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On Forming a Series-parallel Graph by Removing Nodes of a Planar Graph
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BaB*ZVﬂSendamachi, Hiroshima, 730 Japan

1. Int:bduction;

Let PSP&R denote the problem of deﬁermining, for a.graph
G=(V,E) and a nonnégative integer k,‘whether or not a series-
parallel graph can be formed by removing k or fewer nodes of G;

, wheré V and E aré the,sefs of nodes and of edges of G, respectively.

The authors have already proved in [15] that P is NP-complete;

SPNR
In this paper, ﬁe‘show'that PSPNR remains NP~-complete even when
the domaih is restricted to planar gravhs. From now on, let PPSPNR
denote Pgp .. with the constraint fhat G is planar.

Technical terms and noﬁations not épgcified in this paper can

be identified in [2],[71,[8]§and‘[9].

In stead of a'thdrough description of the formal requirementé

of a pfoof of'NP—completeness, we describe the two steps (i) and
(ii) required in proving that a particular problem Py is NP-complete.
(i) Prove that PX € N?, the class of problems that can .
. be solved in polynomial time by a nondeterministic
Turing machine.

(ii) Prove that some known NP-complete problem PX’ can be
polynomially transformed into Py ( Py, ol P, for short ),
in such a way that any polynomial-time algorithm for

in polynomial ﬁime.

solving P, could be used to solve P

X X'

We will omit verification of (i) from our proofs since there
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exists an algor:.thm that determines in polynom:.al time whether
or not a given graph is series—-parallel ( For example, see [3]
or {121 ). Thus our proofs will focus on the transformation

required by (ii).

2. Prelmlnarles.
Let G= (V,E) ‘and x CvV. Let us denote
E(X)?-Z(u,v) € E: {u,v? N x#f }

for x=£V- §oeeoeoyp V. } (x"‘lxl ). ‘ﬂe Call
' 11 .

G-X=(V-X, E-E(X>)

the graph formed by removing nodes vy eees vy (or removing X )
, : o e % :

of G. Let us denote
s(G)raMax{JG(v): vev } ,

where S (v) 'd_ehotes the node degree of v in G. Let

P(u,v)= (VP (u, v)’EP (u, v))

denote a path of length ‘EP (u,v)l 2 2, a subgraph of the gra.ph
G in considerat‘ion, corinecting two nodes u and v of G. é(u,v) is
said to be a disjoint path if and only if it satisfies the
condit.ion' that no node in VP (u,V)- { u»,v} is ( and shall be ) )
contained in any other path except P(u,v) ( That is, any node of
P(u,bv) except u and v is of node degree 2 in any graph in consid-
eration ). |

For two nodes u and v, let

L(u,v)=(V ),E

L(Iu,v)) _
denote the graph which consists of (e +1) disjoint paths of

L(u,v

length 2 each of which connects u and v, where

Vi a,v) = {b (u,v): i=0,...,9 ¢ U {u,v}

and
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EL(u'V)= i(u,bi(u,v)), (V:bi(u.V)): i=0,...,e(}.

L(u,v) is said to be a band of width o connecting u and v.

'Remark 1.

Let L(u,v) be a band of width ¥ connecting u and v. Then
‘there exists at least one disjoinﬁ path even if ol or fewer
nodes of L(u,v) except u and v are removed. If we assume o2 2,
then qu,v)- ful ( L(u,v)—*{V'} ) contains at least three blocks
( maximal nonseparablé‘components ) each of which cdnsistsvbf.a:
single edge having v ( u ) as a cutpoint. V |
A thinniné is an operation that deletes one of two multiplé
edges e, and e,- A shrinking is anvbperatioh that édntracts one -
of two edges (u,v) and (v,w) satisfying that v is of néde degreev
2. A reduction is to repeat a thinning and/or a shrinking a
number of times. A graph G is said to be series-pérallel ( s-p
‘for short ) if and only if there exists a reduction that leads
G to é single edge. A well-known characterization'of s-p graphs
hés been §iven by R. J. Duffin in [3]. |

Theorem 1.[3].

Let G be nonseparable. Then G is s-p if and only if G has
no subgraph from whichAK4'can be formed by contracting and/or
deleting a numbef of edges.

If G has such a subgraph as mentioned in Theorem 1 then
we say that G has' a subgraph reducible to K4 ( G ‘_‘) K4 for short ).

We now turn our attention to the node cover problem. A node
cover for G=(V,E) is a subset S of V such that any edge of G is
incident upon some node of S. Given a graph G=(V,E)'and a non-
negative integer k, let PNC’ called the node cover problem,

denote the problem of determining whether or not G has a node cover

3
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s of size | 8| € k ( We can assume that G is a simple graph ).

It is well-known that Py. is NP-complete ( For example, see [9] ).

In this paper we state all lemmas without proofs which
are given ih [16];
| Lemma 1.
PC-QPNC’ the node cover problem for simple'planar‘COnnectéd

cubic graphs, is NP-complete.

3. Forming a series-parallel graph by removing nodes
‘of a‘planar graph.

Throughout this section let k be nonnegative integer and
G=(V,E) be a cubic planar connected graph, where

V=§vl,...,‘ vnk (n=1\v}) agd E={el,,...v emk (m=]|E}).
Represent G on a plane‘and fix this representation. Let '

FG=={fo, fl,.o., fr_l } ( fo is the infini?e face of G ) -
denote the set of all faces of G. We can assume that

n>4, m>6and r 2 4.

Beginning with the fixed representation of G we construct
the planar graphs Gi=(vi'Ei) ( i=1,2 ) and Gl'=(V1',Ei') by the
following procedures (1), (2), (3) and (4).

(1) Construct the geometric dual G*=(V*,E*) of G, and then
determine a spanning tree T*=(VT*,ET*) of G*. There exists one
to one correspondence between E and E*. We denote this correspon-
dence by e* € E* for e € E. Let

E.={e€Eie* ¢ E, } .

Then | Ep | =x-1. )
(2) Let Gl be the graph obtained by replacing each edge

e=(u,v) & En with a disjoint path P(u,v)=(V

P(u,v)'EP(u,v)) of

length 4. P(u,v) is called the T-path for e. Let us denote

4
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Vp(u,v)= 1V0=0r V1r Var V3r Vg7V }, ana

EP(u,v)='{‘Vi'Vi+1)‘ i=0,...,3 }

and E are used in this sense ). Let

( hereafter V

P(u,v) P(u,v)

= A"/
217 (u,v) €E, P_(u,v)’

‘where VPa(u,v)=vP(u,v)- juvi}.

Then V.=V ® Al, where @ denotes the disjoint union. Let F denote

the set of all faces of Gl‘ Then there exists one to one correspon-.
dence betweeh chand Fél, and we denote this correspondenee by ‘
£1) e Fg, for £ € F. |
(3) For each edge e=(u,v) € E, execute the following proce-
dures (i), (ii) and (iii). Let fi ahd fj €*FG be the two faces‘
( not necessarily distinct ) that e touches. If e is a bridge
of G then e* is a loop of G*. Since e* Q'ET*, we have e & E,- That
is, if e € ET then e is not a bridge of G. :
(;’L) The case when e & E-Eg.
(i~a) If e is not a bridge of G ( then fi¥fj ), place
two bands L(ui(e),vi(e)) and L(uj(e),vj(e)) of
width (k+r+2) in f{l) and f;l), respectively.
(i-b) If e is a bridge of G ( then fi=fj ), place two

bands L(ui(e) ,vite)) and L(ui‘)(e) ,vf;(e)) of width

(k+r+2) in fil), where we assume that one of them
is located across e from the other.

(ii) The case when e € E., ( then fi=fj ).

T

Let V, be as before. Then place four bands

(ulv)

Livi(e),vi . (e)) ( i=0,1,2,3 ) of width (k+r+2) in £(%)
£1®)Vieay o2y i

and similarly four bands L(v%(e),vé+l(e)) ( j=0,1,2,3 )

5
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of width (k+r+2) in £{), where v, (e)= ¥(e) and v, (e)=
v¥(e) for ol =i,3. |

(iii) For each u € V and each pair of edges e=(u,v) and g=
(u,w) (e, g €E andbv¥w ), both of which are incident
upon u, connect ui(e) and.ui(g) in terms of a band of
width (k+r+2) if and only if both e and g touch a face

f{l) € FG . If e (g) is a bri}dgev_of G, then we assume

1 . ‘
that ul(e) is set to either u;(e) or u;(e) ( either u;(g)

or ul(g) ).

C

Let Gl' denote the resulting graph; Let V. denote the set

of nodes placed in £{}) € F, in (i), (ii) and (iii) of (2), and
. ) 1 _‘ : '
. _ : .
let Ci—(vC"Eci) denote the subgraph of G1 induced by vcif C; can
- be changed into a single circuit if we replace each band of Ci
with a disjoint path of length 2. Ci is said to be the inner ring
. (1)

IR(fi) of fi ( or of fi ). |

(4) Construct a maximum matching MCE of G ( It is well-'
known that there exists a polynomial-time algorithm to obtain a
maximum matching of a planar graph G ( see [4] ) ). And execute
the following procedures (i), (ii) and (iii) with respect to M.

(1) For each edge e=(u,v) € E;, let f; and fj ( fikfj ) be
two faces of G that e touches, where we can assume that
one of them is a finite face. Then, for each Ve €

V.

P_ (u,v) ( t=1,2,3 ), connect two pairs of nodes

{ vt,vi(e)} and.-{y&,vg(e) } by edges (vt,vi(e)) and

(vﬁ,v%(e)), respectively. A path of length 2 defined by

each pair of these edges is called the c-path. Then we
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say that IR(fi) and IR(fj) are T-connected. e is said
to be the c-edge of these two inner rings, and then these
two inner rings are said to be the c-supporters of e.
(ii) For each edge e=(u,v) € M, choose arbitrarily a face
of G that e touches. Let, say, fi € FG denote this face.
Let g=(u,x) and h=(v,y) € E-M ( ix,y3N{u,vy =g )
denote the two edges touching fi. Then conhect four
pairs.of nodes 1 u,ui(e)} ’ {_u,ui(g)} , 1 v,vi(e)}
and {_v,vi(h)k by edges (ﬁ,ui(e)), (u,ui(g)) (v,vi(e))_
and (v,vi(h)), respectively. e is said to be the b-
edge of IR(fi), and IR(fi) to Se the supporter of e.
(iii) For each v € V-M{(V) ( M(V)= {u,v € V: (u,v) € bﬂ} ),
choose'arbitrarily an édge of E incident upon v and
choose again arbitrarily a face of G that e touches.
Let, say, £, € F, denote this face. Let g=(v,x) and
h=(v,y) € E ( x%v ) denote the two edges touching fi[
both of which are incident upon v. Then connect two
pairs of nodes { v,vi(g) } and -{v,vi(h)} by edgés'
(v,vi(g)) and (v,vi(h)), respectivelj. v is said to be
the b-node of IR(fi), and IR(fi) be the supporter of v.
Let G2 denote the graph constructed by applying the pro-
cedure (4) to Gl'. Since it is well-known that G*, T* and M can
be obtained in polynomial time, G, can be constructed in poly-
nomial time when G is given as input. Note that G, is a rnon-
separable planar graph. Figure 1 shows an example of the graph
transformation from G to G,.
Let v be the node mentioned in (iii) of (4). Each v €V is
connected to exactly one inner ring Ci in terms of a pair of

edges (v,v') and (v,v") ( v',v" € V., /) both of which are intro-.

h i

C
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duced in either (ii) or (iii) of (4). Hence SG (v)=5. Let A(v)
2

denote the subgraph of G2 called the triangle of Ci ( or of v ),

where it is defined by nodes v, v' and v", edges (v,'v“) and (v,v"),

and E v nye+ A pair of edges (v,v') and (v,v") are called the
L(v',v") v

A —edges of v. We say that v is connected to C; in terms of A(v).-

Figure 1. An example of the
graph transformation from
G to G, ( In the figure

Gy AN

14

respectively, denote an

element of M and an inner

ring, and both o———= and

o——~~-e edges ).

Lemma 2.

G has a node cover of size less than or equal to k if andl
only if thei:e exists a subset X C.V2 with |} Xj. < k+r-1 such
that G,-X is an s-p graph. | |
Proof. Let N C V be a node cover for G with | N} £ k. Define
XeC vy for each e=(u,v) € E as follows:
95 when e QE.T,
X = fw} when e € Ep and | {u,v} ) N | =1,

{v,} when e € E, and {ﬁ,.v} C N,

where if {u,vI (O N=4u} ( §v} ), then w=vy (w=v, ) for

VP(u,v)= {V0=u, v1, Vz, V3, V4=v } . Let

- U = U
Xy= eeE Ye (= e €E, Xe)

and
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X=NUJ X
‘Note that N r\x1==¢ . Then we have |X] < "k+r-1l, since \ETI = r-1.

It is easy to see that G2~x is an s-p graph ( see Figure 2 ).

Figure 2. Gz-x for G2 of Figuré 1

( The node cover N that determines

X consists_of those nodes marked x

'1 in Figure 1 ).

Conversely, assume that an s-p graph can be formed by
removing (k+r-1l) or fewer nodes of Gy Let X CLVé be a minimal
set satisfying that Gzéx is s-p and which maximizes, among all
such sets, the number of nodes contained in V. By the construction
of G2 { in which any band of each inner ring is of width (k+r+2) ),
by Remark 1 and by the minimality of X, we can assume that
. X C V.
Let

N=X NV
and let.P(u,v) be the T-path for arbitfary edge e=(u,v) & E Then
I x N {vl, Vs v3}|‘2 1

for VPa(u,v)= {vl’YVZf v3'} C Vf(u,v)' since otherwise G,-X ) Ky

e

Therefore, since we have |E

[N £ k.

Tl =r-1,

Let G3=(V3,E3) denote G2~X for simplicity.
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Lerma 10.
G3fsatisfies the following (1) and (2).
(1) S,. (v)=2 for Yvevv,.

G3 3

(2) C and C. are connected only in terms of exactly two

J
c-paths ( including the case when there exists an edge connectlng
these two c-paths ) for any pair of distinct inner rings C:.L and
c. that are T-connected in G,-

J .

By Lemma ']j_o, we éan prove ‘that N is a node cover for G.
' ' Q.E.D.

LenunaﬁZ' and the fact that G2 can be constructed in time
polynomial in the size of input establish the main theorem.
Theorem 2.

PPSPNR is NP-complete.

We will prove Lemma 10 by way of Lemma 3 through Lemma 9
in the rest of this sectlon.

We have SGB(V) > 2 for Vv ev\‘73. And if v ¢ v V, then
there exist A (v) and the inner ring to which v is connected
in terms of A4 (v).

By the construc‘eion of G,, any two distinct_: inner rings
Ci and Cj have no node in common. Thus Gé has a path of length
‘not less than 2 eennectiné C; and Cj since X C,Vi and since G, is
connected. Two blocks B and B' having a cutpoint u in common are
said to be adjacent to each other at u.

vLemma 3.

Any block B of G; has at most two other blocks each of which
is adjacent to BA‘.

10
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Let
KB =(VKﬁ 'EK@ )
denote the graph shown in Figure 3, where
VK‘5 = iu‘, Ve Wy v, }, and
EK‘3 = {(u,w;), W'“i” i=1,2% U {(wl,wz)} .

- Figure -3'.v_x‘g .

Observe that é g;:aph H is not s-p if KP is a sﬁbgraph of H having
both u and v as cutpoints of H ( any reduction can not be appli‘ed
tb KF since all of u, \f, Wy and w2 are of node degree23 ). Let
’ﬁ'p =(V§; ,Eg{5 ) | -

denote the graph obtained by replacing each edge (w,w') € Eg

with a disjoint path of length not less than 1 ( that is, 'f{p is
a graph homeomorphic to K'{S ). We say that a gr&ph H has avpai.r

of X g —cutpoints if and only if H has a subgraph isomorphic to

'ﬁJﬁ having both u and v as cutpoints of H.

Lemma 4.

G, has no block which contains a pair of Kp-—cutpoints.

3

Lemma 5.

Assume that G; has a triangle A(uw) (uéV). If S c, (u)

Z 3 then u is a cutpoint of Gj.

11
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Lemma 6.

Assume that G3 has a triangle A(u) (u &€V ). Let Ci be

the inner ring to which u is connect'ed in terms of A (u), SG (u)
3

Z 3 and B(Ci) be the block of G3 containing Ci. Then B(Ci) has
no other cutpoint of G, except u. '

Let G, =(V ) (
Ay AR Ay

induced by Al, and let-Ei=El~EAl. Then let

=Ry ) denote the subgraphrgf-Gl

IR(G2)=(VIR(G2)'EIR(GZ))’

called the jinner ring tree, denote the subgraph of G, formed by

deleting El from G2, where EIR(G2)=

EZ;Ei; Let € and C' be a pair
of inner rings that are T-connected in G,. We say that C and C°'
are 7C —-connected, C7C' for short, if and only if they are
connected only in terms of exactly two c-paths ( including the
case when there exists an edge connecting these two c¢-paths ). -

For any two distinct inner rings C and C' of a block, a sequence

of distinct inner rings C. =C, C, ,..., C. =C' { £t 21 ) of this
. 1o 11 e

 block is called the 7U —~connected sequence of C and C' if and

only if Ci TC Ci for j=0,..., t-1.
3 j+1

Let D denote the set of all cutpoints of G Then, by the

3

construction of G, and by the definition of X, we have
D C V1=V® Ay .

Let us denote

D=D_ @ D, ,
v 1
where DV=D M V and DA1=D M Ala Then, by Lemmas 3, 5 and 6,
<
]Dvl < 2.

12
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Let

1) (D) _. (1) [ e
x ! )=XUDV and G5 =G,~X ( =G3-Dy ).

v
Note that Gél) is not always connected. Let Bl’ Bz,... denote the
blocks of G{'), and let | |
'£(1)={Bll Byr eo- } ‘
Hereafter, let us denote
¢iM=w{ ,5{!)) for i=1,2 ana 3.
Lemma 7. ‘
Gél) satisfies the following (1), (2) and (3).
(1) Scéi) (w=2 for Yvevnvil.

(2) b, C D(l)c: A,, where p(1) is the set of all cutpoints
l .

pf Gél).

(3) SG-B(J.) (W) 22 for Yu c—v3(1).

Lemma 8 .

For any pair of distinct inner rings C and C' of anyvblock
Bi € 53(1), there exists the /L -connected sequence of C and C'.

Let | |

pM=fa, .., agd 6=1001), |
where the ordér of elements of D(l), denoted by the subscript, één
arbitrarily fixed. Let P(u,v) denote the T-path containing al€:D(l).

Then, clearly,
a1€VP‘.;1(u,v)= 1¥1vav3d <V (u,v)" {u=vg vy vV, b

We define xa C Vl for the following two cases. Note that, for

1

each aiéiﬁuJ, there exists exactly one T-path containing a; and
that if aiéfaj ( ajr ay e p{b) ) then they are contained in distinct
T-paths.

13
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(i) The case when a;=vy ( respectively when a;=vy ).

By the definition of Gél),
(1) ; (1
{ vO'VZ'VB} _x (' {vl,vz,v4§ c x1 R

Then let
| Xa;_:x'(l)— {v, 3.

" (1i) The case when a;=v,.
By the definition of Gél) ,
' (1)
{Vl,v3 } C x'\.,

Note that if _vokvx(],‘) ( if 'v4%x(1) ) then SGgl) (v0)=2
( 5.G:§l) (vy)=2) ( that is, Vo .( v, ) is connected to

some inner ring only in terms of A (\}0) ( A (vy) ).

Then let
X(l)-{vl} when v,€ X(j‘) and v4§ x 1) .
1 (1 o (1) .
A x! )-{VB‘; when voéx( ) ana vy €XT0,
Xa (1) (1)
1 (x" -{vl} )_U{VO} when {vo,v‘l}nx =¢,
(1) _ : (1)
X {vl} \{vhen, {vo,v‘}} < x'.
Set '
X =x 1)
0
and, for each j=2,..., 6 , define recursyivel,y
xa. C Vy-
3 .
similarily to the definition of RS by replacing X, and X,
1 j=2 ‘ j~1
with Xé and Xa , respectively. Clearly, for each j=1,..., 6,

j-1 J
we have either

X > Ix
ESNID TN
or '

b %,

N vl < lxanvl with | X {=\xa | -
-1 3 3

14
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Set

(2) _» _(2)
3 =G, X .

x(2)=xae and G
(2)

Then by the definition of X and by Lemma 8 we have the next
lemma. |
Lemma 9. '
Géz) satisfies the following (1), (2) ana (3). _
(1) Ahy maximal connected component of Géz) is a block of G(z)
(2) For any pair of distinct inner rings C and C' of any
block of Géz) , there exists the TCU ~connected segquence
of C and C'.

(3) § o(2) (=2 for Vi e anézl,
3

Lemma 9 shows that Géz) is a subgraph of the inner ring treé
IR(G,) . ‘
For wﬁ € DV' let B(w) denote the block of G3 containing 4 (w),
" B be a block distinct from B(w) and adjacent to B{(w) having w as
a cutpoint. Le{: (w,w(il))' and (w,w(iz)) be the two A -edges. Then
we cén show thét any edge incident upon w and distinct from

these two A -edges is contained in B. Therefore, G3(1) consists

of | DV} maximal connected components g (1) (w)=B(w)-{w3 for wé€&
' DV and another one C, which is determined by contracting B(w) to

w for vwé]:oV in G3. Hence, by Lemma 9 , Géz)

consists of ( lDV]
+1) blocks ( or equivalently the same number of maximal connected
components ). That is, each B(l) (w) of Ggl) is itself a block

B(z) (w) of GE(;Z) .by Lemmas g, 7- and 8, and CZ of G3(1) is changed

(2) of G3(2) in the process constructing G(z)

into another block B
Now let us assume that | Dvl' 21 ( In the case when DV= 75,
we 6mit the procedure to construct X(B) described in the following,

and set X(3)=X(2) and G(3)—G(2) }. Let

BD={8Pw: wen,} U I8P} =45, ..., ;| ).

\%

15
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Let B € 3(2) be arbitrarily chosen. By the definition of T*
or of IR(GZ), there exist some Bj & ﬁ(z)— {Bi} , some inner ring
c; of B; and some inner ring Cj of Ej such th;t c; and Cj are
rT-connected in Gj- Then we say tha.‘c:’Bj is_ a T-connected block of
Bi and vicé versa. Let e=(u,v) GET be the c-edge of Ci and Cj’
i'and P(ti,v) be the corresponding T-path for e. Then
VI:"a (u,v)" §vl,v2,v3} - X(Z) '

where we set u=v0 and v=v 4° Note that the following discdssion
does not depend on whethervor not DV N -}_ u,v} is _empty. Défine -
xij C Vl as follows: A | |
(X(2)~ ivl,vzk YU {u} when {u,v§ N x(2)=52(,
x(2)_ {vl,vz} when ‘{u,v} N x(2)={u§ ,
i3 x(z)- {vz,v3 § when .{u,v‘_{ N x2)- {v}, and

X(z)-‘{vl,vz} when {u,v} C x(2),

: S (2)
= £ s .= -
In the case when | DV) 1 define le for we D, by setting B.=B (w)
In the case when IDVI =2, first define X553 for w €D, by setting
2 2 ' 2
Bi=B( )(w). Set Bs=B( )(w') for w' GDV- {w} and let By € ,93( )

be a T-connected block of By Then define g similarly to the

(2) ..
3 with Xst and Xij'

respectively. Now we set

definition of Risr by replacing xij and X

xij when ]DV] =1, and

Il

Xt when | DV,

2,
and clarify the relation between X and X(B). First,
bx;51 £ vf\x(z)] -1 and |x_| < ]Xij] -1,
so that
x < 1= - o

where | DV] £ 2. secondly,

vl

16
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| x |=|x1) - | D
so that

(x| 2z 1x3) .
We have |

Ixl=1x3]|

| and | X(l)l > | x?]

only if we have the following (i) and (ii):
@ 1x®) =1 x@) - o
(ii) {u,v }ﬂ x(2) - ¢ and {u,v} N Xijr??,,, respectively,
for the c-edges e=(u,v) in the definition of Xij_and
of Xst'
If
lx(l),l = IX(Z)I
then
x VA vl <122~ v |
as mentioned earlier. And (ii) implies that we have
'Xij Nnvl]=1x2A v|+ and |x_, N v)= }xij(\ v)]+1,!
so that ‘

[x3N vl =1xPNn v]+ o, ) -
(1)

By the definition of X

| xP N v(=[xnv|+]nv| .

, we have

Therefore, if
1x1 =1x9)
then

IxAnvli< 1x3®A vi.
Let

(3)_. _(3)
G3 -—G2 X .

Then, clearly, wé have the following statements (a) and (b).
(a) G§3)'is a nonseparable subgraph of the inner ring tree

IR(GZ) and satisfies the following (i) and (ii):
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(i) SGgs) (v)=2 for Yvev{¥ .

(ii) For any pair of distinct inner rings C and C’' of
G2, there exists the TU —-connected sequence of C

and C' in G§3).

® x| = lX(3)l , where if\x\=\x<3)I then |xNv]<
[ x®A vl |

G§3) -X constructed in the

is essentially the same form as the G2

first half of the proof of Lemma 2, and it is easy to see that

G§3) is s~p. Now the discussion so far is summarized as follows.
The proof of Lemma 10. Assume that either (1) or (2)’of

the lemma is false. Then we can define X(3)(:_Vl which is distinct

from X and &hich satisfies the above statements (a) and (b),

contradicting our choice of X. Q.E.D.

4. Concluding remark.

The problems PropnR and PSPNR diécussed in this paper and
in [15], respectively, are not included in the class of problems
with properties that are hereditary on induced subgraphs, while
a large number of node-deletion NP-complete problems with
hereditéry properties have been presented by‘M. S. Krishnamoorthy

and N. Deo [11], and by M. Yannakakis [17, 18].
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