ooooboooao
3810 1980 0 180-194

180

<ended Iteration Statement ard

3]
b

An

Its Computability

Takeo Yaku, JAPAN, Departzment of Mathematical Sciences,
Tokai University, Hiratsuka, Kanagawa 259 - 12.
Kokichi'Futatsugi, JAPAN, Computer Science Division,

Tlectrotechniczl Laboratory, Sakura-murz, Niihari-gun,

Ivaraki 30C-31.

£
n
(¢]
‘J
o
13
o

Akeo Adachi, JARAN, Department of icaderic an

Programs, IZM Japan, Ropponsgi, Minato-iu, Telkryo 1CE.

ASSTRACT

A "loop n P" stztement generates a chain of the iteration
module P with length n.

The "loop" statement is extended and a new control
-structure ﬁsubstitution", implemrented by "call" statement,
is introduced. A "call n" siatement genefates a k-ary tree
(k 2 1lis a constant) with depth n of the substitution
module. The statement generates n_):;'&': occurances of the sub-

: . =0

stitution module without any dyrnamic change of the control
variapvles cduring the. executicn.

P N

Computability of the

n

tatic progrzms, in which the
control variavles are noit changed during the execution, is
externded %5 :sxXponential time compuiation from rtolymomial

time computation.

181

(WS]

1. INTRCDUCTICN

The class of programs are cnnsidéred-in this zpager
with the control variables fixed by initizl irnput values,
and not changed dynamically during the execution. The
programs are said to be static. In a static pro‘ram, image
of computation structure can be statically found with respect
to given input values before running. The static programs
thus have the following proverties

(1). static program is éasier to be ccmprehehded than

pon-static program [2, 6, 7].

(2). The runniﬁg time of static program can e exach-
1y evaluated before execution (cZ.[1, 4]).

It is noted that "loop n P" statement - generates a chain
of length M of loop module P. A static progrzm the iterasion
(loop statements) is executed in polynomial tirme, and the
runniig time of it can be exactly evaluated before running.
On the other hamd the programs with exponential time com-
plexity are not static with the iteration (loop statements).
In general, these programs with exponentizal time complexity
dynamically change control variables during computation. The
changes violates the above properties (1) and (2).

We extend in Section 2 the iteration statement "loop"
and introduce a new control structure "substitution." The

Substitution is implemented by "call" statements. A "call n

g

182

statement generates a k-ary tree (k is =2 constant) of the
substitutiocn module with depth n. Thﬁs the statement in
staﬁic programs allows the exponential running timg com-
putation.

Consequently, the computation power of the stati
programs is extended to exponential time computation from
polynomial time computation, conserving above properties
(1) and (2). The extension is important from following
reasons.

It is necessary ‘o conéider,programs with exponentizl
computaticn time, since we occasionzlly encounter this tyvpe
of oroblems such as NP complete problems represented by known

. ™
£

o

algcrithms., We note that even programs with conmputation
tizme bounded by = linearly exponentizl funciion f(a) =

is indeed alrmost intractable in practical
computing., It is thus impgtant to evaluate exactly the
computation time of a program before running. Then we can
know the tractable range of input values fqr'the program,
which is possibly almost empty.

The subétitution is implemented as follows. Statements
"call n" and "recall" are employed for implementation of

the substitution. For example, a statement "call n do recall ;

recall ; P end" is defined syntactically as

cz2ll n do recall ; reczall

e

.
P end

—>» c¢alln - 1 do recall ; recall ; P end ;

call n - 1 do recall ; reczall ; P end ;

P (n > 1)

—> P (n=1)

183

Two "recall" statements are both sustituted by "call

n - 1 do recall ; recall ; P end"

stat

erents. Thus the

computation structure gernerated by the substituliion state-

\N

ment above is 2 binary tree of the substiftution module? with

depth n. Accordingly, a statement "czll n" possib ly gere-

4]

ne) g ,
rateS I k' occurances of tThe sust

1=y

is the nurber of recall statements

itution module P, where Xk

in

"substitute"

scgpe

between do z2nd end statementz. We note that an itersiion

"locop n do P end" is represented ty the subsiitution as

"call n do recall ; P erd". A pro

gr

with call - reczll

statements is called a "recall" progran.

FolloWings are examples of a static recall program’that

computes a expornential functiorn f(n) =

tion tree with respect ton= 2 [2].

EXAMPLE 1.

27t, and its computa-

Page 6

Fl‘-@ure 1

184

begin
vye 1l
call n do
recall ;
recall ;

y< y + 1 end end ;

‘?:ﬁure 1__

Y+

185

2, STATIC RECALL PROGRAMS

Programé with extended iteration are introduced in
this section and are called recall programs.

A loop statement generate a chain of iteration modules
and control thellength of the chain. The computation ét—
ructure is tﬁus a dhain generated by a loop statement, where
a vertex corresponds to the iteration modules. We extend
here the iteration to genergte a tree of iteration modules
from a chain. The extgnded iteration statement is called
a call statement.

The statement generates a K-ary tree of repetitibn
modules (kx is a fixed positive integer), and control the
depth of the tree. A program with call statement is called
a recall program.

Only static programs are dealt in this section, in
which the oontrol variatiles are fixed by input values and
not changed during the computation. Now we define the
syntax and semantics of a static recall program syntactical-~

1y as follows.

186 | | g

DEFINITION. Let X and S be fixed mutually disjoin
countable sets of symbols. An element of X and S is called

a control variable a simple variable, resvectively.

Let Var denote the all variables

Var= X V S

A static recall program is a sequence of statements over Var

defined recursively' as follows.
{atomic statementy :: as expected
(asignment statement)
{ call statement> t:= call x do
{statement lis‘:))g‘ en
¥This stament list includes at least
one " recall' statement.
{statement?) ::Q (atomic statement? |
{call = statement) | recall
{statement list) ::= (statement) |
{statement) ; {statement list)
{static , iy
recall program) ::= begin(statement list) end

where u, v in S, x in X, and ¢ is an integer. 1)

#x this ¢statement L1s1) does not
tnelude “reeall’.

187

(V8

DEFINITION. A furncticn ¢ : Var— N is callsd 3 memory

(0]

confizuraticr, The set of memory configurations is denoted

by G. The excansion expan(?, q) of a static recall program
P in a memory configuration « is a sequence of atomic sta-
Tement defined syntactically as follows.

l. 1if P is an atomic statement s,then

expan(s, ¢) = s.
2. if P is a call statement P call x Q, where
Q = do sl ;'recall ; S2 ; recall ;
ees 3 recall ﬁ s end
and c(x) > 2, then

expan(P, ¢)= 51 ; call x -1 Q

e

s2 ;5 call x -1 Q

-e

s N-1;call x-1Q; sN

XY

3. if P is a call statement
P= call x Q, and c(x) = 9,
then expan(P, c¢) = & (null string),
where sl, s2, ..., sN are statement lists without
reczall statement.
4. if P is a program begin sl ; s2 ; cee ; sN end
(si is a statement 1< i< N), then
expan(P, c)

= expan(sl, ¢) ; expan(s2 ; ... ; sN, c).

(2)-

10
The reslul P(c) of a static recall program P for a
configuration ¢ is the configuration d such that 4 is
obtained by apvlication of expan(P,) %o c. A function ¥ =

f(n) is compﬁted by a program P if and only if (i) P is

over a set { x} of control variable and a set S of simple
variables, and (ii) there exists a configuration ¢ and y in

S such that c(x) =17, (s)= 0 (for any s in S)and

P(c)(y) = f(n) for any n in N.

‘Limé(e‘,ﬁ)
A computation time of P for ¢ is the number of all

atomic statements occured in expan(P,). The time complex-

, the

ity o a program P is a function tize, : C—> XN of irnitial

memory configurations C to N, where timeP(c) = time(P, c).

Example 1 is a static recz2ll program that computes
. X s . AT

the function f(n) =22 .

A tree type function is defined inductively as follows :

i. Following basic functions are tree type

f(n) = ¢, ¢ is a constant

-

L S e k" - 1
f(n) = Z k¥ (1+k'+%k+ ... +k =).
= ' k-1

-

ii. If f(n) and g(n) are tree type then f + g and

f g are tree type.

It is noted that any polynomial function and any

exponential function of the form C™ are both tree type.

—_—
£y
(€)

1.
TUEOREM 1. Let P be a static recall progrzm over the
control varizble X = {x} and the simple variables S. If a
memory configuration d is such that d(x) = n and d(s) = 0
(s in S), then time(P, d) is tree type over n.
Remark. For any tree type function f(n), there exists
a static recall program P such that time(P, d) = f(n), where
d is such that d(x)= n (x is the control variable) and
d(s) = 0 (s is arbitrary simple variable).
.t is noted thkhat the rurnirgz time time (P, &) of P for

d can ta evaluated‘syntactically and exzctly vefore rurning

from Syntaxes (1) and (2).

Pollowirg +theorem shows the computation power of the

static recall programs on successor 'function.

THEOREM 2. A function f is tree type if

and only if there is a static reczall program P on successor

function such that P computes f,

190

4. CONCLUDING REMARKS

We have restricted the study in this paper to statics

of control structure in programs during the execution. The static

programs have two properties such that

(1). the control structure is simple enough to be comprehended

(2). the execution time can be exactly evaluated before

running. - i
- t\c 3] K3 3 - 2 do

On the other hand, static programs with "loop" itera-
tion run in polymomial +time with respect to input values.
It is, however, necessary to consider programs with expo-
nential computation time.

Prom these considerations we extended iteration and
introduced the substitution, which is implemented By "call"

and "reczll" stetements. Programs with the subsiitution are
called recall programs. Static recall programs are noted o
conserve zbove properties (1) arnd (2). As a2 result comput-
ability of the static programs can te externded to linearly
exponential time computatiorn fram polynomial time computa-
tion. In the programs, computation time is exactly evaluat-
ed before runring.

From theoretical interest, we introduced in Section 3

a sequence "semi static recall program" of static recall

programs; Then we showed that the class of all functions

bounded by k - fold exporential functiions is equal to the

191
I
class of all functions computsed by the’semi static recall
programs with lergth k. Hence the elermentary functions are
classified by the lergih of semi sfatic Trograms,

In practical view several issues lie in this thecry.

1. Repetitiorn time in call staterment is restrict ed to
control variable itself in this paper. But we can consider
that the time can expressed by expresseions of input variables.
This case is not considered in this paper. |

2. Explicite expression of élgorithm are not provided
in this:: papef, tut we can cﬁnstruct iz, that’evaluate the
exzct rurmning <vime.

3. Implementation fechnmigues df call - recall state-

perts in ¢

H
ct
@

actical cormruting systems is not explici

“
'd

1y vro-

s (1)

vided, but it is directly cozmsiruciiple from syntax

(1

and (2) of the stafements.

In the future of this fheory, follbwing should be corn-
.sidered : |

4. Syntax (1) should be extended to practical use,
For example "if then else"” statenment shduld te azdded to it.

5. Call - recall statements have another aspect, in
addition to an extension of the iteration. It is very
strong restriction of recursive subroutine call. - If we
také off the statics from programs; then recall programs
can indeed compute the primitive recursive functions

directly, in some sence. On the other hand if we attache

192

data structures to programs, ihen call recall statemerts are
very simple, vossibly run in shorter time, implementation of
recursive subroutine call in scme resiriction. We propose

"call while { logical expression) " statement in above senrse,

>}
REFERENCES

(1). A..Adachi, T. Tzsai and E. Moriya, A theoretical s

study on the time analysis of programs, Lecture Notes

in Computer Sciences 74 (1979), 201 - 207.

(2). K. Futatsugi and T. Yaku, Flow trees and their com-

vutation trees, 1973 National Convention Record of

IECE Japan (1979), (6) - 123, (in Japanese).

(3). L. Ralmar, Egyszeru pelda eldonthetlen aritmetikai

problemzra, Mthematikai es fizika lavok 50 (1343),

1-230
(4). T. Xasai and A. Adachi, A characterization of time

complexity by simple loop programs, J. Comput. System

Sci., to appear.
(5). A. R. Meyer and D. M. Ritchie, The complexity of loop
| programs, Proc. 22nd ACM Naficnal Meeting (1967),
465 - 469.

(6). T. Yaku and K. Futatsugi, Tree structured flowcharis,

IECE Japan Revort AL 78 - 47 (1978),‘61 - 66

(7). T. Yaku and K. Putatsugi, Flowtrees and derivation

trees of program texts, Proc. 20th National Conven-

tion Inform. Processing Soc. Javan (1979), 281 -

282, (in Japanese).

193
| 6

APPENDIX : An example of extended iteration
(restricted recursion) program.

procedure HANOI

/* purpose */

/* move n disks from tower A to tower C */
/* data */

/* A, B; C ; the names of towers */

/*n .3 the number of disks ; the */

/* ‘ disks are labeled by 1, 2, */

/* ...; n from the smallest one */

/* to the largest one. */

/* X1,X2,X3; array(0 .. n) of name

/* method */

v ot
/* initially, the disks are 1ocatedthe */
/* tower A */

begin
depthﬂe 0 ; index¢ n + 1 ;
X1 (depth) « A ; X2(depth) « B ; X3(depth) « C ;
call n do | |
depth ¢« depth + 1 ; index ¢« index - 1 ;
X1 (depth) ¢« X1l(depth - 1) ; X2(depth) <«

X3 (depth - 1) ; X3(depth) ¢ X2(depth - 1)

-e

recall ;

writeln 'moye’disk', index, 'from',
Xl(deptﬂ),b'to', X3(deptﬂ; :

X1 (depth) &« X2(depth - 1) ; X2 (depth) «

X1 (depth - 1) ; X3(depth) ¢« X3(depth - 1)

~e

recall ;

index¢ index + 1 ;. depth ¢ depth - 1 end end ;

194 |

Figure 2. The flow tree of
procedure HANOI

Yi(eh & x1dn
Y20l & *3(d-)
(30) « X2 (d-1)

[recat]

vYYI we d"kv; Index, vf”"”)
x1(d) o7, X3d)

) « r2(a-
ﬁ‘z(d)e' X1 A=)
) & x3¢d-1)

Figure 3. The computation-

tree of procedure HANOT A g ¢
forn = 3. /:'i':‘ l ‘

i dedt 3e i

¥
N‘M‘ié:‘klv‘(d:‘n“ RARART
ixzml)« -y | lgeec
e yzad-n | e (B w

1 v
@ EXad- | RAAB
Ha i) & xped-1 l’a CBA x
yd)ex‘;td»i), 1€B8ce »

@[‘?d y

laf"«'"‘??n(@fsi-'l L

s e xicd-1 TATA A
rE>e -y Ipec B a2
X36d) € ya (d-n I :

[{,ii/!l} tei-1

r

¥zt e paed-
K3 & K241

lx,m’)e)\'(mj /

o]

lddﬁ jLed~t |

TUTAS ﬁl'(&'—:)) f,y it
xe(e ng(d) BCAC xy
Blherd-n | jcpgB i

To

movedisk 33 Atol
(A RIAT] l 2B n

S € @7 [AAT
X2 & xid-0)| |Be A
&

Xzt & Mid-1) BA M
X3y € Xsl-uf (¢ B

X3l e X304 1) [

mote disk 1:C 0B

T XA T] [AATAT
@A e x5 (d-1) - BtAC
s e x3ad-g) Lobes

T

(<1l ded- 1

