<table>
<thead>
<tr>
<th>Title</th>
<th>An Extended Iteration Statement and Its Computability (Studies on Computational Complexities and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>YAKU, TAKEO; FUTATSUGI, KOKICHI; ADACHI, AKEO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1980年度 第381号 180-194</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1980-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/104812</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
An Extended Iteration Statement and
Its Computability

Takeo Yaku, JAPAN, Department of Mathematical Sciences,
Tokai University, Hiratsuka, Kanagawa 259 - 12.
Kokichi Futatsugi, JAPAN, Computer Science Division,
Electrotechnical Laboratory, Sakura-mura, Niihari-gun,
Ibaraki 300-31.
Akeo Adachi, JAPAN, Department of Academic and Scientific
Programs, IBM Japan, Roppongi, Minato-ku, Tokyo 106.

ABSTRACT

A "loop n P" statement generates a chain of the iteration
module P with length n.

The "loop" statement is extended and a new control
structure "substitution", implemented by "call" statement,
is introduced. A "call n" statement generates a k-ary tree
(k ≥ 1 is a constant) with depth n of the substitution
module. The statement generates \(\sum_{k}^{n} k^i \) occurrances of the sub-
stitution module without any dynamic change of the control
variables during the execution.

Computability of the static programs, in which the
control variables are not changed during the execution, is
extended to exponential time computation from polynomial
time computation.
1. INTRODUCTION

The class of programs are considered in this paper with the control variables fixed by initial input values, and not changed dynamically during the execution. The programs are said to be static. In a static program, image of computation structure can be statically found with respect to given input values before running. The static programs thus have the following properties

(1). Static program is easier to be comprehended than non-static program [2, 6, 7].

(2). The running time of static program can be exactly evaluated before execution (cf. [1, 4]).

It is noted that "loop n P" statement generates a chain P^n_{with} of length n of loop module P. A static program the iteration (loop statements) is executed in polynomial time, and the running time of it can be exactly evaluated before running. On the other hand the programs with exponential time complexity are not static with the iteration (loop statements). In general, these programs with exponential time complexity dynamically change control variables during computation. The changes violates the above properties (1) and (2).

We extend in Section 2 the iteration statement "loop" and introduce a new control structure "substitution." The substitution is implemented by "call" statements. A "call n
statement generates a k-ary tree (k is a constant) of the substitution module with depth n. Thus the statement in static programs allows the exponential running time computation.

Consequently, the computation power of the static programs is extended to exponential time computation from polynomial time computation, conserving above properties (1) and (2). The extension is important from following reasons.

It is necessary to consider programs with exponential computation time, since we occasionally encounter this type of problems such as NP complete problems represented by known algorithms. We note that even programs with computation time bounded by a linearly exponential function $f(n) = k^n$ (k is a constant) is indeed almost intractable in practical computing. It is thus important to evaluate exactly the computation time of a program before running. Then we can know the tractable range of input values for the program, which is possibly almost empty.

The substitution is implemented as follows. Statements "call n" and "recall" are employed for implementation of the substitution. For example, a statement "call n do recall ; recall ; end" is defined syntactically as
call n do recall ; recall ; P end

\[
\begin{align*}
& \rightarrow \text{call } n - 1 \text{ do recall ; recall ; } P \text{ end ;} \\
& \text{call } n - 1 \text{ do recall ; recall ; } P \text{ end ;} \\
& \quad P \quad (n > 1) \\
& \quad P \quad (n = 1)
\end{align*}
\]

Two "recall" statements are both substituted by "call n - 1 do recall ; recall ; P end" statements. Thus the computation structure generated by the substitution statement above is a binary tree of the substitution module P with depth n. Accordingly, a statement "call n" possibly generates \(\sum_{i=0}^{n-1} k^i\) occurrences of the substitution module P, where k is the number of recall statements in "substitute" scope between do and end statements. We note that an iteration "loop n do P end" is represented by the substitution as "call n do recall ; P end". A program with call - recall statements is called a "recall" program.

Followings are examples of a static recall program that computes a exponential function \(f(n) = 2^n\), and its computation tree with respect to \(n = 2\) [2].

EXAMPLE 1.
begin
 y ← 1
 call n do
 recall;
 recall;
 y ← y + 1 end end;
2. STATIC RECALL PROGRAMS

Programs with extended iteration are introduced in this section and are called recall programs.

A loop statement generates a chain of iteration modules and control the length of the chain. The computation structure is thus a chain generated by a loop statement, where a vertex corresponds to the iteration modules. We extend here the iteration to generate a tree of iteration modules from a chain. The extended iteration statement is called a call statement.

The statement generates a k-ary tree of repetition modules (k is a fixed positive integer), and control the depth of the tree. A program with call statement is called a recall program.

Only static programs are dealt in this section, in which the control variables are fixed by input values and not changed during the computation. Now we define the syntax and semantics of a static recall program syntactically as follows.
DEFINITION. Let X and S be fixed mutually disjoint countable sets of symbols. An element of X and S is called a control variable a simple variable, respectively. Let Var denote the all variables

$$\text{Var} = X \cup S$$

A static recall program is a sequence of statements over Var defined recursively as follows.

$$<\text{atomic statement}> ::= \text{as expected}$$
$$\quad \begin{array}{l}
\text{(assignment statement)}
\end{array}$$

$$<\text{call statement}> ::= \text{call } x \text{ do}$$
$$\quad <\text{statement list}>^* \text{ end}$$

*This statement list includes at least one 'recall' statement.

$$<\text{statement}> ::= <\text{atomic statement}> |$$
$$<\text{call statement}> | \text{recall}$$

$$<\text{statement list}> ::= <\text{statement}> |$$
$$<\text{statement}> ; <\text{statement list}>$$

$$<\text{static recall program}> ::= \text{begin} <\text{statement list}> \text{ end}$$

where u, v in S, x in X, and c is an integer. (1)

** This $<\text{statement list}>$ does not include 'recall'.
DEFINITION. A function \(c : \text{Var} \rightarrow N \) is called a memory configuration. The set of memory configurations is denoted by \(C \). The expansion \(\text{expan}(P, c) \) of a static recall program \(P \) in a memory configuration \(c \) is a sequence of atomic statement defined syntactically as follows.

1. if \(P \) is an atomic statement \(s \), then
 \[
 \text{expan}(s, c) = s.
 \]

2. if \(P \) is a call statement \(P \) \(\text{call} \ x \ Q \), where
 \[
 Q = \text{do} \ s_1 \ ; \ \text{recall} \ ; \ s_2 \ ; \ \text{recall} \ ; \ \ldots \ ; \ \text{recall} \ ; \ s_N \ \text{end}
 \]
 and \(c(x) > 0 \), then
 \[
 \text{expan}(P, c) = s_1 \ ; \ \text{call} \ x - 1 \ Q \ ; \ s_2 \ ; \ \text{call} \ x - 1 \ Q \ ; \ \ldots \ ; \ s_{N-1} \ ; \ \text{call} \ x - 1 \ Q \ ; \ s_N
 \]

3. if \(P \) is a call statement
 \[
P = \text{call} \ x \ Q , \ \text{and} \ c(x) = 0 ,
 \]
 then \(\text{expan}(P, c) = \varepsilon \) (null string),
 where \(s_1, s_2, \ldots, s_N \) are statement lists without recall statement.

4. if \(P \) is a program \(\text{begin} s_1 \ ; s_2 \ ; \ldots \ ; s_N \ \text{end} \)
 (\(s_i \) is a statement \(1 \leq i \leq N \)), then
 \[
 \text{expan}(P, c) = \text{expan}(s_1, c) \ ; \ \text{expan}(s_2 \ ; \ldots \ ; s_N, c).
 \]

\((2) \)
The result $P(c)$ of a static recall program P for a configuration c is the configuration d such that d is obtained by application of $\text{expan}(P, c)$ to c. A function $y = f(n)$ is computed by a program P if and only if (i) P is over a set \{x\} of control variable and a set S of simple variables, and (ii) there exists a configuration c and y in S such that $c(x) = n$, $(s) = 0$ (for any s in S) and

$$P(c)(y) = f(n) \quad \text{for any } n \in N.$$

The time of P for c is the number of all atomic statements occurred in $\text{expan}(P, c)$. The time complexity of a program P is a function $\text{time}_P : C \rightarrow N$ of initial memory configuration C to N, where $\text{time}_P(c) = \text{time}(P, c)$.

Example 1 is a static recall program that computes the function $f(n) = 2^n$.

A tree type function is defined inductively as follows:

i. Following basic functions are tree type

$$f(n) = c, \quad c \text{ is a constant}$$

$$f(n) = \sum_{i=0}^{n-1} k^i (1 + k' + k^2 + \ldots + k^{i-1}) = \frac{k^n - 1}{k - 1}.$$

ii. If $f(n)$ and $g(n)$ are tree type then $f + g$ and fg are tree type.

It is noted that any polynomial function and any exponential function of the form c^n are both tree type.
THEOREM 1. Let P be a static recall program over the control variable $X = \{x\}$ and the simple variables S. If a memory configuration d is such that $d(x) = n$ and $d(s) = 0$ ($s \in S$), then $\text{time}(P, d)$ is tree type over n.

Remark. For any tree type function $f(n)$, there exists a static recall program P such that $\text{time}(P, d) = f(n)$, where d is such that $d(x) = n$ (x is the control variable) and $d(s) = 0$ (s is arbitrary simple variable).

It is noted that the running time $\text{time}(P, d)$ of P for d can be evaluated syntactically and exactly before running from Syntaxes (1) and (2).

Following theorem shows the computation power of the static recall programs on successor function.

THEOREM 2. A function f is tree type if and only if there is a static recall program P on successor function such that P computes f.
4. CONCLUDING REMARKS

We have restricted the study in this paper to statics of control structure in programs during the execution. The static programs have two properties such that

(1). the control structure is simple enough to be comprehended.
(2). the execution time can be exactly evaluated before running.

On the other hand, static programs with "loop" iteration run in polynomial time with respect to input values. It is, however, necessary to consider programs with exponential computation time.

From these considerations we extended iteration and introduced the substitution, which is implemented by "call" and "recall" statements. Programs with the substitution are called recall programs. Static recall programs are noted to conserve above properties (1) and (2). As a result computability of the static programs can be extended to linearly exponential time computation from polynomial time computation. In the programs, computation time is exactly evaluated before running.

From theoretical interest, we introduced in Section 3 a sequence "semi static recall program" of static recall programs. Then we showed that the class of all functions bounded by k-fold exponential functions is equal to the
class of all functions computed by the semi static recall programs with length k. Hence the elementary functions are classified by the length of semi static programs.

In practical view several issues lie in this theory.

1. Repetition time in call statement is restricted to control variable itself in this paper. But we can consider that the time can expressed by expressions of input variables. This case is not considered in this paper.

2. Explicit expression of algorithm are not provided in this paper, but we can construct it, that evaluate the exact running time.

3. Implementation techniques of call - recall statements in practical computing systems is not explicitly provided, but it is directly constructible from syntaxes (1) and (2) of the statements.

In the future of this theory, following should be considered:

4. Syntax (1) should be extended to practical use, for example "if then else" statement should be added to it.

5. Call - recall statements have another aspect, in addition to an extension of the iteration. It is very strong restriction of recursive subroutine call. If we take off the statics from programs, then recall programs can indeed compute the primitive recursive functions directly, in some sense. On the other hand if we attache
data structures to programs, then call recall statements are very simple, possibly run in shorter time, implementation of recursive subroutine call in some restriction. We propose "call while <logical expression>" statement in above sense.

REFERENCES:

(1). A. Adachi, T. Kasai and E. Moriya, A theoretical study on the time analysis of programs, Lecture Notes in Computer Sciences 74 (1979), 201 - 207.

(3). L. Kalmar, Egyszeru pelda eldonthetlen aritmetikai problemara, Mathematikai es fizika lapok 50 (1943), 1 - 23.

APPENDIX: An example of extended iteration (restricted recursion) program.

procedure HANOI

 /* purpose */
 /* move n disks from tower A to tower C */

 /* data */
 /* A, B, C ; the names of towers */
 /* n ; the number of disks ; the */
 /* disks are labeled by 1, 2, */
 /* ..., n from the smallest one */
 /* to the largest one. */
 /* X1,X2,X3; array(0 .., n) of name */

 /* method */
 /* initially, the disks are located on the */
 /* tower A */

 begin
 depth ← 0 ; index ← n + 1 ;
 X1(depth) ← A ; X2(depth) ← B ; X3(depth) ← C ;
 call n do

 depth ← depth + 1 ; index ← index - 1 ;
 X1(depth) ← X1(depth - 1) ; X2(depth) ←
 X3(depth - 1) ; X3(depth) ← X2(depth - 1) ;
 recall ;
 writeln 'move disk', index, 'from',
 X1(depth), 'to', X3(depth) ;
 X1(depth) ← X2(depth - 1) ; X2(depth) ←
 X1(depth - 1) ; X3(depth) ← X3(depth - 1) ;
 recall ;
 index ← index + 1 ; depth ← depth - 1 end end ;
Figure 2. The flow tree of procedure HANOI

Figure 3. The computation tree of procedure HANOI for n = 3.