -exp u
G(k)

1~---~exp unf’f-» is an element

of G. Since is a Lie group, G 1is a topological group under
the inverse limit topology. The purpose of the remainder of this

section is to show G = G' and that G is a Frechet-lLie group with

-] =
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.Lie algebra’ .

Let G](_k), kZ 1, be the group generated by iei;ku ; u € S‘g, and
G4 the inverse limit of {G](.k)}kal'
1.1 Lemma exp 4is a bijective mapping of ‘gi onto G,.
Proof. Let exgk be the exponegtial mapping of 031/ gk into G{k) ’

Bxu

. Since exp : 031»-—> G, is defined by the inverse

(k)
1

bijective. Since dgl/cgk = 5131 is a nilpotent Lie algebra, we see

i.e. exp u = 1

1imit of {exp_} , we have only to show that exp, : ‘ /8. G is
k k 1 k

that expy is regular and surjective (cf. [3] p 229). However, the
derivation 'jSku : 6 /é " > é/é\k is expressed by a triangular matrix
with zeros in the diagonal. Therefore, one can define 1log(l + N) by
“Zc: (-1)n_1Nn/n, which gives the inverse of expy - Thus expy is
bijective.

1.2 Corollary G' = G.

Proof. FWeAlf.léve only. to show G'DG. Since G(l) = G/Gl is genérated
by {'{Jlu ; u€ ‘gi , every ¢gE€G can be written in the form g =

exp u

1*€XP u,-*-- exp u +h, where Uy, € g and h€ G,. Thus, the

above lemma shows GCG'.

We next prove that G 1is a Frechet~Lie group. Although such a
structure of G has no direct relevance to 6ur present purpose, there
is an advantage of making analogies easy from the theory of finite
dimensional Lie groups.

Let € : fa'lac; > % be a linear mapping such that f')lm' i=1
for '{'16-5105 . It is not hard to see that E(u) = exp(f)'lﬁ'exp(u—Gﬁlu)
gives a homeomorphism of an open neighborhood U of 0 of ‘g onto an
open neighborhood ﬁ’ of the identity e of G. Since G is a topo-

logical group, there is an open neighborhood V of 0 of %', such that

~8—
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)l = EW), EWMZCE®. We set M(u,v) = 2 T(ZwWEMW) and
i(u) = §—l(§.(u)‘1) for u, v € V. We ’have next to prove the differ-
entiability of ” and i . However, the differentiability is defined
by inverse limits of differentiable mappings, hence that of " and
i are trivial in our case. Thus, we get the following:

1.3 Lemma G is a Frechet-Lie group with Lie algebra %

1.B. Simultaneous normalization and eigenspace decompogition

x) . 8,4 8,5
For any u € 30, the linear mapping u 9/ Gk —> @/ 9k

splits uniquely into a sum of semi-simple part us(k) and nilpotent part

o0

G/ék , we see that u
ul\(lk)' u(k+1)

such that [us(k.) ’uI\(Ik)] = 0. Using eigenspace decomposition of

P AL
ék) is also a derivation of G/Gk hence so

k+1 k+1 k+
is semi-simple by considering eigen-~-

(k+1) _ (k)
s = Ug

is For , we have that [pku = 0,

(k+1)

is nilpotent, and that P Ug

~ P :
space decomposition of 6‘/ 6k+l' Therefore, Ppu and

pkul\(]k-FD = ulgk) . Hence, taking inverse limit, we get formal vector

fields u s u which will be called the semi-simple part and the

N
nilpotent part of u respectively. A formal vector field is called

to be semi-simple if it has no nilpotent part.

Let ,&k be a nilpotent subalgebra of 30/ 3]{ for an arbitrarily

fixed k. Set ,é]; = {uék) : u(k)e ;&klx , and denote by p]i' ‘the

. . : pt =
fvorgetful projection of 30/ gk onto 5‘0/ 32, that is, Py
PePyy1*°  Proq- Since pi 5gk is a nilpotent subalgebra of 80/31 R
there is a basis ( fl(l) ,---,fr(ll) ) of Go/ 61 such that every

(1) 1 ok . . .
u € pk;& is represented by an upper triangular matrix. Let
(}Al(u(l)),...’}kn(u(l)))

mapping of pi ;&k into € for every 3Jj, which one may regard as a

be the diagonal part. }*j is then a linear

-0
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linear mapping of 28" into €. Since uél) is the semi-simple part
of u(l), it must satisfy
(1) (1) (1), (1)
5 u £, = . (u £.70 .
() s J IAJ ) J

By a simple linear algebra, we see that there are fl(k) "“’fn(}é) €

~ A
/6 such that
o k

(k) - (x) x), (k) ¢ (k) (%) .
5 £ = . f. £, = £, 1£j&n
(5) ug 5 )'\j (u ) i L 3 5 ( J )
(k) k L. . .
for every u € ,5 , where 'ltk is the forgetful projection of
~ A I A -
@o/@k onto eo/@L , that is, T\';: = Ty Tpaq=- Wiy .
. e (k) A A (k) . .
Since - f. € Go/Gk, fj is expressed in the form
(k) o
(7) £ = a. x% .,
J oZ<'l=<l;k 3,
_ % . (1) (1) . .
Set y. = a. x> . Since f s, £ are linearly indepen-
J s<kisk Jr% 1

can be

dent, these give a formal change of variables and every uék)

written in the form

(8) wB = > w®hy ey,

i1
Since [,8}; ,,ék] = 0, because ,Q%k is nilpotent, every u®) e yﬁk

should be written in the form

»

(x) _ o
) T é%:’-(:?:fiai'“ e

where <(u, pp= 0(1 /"l + e+ otn M- It should be noted that the semi-
(k)

simple part uék) of u has been changed into a linear diagonal
vector field such as (8).
Let zgk+1 be another nilpotent subalgebra of go/3k+l such
k+1 k k+1 (k+1) (k+1) k+1
that pkzg C,g , and let 'és = {us ;ou e L } .

k.
Since p%+l ,ék““l C p]t » the equality (5) holds also for every

u(l) ¢ pi-*_l/gk'*'l and the equality (6) does for every pk-dk'i-l. BY a
. 4
simple linear algebra, we see that there are f{k+l) ,-o-,fx(lk+l) e

~

A
GO/G}Hl such that

-10-
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(k+1) _(k+1) o k+1) | o (k+1) (k+1) (k)
10 u f. = s (u f. £ = £,7°,
Note that ffk+l) = fgk) + Z:, a. x¥ . Hence by putting
J ] =kt Jr™
(11) . = a. x¥
Y3 g\a\ékﬂ I

instead of (7), we get the same equations as (8) and (9) with respect

to R&k. Moreover we have

(12) us(’kﬂ) = Z‘ /‘*i(u(kﬂ))yi 9/9yi ’

v

(k+1) v
(13) u L2 %8 nym ai,tx Y 9/2Yi
(k+1) k+1 o<\t s R+4
for every u € é . Especially we obtain the following :

1.4 Lemma Notations and assumptions being as above, the forgetful

projection P ¢ 28];+1 "528]; is injective.

Let {zgkﬁ k> 1 be a series of nilpotent subalgebras /ék of

k+1 k : '
30/3]( such that pk»@g C 25 for every k21. We denote by ,28
the inverse limit, and set st = {us ;s u € ,283 . Note that dim;\/f]; £n
for every k 21. Thus, there is an integer ko such that Py 28];+1
—> ﬂ']; is bijective for every k2 ko' By a method of inverse limit,
we see that there is a formal change of variables

~
= PO <9 .
(14) Yj fj (Xl; lxn) 1£jgn, f] € OO

such that (8) and (9) hold for every u(k) € »Ak (k21), and

)

(15) u, = ,Z‘:/Mi(u)yi'é/ayi,

S

”

(16) u = a
KZJ\ (Z“.}“"“)‘;,
for every u € ,d .

o
i« Y¥09/9y;

Now, let g be a closed subalgebra of 30, and suppose the above
dk's are subalgebras of %/gk respectively. Hence, the inverse
limit 28 is a closed subalgebra of ‘g . We next consider the eigen-~

space decomposition of g with respect to ad (28). Since

-11-
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ad (u) : 3’0 — 330 leaves g ‘invariant for every u € ,J , and
[ad(u), ad(u )] = 0, we see that -ad(uy) : go —> JO is the semi-
simple part of ad(u) and hence a'd(us) 0('3' C 2} . Therefore, we have
only to consider the eigenspace decomposition with respect to ad(Qgsb) .
. . ~ . . )
For a linear mapping X\ of plsgs into €, i.e. D\e(pngs)*,

we denote by {, the subspace

N .
. = v

. {u © 30 P ;=Z;' <Z%;)A>w;=x 4,0 ¥ 9/9yi§. .

Note that Jk = {0] for allmost all A€ (51288)* except countably many

A's. By 1\‘(58) we denote the set of all A€ (ﬁlggs)* such that &,

# 10} . If §12§s = {0}, then we set 'ﬂ'(,qg) = 0 , because all /*j's

are zeros.

1.5 Lemma If 515725 = 0 , then 08(0) (é) = g

Proof. By (16), every u € )zg can be written in the form u = u, + u

1 2
such that
w-1{ w . w
= i ' %
u, = a. v. 2/3v. u, = a. 2/9v. .
1 .:Z; 5§i1 S vy /Y5 . 2= 2 L, %0 ¥ 20y

The reason for the shape of u is that the linear part of u 1is an

1

upper triangular matrix. Therefore, for every k21, there is an

integer mk

means (3 = g(o) (Qg) by definition.

. m Y
such that ad(u) X 80 C 3k for every u € QB . This

Now, we set g‘“(;ﬁ) = g(\ (‘}A for every Aeﬂ(ﬁg).

1.6 Lemma Every u € ‘g can be rearranged in the form

u = ZAG_“_(J)U) ’ u,\é 3,\

Moreover, every u, is contained in g(%) (QS).

Proof. Since the first assertion is trivial, we have only to show the

second one. Since 'ﬂ'(;zg) is a countable set, there is vy € Qgs

(1, *
o)
L ()

such that ) (vc()lv)) £ X (v for any X, A € “(;{8) such that A\ #

X. For every k, let be the truncation of u € g at the

-12~
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(k) (k)

order k. u is canonically identified with fSku. u can be
rearranged in the form u(k) = Zx€“(£);u§k), where each u(,}f) is the

truncation of wu, at the order k. Since 3%/ %k is finite dimension-

NG

[
al, only finite number of 's do not vanish. . Apply ad (vék)) to

u(k). Since ad(és)% C 9% , we have
¢ v 0
ad("cgk)) w9 = Zkeﬁ(«ﬁ) (vg) ud? e 3/ 3y
(k)

Hence, considering Vandermonde's matrix, we get u) ' € Og/%fk. Thus,

taking inverse limit, we get u, ¢ %( , hence the desired result.

1.7 Corollary f)k 05(0) (y&) is the zero-eigenspace of ad (ﬁkgg) :

%/%k > g/gk‘

Proof. It is trivial that gk%(o) (53) is contained in the zero-eigen-
space of ad(ﬁkgg), for [ng' g(o) (58 )] = o}l . Thus, we have only

to show the converse. The zero-eigenspace of ad (5ky8) is equal to

that of ad(f)k;.\vgs), that is, the space of all v(k)e fg/%k such

v(k) ~ should be written in the form

(9). Let v € g -be an element such that such that f)'k v o= v(k) , and

let v = ZAeI(&)V?\ be the decomposition in accordance with the above

that (8, of_,v™) 1 = {0} . Thus,

e ~ _ o (x) . (o)
lemma. Then it is clear that PV, =V Since voé 6(‘5 (,& ), we

get the desired result.

1.C Existence and conjugacy of Cartan subalgebras

Let g be a closed subalgebra of 3’0. If 9/%, = 10y , then
‘g/gk is nilpotent for every k21, for [gk"g‘,_] C %k+l .
Therefore, by 1.5 Lemma, we see that ‘5 itself is the only Cartan
subalgebra of Cg . Thus, the conjugacy is trivial in this case.

Now, suppose g/gl # 10} , and let Sl be a Cartan subalgebra

of %/gl.

“«@
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1.8 Lemma Let {(’Sl,---, %k be a series of Cartan subalgebras of

2 -
‘{S/‘Bl, e 9 /gk respectively such that pi-_-lg = Sl 1 for 254
% k. Then, there is a Cartan subalgebra Ek"‘l of a;} /aak+1 such
k+1 = %k

that pkg |
Proof. Let %I be a Cartan subalgebra of o‘]/gk+1’ We prove at

. /
first that pk%' is a Cartan subalgebra of g/%‘k. Since S is nil-

. ’ r (k+1) _ __(k+1) ’ (k)
potent, so is pk% . Let gs = {us ; u GS k, and let v
be an element of the zero-eigenspace of 128 %/, . Then, [v(k) Py g’s] = .

(kx+1

{0} and hence v(k) can be written in the form (9). Let v ) be an

element of S/gkﬂ; such that pkv(k+l) = v(k) . Using the eigenspace

'
decomposition of %/g]ﬁl with respect to ad( S S) , we see that

v(k+l) = ermg/)vik*ﬁl) . Note that this decomposition is given by

only rearranging of the terms of v(k+l) (cf.1.6 Lemma). Hence it is

(k1) _ (k) (k+1)

clear that B pkvo °

is an element of the zero-eigen-
! /
space of gs' However, since % is a Cartan subalgebra of ﬂ/g]ﬂl
4
we get v(k+l) € % . . Thus, v(k)
o
algebra of %/%k.

By the well-known conjugacy of Cartan subalgebras of aa/‘gk ,

/
€ pk% . Hence pk%' is a Cartan sub-

there is an inner automorphism A such that A(pk%,) = %k. Since

(k+1) (k)

there is a natural projection of G onto G (cf. 1.7A), there

is an inner automorphism A' of (S/g k41 Which induces naturally A.

Thus, by setting A° —%' = %k+1, %k+l is a Cartan subalgebra of
k+1 k
‘g/g k+1 Such that pk% = S .

By the above lemma, we have a series {%ki k21 of Cartan sub-

algebras of "g/gk such that pk%k“Ll = gk. Let \3 be the inverse

. «
limit of % .

1.9 Lemma Notations and assumptions being as above, S is a Cartan
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subalgebra of .

.

Proof. Since 5}{% = -%k, I’s’k% is a nilpotent subalgebra of ?J/o(;k

for every k21. By 1.7 Corollary, 'f)’k"g(o) (%) is the zero-eigen-

space of ad(pk% ). Since '_i)/kg = %k is a Cartan subalgebra, we have
‘I‘)fk :75(0) (g ) = gk and hence C('S(O) (S )y = g . Thus, 5 is a Cartan

subalgebra of 9 .

We next consider the converse of the above lemma.

1.10 Lemma Let 3 be a Cartan subalgebra of Z,] ." Then, i;k% is a

Cartan subalgebra of 03/‘8‘}( for every kz1.

Proof. By 1.7 Corollary, the zero-eigenspace of ad (f)JkS ) is equal
~ (o) . . I ’

to Py ‘g (S). Since % is a Cartan subalgeb‘ra of g , We see

o (o) Lo~ ~ .
b, 05 (S) = ka . Thus, Pkg is a Cartan subalgebra of g/‘gk.

(x)

As in 1.A, we denote by G the Lie group generated by

fepku ; u € [gk - Let T ¢ G(k+1)'-—> G(k) be the natural projection.
We shall next prove the conjugacy of Cartan subalgebras, which completes
the proof of Proposition A. Let g ’ g be Cartan subalgebras of ‘g .
By the argument in the first part of this section, we may assume

~ ~
%/3’1 # 10Y . Since pl% , ;"51% are Cartan subalgebras of 5/ g(l ,
(1)

~

A
such that Ad(g;) (§1% ) = pl% . Therefore, one may
’~

assume without loss of generality that f)'l% = %41% . Let ng)

there is 9, € G
be
the Lie group generated by T_epku ; u € gxl‘ for any L , L€ k.
’~
nS
1.11 Lemma Let % , % be Cartan subalgebras of 3 such that pke& =

(k+1) &
€Gy such that Ad(gk+l) (pk+l% )

Ik+1

ral
P % . Then, there is
k
A

§k+l % :

. PN ~ S ~ ~ ~.
Proof. Since pk% A= pk% ’ Pk+lg and pk+l% are Cartan subalgebras

"l -'lN
of B f =P B f . Let

-15-
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-1~ o~ / : -1 o~ A ”
Py Prf = pk+1€) @')%ﬂ,‘g%’ P P = P @{;(,5%

be the eigenspace decompositions with respect to ad(§k+l% ) and
~ > . . I - ~ B _
ad(pk+l% } respectively. Since pkpk+ls = pkpk+l§ -—}ﬁ{% , we see
’ ” . _
that Z({;)\C (gk/(g}&l and 7 qn  C fzgk/oc] ki1 It is well-known (cf.
i n
[6] pp59-66) that there are VyrceeaVy eZ g; p Wystt Wy €D ‘gx

A%o0 A%0
such that

A
Ad (exp vl)-~ Ad (exp vm)Ad(exp wl)-~ Ad (exp w )pk+1% = pk+l§

(k+1)
k

A

G(k+1)

, we see that there is Iy+1 € Gk

Since exp Vi, exp wj € G
Let G, be the subgroup of G generated by {eu ;i u€ i&k\ For
A .
Cartan subalgebras g R % of is , the above lemma shows that there
are elements 9yr Gproctr Gproce such that gke Gk and
Ad(g))Ad(g,) -~-Bd(g) § = § mod §, .-
Note that glgz--ogk'-' € G, hence putting g = glgz-—-gk---, we see
N
Ad(g)g = g . This shows the conjugacy of Cartan subalgebras.

Proposition A is thereby proved.
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%2 cartan subalgebras at expansive singularities
2.A Semi-simple expansive vector fields

In this section, notations are as in the introduction. A germ of
holomorphic vector field u & X(V) is called expansive, if the eigen-
values of the linear term of u at 0 1lie in the same open half plane

in € about the origin. u is called to be semi-simple expansive if

u is expansive and semi-simple as a formal vector field. The purpose

of this section is to show the following :

2.1 Lemma Let u € ¥ (V) be a semi-simple expansive vector field,

" Then, there is a germ yj = fj(xl,---,xn), 1%2j<n, of biholomorphic
change of variables such that wu can be written in the form

‘uzz‘ /’LiYig/ayi

«=1

Y

Proof. By a suitable change of variables y. = X such as

a,
J é\d\éx 3.
in (7), we have that u can be written in the form

3

u= 2 vy a/eyy W, Woe X (V)

i=1

for sufficiently large k. For the proof that wu is linearizable, it

is enough to show that there are holomorphic functions £, ... f in

1, r'n
~ .
Yy, Yy such that ufj = Pﬁfj ( 123j<£n) and fj = yj + higher
order terms. Set fj = Yj + gj and consider the eguation u(yj + gj)
= JA. . + g.). Then we get v |
My v gj) A g
7 - M . = - Wy..
(17) (u )*3) 95 Y
Since k is sufficiently large, we have
, : .
. -t (u - A3) _
(18) llmt-aoo e J'w yj 0
and «
Q ~
(19) - S e-—t(u - )A])W yj dt

0
-17-



exists as a germ of holomorphic functions (cf. [5]). Set g. =
® —t(u - Ry) )
- S e J

w y. dt. Then,
o J

(24} ~
-4 - d_ -t(u - AM;) -
(u )Aj)gj = S i J'w Yy at [ e

°

-t(u - A3) >
3 J o= —w y..
Wyl = vy

2.B Lie algebras containing semi-simple expansive vector fields.

Let § be a closed subalgebra of 30 such that g contains a
seni-simple expansive vector field X.

2.2 Lemma Let X be a semi-~-simple expansive vector field in ‘3 . Then,

there is a Cartan subalgebra S of % containing X.

Proof. By the same proof as in the above lemma, we see that X can be
linearizable by a suitable formal change of variables, and hence we
may assume that X can be written in the form X =i=i )'liyi?/ayi,

Re '&i >0. Let g(o) (x) ={ued ; [X,ul = 0} Since every ue g(o)()()
can be written in the form

(20) wu= 2 2, . ag ,¥Yo/ly;
P2 K R =y !

we see that 02(0) (X) is a finite dimensional Lie subalgebra of §.
Since ad(X) : ‘g(o) x) —> ‘75(0) (X) 1is of diagonal type, there is a
Cartan subalgebra S of 05(0) (X) containing X. We shall show that
is a Cartan subalgebra of ‘g . For that purvose we have only to
show %(o) (%) = S . Since X € S , we see ‘5(0) (g) C ﬂ(o) (X)
and hence %(o) (% ) is the zero-eigenspace of ad(S ) in "5(0) (xX).
However since % is a Cartan subalgebra of g(o) (X), we have S =

03(0)(% ).

2.3 Corollary If ‘g has a semi-simple expansive vector field, then

every Cartan subalgebra % of « S is finite dimensional and 5(9\) (g)

is finite dimensional for every %€ T ('S).

-18~
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Proof. By the above lemma, there is a finite dimensional Cartan sub-
algebra of ‘3 . However by Proposition A it implies that all Cartan
subalgebras are finite dimensional and every Cartan subalgebra contains

a semi-simple expansive vector field. Note that

3A={u6{}o;u=zz aiuy"‘é/éyi
CUpmre =N T

Since % contains an expansive vector field, we see that dim 3A < oo

and hence dim ‘g()‘) (S) < o0,

2.4 Corollary Notations being as in the introduction, if X (V)

contains a semi-simple expansive vector field X, then there is a

Cartan subalgebra of 9 (V) such that % C X (V). Moreover, for

that ' 03()') (S ) is contained in X (V) for every MXe T (S ).

Proof. Since X € X (V), 2.1 Lemma shows that X can be written in

the form X = 2 )AAi yi:l/in by a suitable biholomorphic change of
V=14

variables. Therefore, every u ¢ g(” (S) is contained in SE/ (v),

because u is a polynomial vector field in y,, ---,y .

2.C Isomorphisms of g(v) onto "a(V').

nl

Let V, V' be germs of varieties in G:n, C respectively.

Suppose there is a bicontinuous isomorphism ¢ of G (V) onto G(V').

2.5 Lemma Let S be a Cartan subalgebra of (g(V) . Then, so is é(%)
of V). |

Proof. Set %' = ¢ (S ). Since & : (V) > G (V') is continuous,
for every k' there is an integer k = k(k') such that @(gk(v))c
‘Sk. (V'). Thus, 'f;k, g' is a nilpotent subalgebra of %’\(V')/‘gk, ")
and %(O) ( 5') Dd( %t(o) (S )).“ Thus, replacing § by & 1, we get

the desired result.
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Now, suppose that V and V' have.expansive singularities at the
origins respectively. By 2.4 Corollary, X (V) and %(V') contain

Cartan subalgebras of ‘g(V) and Z (V') respectively.

2.6 Corollary Assumptions being as above, let % be a Cartan subalgebra

of "5(\7) contained in X (V). Suppose there is a bicontinuous iso-

morphism & of (V) onto G(V'). Then, there is a bicontinuous iso-

morphism ¢ of (V) onto g(V') such that \y(g) C *(V'), that

is, {/(3 ) is a Cartan subalgebra of ¢ (V') " contained in ¥ (V').
Proof. By the above lemma, & (%) is a Cartan subalgebra of Y (V').

By 2,4 Coro-llary, thete is a Cartan subalgebra 5’ of g (V') contained
in # (V'). By Proposition A, there is ge€G such that Aad(g) §">(E’s ) =
%I . Note that Ad(g) : °3 (v') c;S(V') is a bicontinuous isomorphism.

Thus, ¥ = Ad(g)® is the desired one.

In the remainder of this section, we assume that there is a bi-
continuous isomorphism . & : (V) > ¥ (V') such that .E_fg (%) = %,
where % R S' are Cartan subalgebras of g(v), G (V') respectively
such that ’3 C ¥(v) and %l C ¥(V'). By 2.3-4 Corollaries, there
is a local coordinate system (yl,o--,yn), related biholomorphically
to the original one such that every (5(” (%) is a finite dimensional
space of polynomial vector fields in Yy, .Yy, We choose such a
local coordinate system (zlr“"zn') for ‘0_-} (V'). 1XLet
@(V;yl'...,yn) (resp. @(V';zl,--o,zn,)) be the totality of u ¢ g(v)
(resp. g(v')) such that u can be expressed as a polynomial vector
field in Yq,°°"

Y, (resp. Zy,t" 2 ) @)(V;yl’---'v ) and

4 “n

& (v ZINERE ,zn,) are Lie subalgebras of X (V), ¥ (V') respectively.

&«

Since {S(M (%) C (p (V;yl,»--,yn) for every o eﬁ(g), we get the
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following :

2.7 Corollary Notations and assumptions being as above, the above

isomorphism c}g : GA(V) > ‘Q(V') induces an isomorphism of

é>(V;yl,---,yn) onto  P(V'izy, .-,z ).

Proof. Note that & (‘8(7\)(% )) = Cg()\)(s,), because (3()\)(%) is
an eigenspace of ad(g). Every u ¢ &Mv;yl’...’yn) can be written
in the form u = ‘Z?eﬂﬁwx , but the summation in this case is a finite

sum. Since & (u) = 2 ‘é(u,\) and $(u,) € 0(]()\)(3’), we see that

AeT(§
$(u) € @(V';zllo--,zn,). Replacing & by Zg—l, we get the desired

result.

Let C[yl’...,yn] be the ring of all polynomials in Yyroto, Y-
A
Then, since %(V) is an (@ -module, @)(V;yl,...’yn) is a

G:[yl' .. ,yn]—module.
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3 Theorem of Pursell-Shanks’ type

In this chapter, we consider two Lie algebras @(V;yl'...'yn)
and @(V';zl,-- -,zn,) of polynomial vector fields such that they are

C[yl, ce- ,yn] and (B[zl, Tt Zn ]-module respectively and that there is

an isomorphism & of @(V;yl’...,yn) onto @(vv;zl,...'zn,). The

goal is as follows :

Theorem II Notations and assumptions being as above, there is a bi-

L}
holomorphic mapping ¢ of ¢ onto c" such that dc? @(V;yl,---yn)

= @) (v? iZy, 0" o,zn,) . Moreover, §(v) = V' as germs of varieties.

Note at first that Theorem II implies Theorem I in the introduction,
for 2.6-7 Corollaries show that an isomorphism between (V) and

& (V') induces an isomorphism between &(V;er . -,yn) and

&(V' ;Zl' tte lzn') *
3.A Characterization of maximal subalgebras

Let g be a subalgebra of é) (V;yll---'yn). We denote by _%(oo)
the ideal consisting of all u € % such that ad (vl) .-.ad (vk)u € S
for every k20 and any Vy,---, Vv, € @)(V;yl,---,yn). Let Vg be
the set of all points g¢ ¢ such that @(V;yl,---,yn) does not span
h—dimensional vector space at ¢, that is, dim @(V;yl,-'-,yn) (g) < n.
For a point pé€ Cn, let & be the isotropy subalgebra of

p
S Wiyy,---,y ) at p, i.e. (§>p = {ue Wiy, ---,y) ; ulp) = o}.

3.1 Lemma For a point pe¢ c” - Ve o &)p is a maximal, finite co-

dimensional subalgebra such that (ﬁ)éoo) = {0y .

’ o n ‘
?roof. Since p€C - Vg , there are wu; -+, u € HViyy,---,y)
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such that uy () = 2. Yilp for 1£jsn. Consider
QP <o ad)¥) (B) = 0
(a (ul) ad(u )v) (p) =

for any M, -- ¢. , and we get easily that péw) =30} .
We next prove the maximality of @)p. Let S be a subalgebra of

&(V;yl,---,yn) such that S 2 &._. There is then an element v € S

P
such that v(p) # 0. By a suitable linear change of variables, we may
assume that v is written in the form

(21) v=g B/éylv-t- ,',-7;\_‘;. hj '3/3yj, g(p) # 0, hj(p) = 0.
Let (pl'.-.’pn) be the coordinate of p. Then, (yl-pl)uj€ é)p for
1£j<£n. Therefore, '[v, (yl - pl)uj] = v(yl)uj + (yl—pl) [v,uj] € % .
since  v(y;)(p) = g(p) # 0, we have %(p) = &)(V;yll...'yn) (p) and

hence S': @(V;yl,n-,yn).

Let ?/)éo be the set of all points g such that 6)q is a maxi-

mal subalgebra and &Déo-q) = {0} . By the above lemma, %y contains |

c” - V&o . The goal of this section is as follows :

3.2 Proposition Let ‘g be a maximal, finite codimensional subalgebra

of @(V;yll---,yn) such that g(oo) = {0\ . Then, there is a unigue

point p € ZJ@ such that ‘g = éDp'

Let % .be a subalgebra of @(V;yl,---,yn), and let J =
{fé C[yl,---,yn] : f@(v;yl:---,yn) C ‘g} . Obviously, J is an ideal
of (C[yl’n-,yn], for &(V;yl,n-,yn) is a C[yl,---,yn]-module.

3.3 Lemma Let & be a subalgebra of £(V;y,,-..,y ) such that

ﬁ:[yl,oo-,yn]‘g = ?(V;yl,.'..,yn). Then J@D(V;yl,...,yn) is an ideal

of {?(V;yl,...,yn) contained in % .
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Proof. By definition J&J(V;yl‘,---,yn) C% . since (uf)y =
[u,fv] = f£lu,v], we have ¢JJ € J, hence (€ly,,---,v, 1913 c J. By

the assumption, we get (Viy,, ---,y )J CJ. Therefore, J P (Viyy,---,y )

r4n
is an ideal of @)(V;yl,.-.’yn).

By the above lemma, we see also that J@(V;yl,...,yn) C ‘g(m).
The next lemma is due to Amamiya [1]. The proof is seen also in [5],
however we repeat the proof for the sake of selfcontainedness.

3.4 Lemma Let g be a finite codimensional subalgebra of

&)(V;yl,...'vn). Then, J # l0%.
‘ . (1) _ . . : .
Proof. Set g = fue g ; Iu, &J(V,yl'...'yn)] C%} . Since
codim ‘g <e¢s and ad(u) for every u€ g induces a linear mapping of
. . . . (1)
&)(V,yl'...,yn)/fg into itself, we see that codim < & and
hence in particular %(l) £ 1o0t.
Let v  be a non-trivial element in g(l), and let f be a
polynomial' such that vf # 0. Consider a sequence fv, f2v, f3v,---.
Since  codim %(1) < o0 , there is a polynomial P(t) in t such that

P(f)v € 05(1) .

We next prove that if v and gv are contained in g(l) , then
(vg)ze J. For that purpose, let w be an arbitrary element of

@(V;yl'...,yn). Then, we have

[v,gw] = (vg)w + glw,v] € O
[gv,w] = -{wg)v + glw,v] ¢ tg
Hence
(22) (vglw + (wg)v € f

for every w € @)(V:er...,yn). Replacing w by (wg)v, we have
(vg) (wg)v € g . Replacing w jn (22) by (vg)w, we have also
(Vg)zw + (vg) (wg)v € §

Hence (vg)zw € ‘g . Thus, (vg)2 € J.
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Set g = P(f). Then, v, gv G“(’.S(l) and vg # 0 because of vf # 0

Thus, we get J # {Ok.

N v () _ R
& (V,yl,...,yn) such that "3 = {0}. Then, % is a ¢[y1'_...,yn]—-
module. ‘
Proof. We have only to show that Cly;,...,y 19 § &(V;yl'...,yn) .
because if so, the maximality of & shows that C[yl"...'yn] a =g,
Thus, assume that C[yl,...,yn] q = @(V;yl'...,yn) . Then by the above
lemma, we get that lg(oo) 2 J&(V;yll...'yn) # 0 , contradicting the

assumption.

Now, we have only to consider a maximal finite codimensional s;ab-
algebra ‘g of @(V;yi'...,yn) such that ‘3(00) = {0} ana § is a
C[yl,...,yn]—module. Let Mp = {fe @[yl’...,yn] ; £(p) = 0}. /

3.6 Lemma For a C[yl,...,yn]‘—submodule ‘g of @(V;yl’...,yn), if

| F+M 0 Viyy,--0,y) = PWiyy,.-0 v)

for every p € €7, then g'= (@(V;yl'...'yn).

Proof. By Nakayama's lemma, we see that for each pe¢ Cn, there is fp

€ C[yl,...,yn] such that fp(p) # 0 and fp@(v;yl,...,yn) = g .
Since the ideal KD generated by {fp ; PE Cn} has no common zero, we
see that ¢ = C[Yll..-'yn] and hence there al;;e fpl' fp2,.--’ fo »
91, 9p,° 7719, € ¢ly,,--.,y,] such that 1 = pa gjfpj. Therefore,

|4
RWiyy, -0, y) = ((,-Z% 993 <3 -

3.7 Corollary Let g be a maximal, finite codimensional subalgebra of

é) (V;yl, oo ,yn) such that Cg(m) = {0'{. Then, there 'ex‘is‘t’s‘ uniquely

a point p e Z)& such that I = é)p'

Proof. By 3.5 Corollary, g is a C[yl'...'yn]—module; and hence
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. . n
there is a point pe @ such that ‘g + MP&D Viyy,---,¥) §
@(V;yl;.,.’yn). Thus, § D Mp(?(v;yl'...,yn) by the.maximality of I .
It is easy.to see that such a point is unique, because Mp + Mq =
clyy,---,v,1 if p # q.

If @WV}yl'...’yn)(p) = fo}, then Mp(?(v;yll...,yn) is an ideal
of . @(V;Yl_,...,yn), hence it must be contained in g(w). Thus, by
the assumption, it must be {0}, contradicting the assumption. Therefore
we get (?(V7Yl'..-,yn)(p) # {0Y. Now, there is u € é%v;yl,...,yn)
such that u(p) # 0 and fe¢ c[yl,...'yn] such that f(p) = 0 and
(uf) (p) # 0. For every v e § (V;yll...,yn), fv is an element of g .
Therefore if u were contained in g , then [u,fv] € °<S . Thus, (uf)v
< ES. It follows that (uf) (p)v € (uf - (uf)(p))v + g Ci‘g . Since
(uf) (p) # 0, we get Vv € g » hence S = @(V;yl'...,yn), contradicting
the assumption.

By the above argument, we see that g C &)p , and hence % =@p
by the maximality of g . Since ‘g () {Olq , Wwe see p G?J@, by

definition.

This completes the proof of 3.2 Proposition.
3.B A diffeomorphism induced from & .

Let § (v';zll...,zn,) be another Lie algebra of polynomial vector
]
fields on €% . Subsets V@,f, Z)@./ are defined by the same way as in
@(V;yl,...~'yn). Suppose there is an isomorphism § of @D(V;yll...,yn)
onto &(V-;zl'...,_zn,). ?or a point p € Wp @p is a maximal
finite codimensional subalgebra such that @ém) = 0 . Then, & (&Jp)
has the same property, hence there is a point P(p) € ?J&/ such that
<

§>(&>p) = &é{)(p), where &;’f?) is defined by the same manner as in

&(V;yl'...,yn). ff H ‘L)@"‘)‘Z‘)&’ is a bijective mapping. The goal of
. —26~
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this section is as follows :

3.8 Proposition ' Notations and assumptions being as above, assume

further that @(V;yl’...,yn) (resp. &(V';zl'...,zn,))' contains a

vector field X (resp. X') such that X = j ﬁij 2/ yj ( resp.
J=1

n*

X' = 7 fA'jzj 2 /2 zj) . Then ¢ can be extended to a holomorphic diffeo-
5= ;
morphism of €” onto €"  such that ¢ (Vp ) = Vpr .

Note that the existence of X and X' are obtained by 2.1 Lemma,

Let \Ifé be the totality of (¢-valued functions £ on ?‘)@ such that

v.) for every u €

fu can be extended to an element of @)(V;yl’...,_n

@(V;yl'...,yn) . Remark that the extension of fu 1is unique, because
We is dence in c™. % is a ring and & (Viy,,.-.,v,) is an 11/”@)_
module. For @(V‘;zl,...,zn,) , we define \][p/ by the same manner as

above.

3.9 Lemma Notations and assumptions being as above, ¢ induces an

isomorphism of &@/ onto \lfgg .

Proof. Let £ Gf{@,/ and p an arbitrary point in %)&3. By definition,
f $(u) can be extended to an element of @(V';zl'...,zn.), which will
be denoted by the same notation. f ) ~ £(®p))P(u) € @%(p)' hence
b - £($ENBM) € P, that is, §HERW - £(F(0)E W) (p)
= 0. Therefore, é_l(fé(u))(p) = £(9(p))u, that is, é’l(f@(u)) = (9*f)u.
Since the left hand member is contained in @(V;yl'...'yn) , we see

*f € LIF@ . It is easy to see that ?* : LL"@, .-)l:[fp‘ is an isomorphism.

3.10 Lemma Under the same assumption as in the statement of 3.8

Proposition, we have Ilf&) = ¢ly,,..:,y, 1. Hence @
¥
diffeomorphism of c¢” onto ¢ .

¢

Proof. Obviously ’lf&)Dﬁf[yl,--‘»,yn]. For any fé‘yp , £X is an

element of g)(v;yl,...,vn). Thus, fyl,n-,fyn € C[yl,...lvn] . ‘Hence
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it is not hard to see féfm[yll...,yn].

3.11 Lemma §(C" - Vg ) =" - Ve .

Proof. By the above lemma, we have n = n'. Let p be a point of
n . . _ . i . ’ _ ’
C" - Vg . Then codlnnﬁk)—-n, hence codim &?Kp) = n, because ?%ﬂp)
n _ ~n' o
§)(85p). Therefore, we see ?(C - Vg ) =C Ver -

This completes the proof of 3.8 Proposition.
3.C Recapture of the germ.

Recall that V is a germ of variety with 0 as an expansive
singularity. Hence there is X = éi‘ﬂiyaia/éyi € ¥ (V) such that
Re i, 0 for 1gci$n. Since X is a linear vector field, exp tX
is a bi-holomorphic diffeomorphism of ¢" onto itself. Remark that
(exp tX)V = V as germs of varietis, for X J(v) C J (V) where <§(V)
is the ideal of Vv in O . Let 6 = U (exp tX)V. Though V is a

T6 R
germ of variety at 0, the expansive property of X yields that v

is a closéd subset of €” such that (exp tX)V = §. Obviously, v =v
as germs of varieties.

In this section, we shall prove that V& = %, hence V@ =V as
germs of varieties. Let (ﬁ(v) be the closure of (V) in 8 . Note
that (V) 1is also the closure of %(V) in 30. Hence ‘5(V)<§(V)(:
k§(V). Recall that Gﬂv;yl’...,yn) is given by using the eigenspace
decomposition of gS(V) with respect to ad(X), that is, every uc¢
g;(v) can be rearranged in the form u = 22 u, as in 1.6 Lemma, and
5p(v;yl,...,yn) is generated by the u,'s. Similarly, we decompose
j(v) into eigenspaces of X. Let f be an element of ﬁ(v). Then,

f can be rearranged in the form

(23) £= 7 £,, fy, =2 ayY.
' (o pd=v

Then, £, is a polynomial such that Xf, =Vf, . By the same proof
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A
as in 1.6 Lemma, we see that £ € (V). We denote by I, the ideal of
N
cc[yl,...,yn] generated by all f,'s with f € (V).
3.11 Lemma Ig C § (V).

v=1

oQ
Proof. Let f ¢d(v). £ can be rearranged in the form £ = Z f,,.~ ’

£, = %,_) a,y¥ . We may assume 0 < V,<V,<---<Y <, First of all, we
¢ Yo p >N :
‘) —-— ‘). —-v
shall show f,iE&(V). Note that e ‘t(exp-tX)f =7 e 0 ‘)tf,,_ e Jw)
i

for t>0. Suppose f is defined on a neighborhood N of 0 in c”.
Then, (exp-tX)f is defined on (exp tX)N. Note that t\>Jo(exp tX)N =

c¢” and yo(exp tX) (NAV) = V. since ev‘t(exp—tx)f = 0 on

(exp tX) (N~V), taking litr_t_lim we see that £, =0 on ¥. Ssince V =
V as germs of varieties, we have fv1e&(v) . Repeating. the same procedure
to £ - £, , we have £, € J(v), and so on. Hence fu‘s € &(V).

Let f € 3(V). Then, there is a sequence if(m)} in J(v) such
that 1lim f(m) = £ 1in the topology of formal power series. For any

A A
eigenvalue v of X : O > § , we see ff,m)e.&(v), and lérﬁwf(m) =

1 4
£, as polynomials, because the degrees of f,(,m) , £y are bounded
from above by a number related only to ;Alr"" )’\/\n and V . Since
f(ym)lv = 0, we have f,,!v = 0, hence £, €J(V). Recall that the f£,'s

generate Ip . Thus, we see Ig cldomy.

3.12 Lemma Notations and assumptions being as above, a polynomial

vector field u with wu(0) = 0 is contained in @(V;yl';..,yn) if
and only if uI&, CIp .

Proof. For u € g(v), f € 3(V), let u = ZA v, f= ZV f, be the
decompositions of eigenvectors with respect to ad(X), X respectively.
Then, u, € @(V;yl,...,yn), f, €Iy . Since Xu, f, = [X,up1f, + u,xf,
- (XN+V)u, £, , u)\f,, is alsq@ an eigenvector of X. Since uf €§(V),
the wu,f,'s appear in the eigenspace decomposition of uf, and hence

u, £, € I&j . Thus, we have &(V;yl’...’yn)I@ C Ié, .
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Conversely, if ul, € Ig for a polynomial vector field u with

u(0) = 0. Then, u_ﬁ(v) C,S(V) by taking the closure in the formal
power series. Note that u J(V)(: @(\@(V). We next prove that dJ (V) =
6)p\$(V). For that purpose, we have only to show J(V) D Gl\ﬁ(V),
because the converse is trivial, ILet f e O(\§(V), and f = Z; f, the
eigenvector decomposition of f with respect to X. Then, by 3.11
Lemma, we have £, € Igp cd(). Thus, £, =0 on V, hence f =0 on
v. This means f € Y(v). Thus, ul, C I, yields ue¢ X (V) C Av) .
However u 1is a polynomial vector field in Yy, oo ¥pr hence u €

@(V;yl,...,yn).

3.13 Lemma Ve = VI& : the locus of zeros of Ip .

Proof. Let p be a point in c"- Ve . By definition there are u

1
cee,u € &%V;yl,...,yn) such that ul(p),---,un(p) are linearly

independent. Assume for a while that p€vVv Since uiI& C Ip, we

I&; *
have
( 94 uQ‘
Y Yo

for every f£€ Ip and any Iy, 4, -

2,
et f)(p) = 0O
, 4 . Thus, f = 0, contradicting
the fact I, # 10|. Therefore, V,D> V .
& e Ip
Conversely, let p6=€n - VI? . There is then g €Ig such that
g(p) # 0. By 3.12 Lemma, g9/2Yys..., 920y € iyy,.-.,v ), which

are linearly independent at p. Hence p)ECn - Ve . Thus, VI&f) Ve -

3.14 Lemma VI@ = V as germs of varieties,

Proof. By 3.11 Lemma, we have I cdv), hence Vv

> V. Assume
1e

for a while that VI@ ¢ V. Then there is £ ¢ d(v) such that f # 0
on V. Let f = Ziyfv be the eigenvector decomposition of £. Then
f, € Iy . Therefore £, =0 %on V, hence £ =0 on V contradicting

the assuption. Thus, we get VI& =V as germs of varieties, and hence

V. = V.
Ie
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By the above result, we get that ? : ¢ " maps V onto W

and (V) = V' as germs. This implies that ?*A(V') = J(v) ang
hence a9 X (V) = ¥(v'). This completes the proof of Theorem I in

the introduction.
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