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J-integral in two dimensional fracture mechanics
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1 Introduction The principal objective of this paper is

the mathematical interpretation of two dimensional fracture

mechanics (cf. Okamura[10], Rice[12], Sih[13}). The fundamental

concepts of fracture mechanics are stress intensity factors,

energy release rate and J-integral. In two pioneering papers

published in the early 1920's, A. A. Griffith studied
measurements of crack extension forces for the problem of a

crack of length 2a in a plate under tension < as in Fig. 1.
The basic idea behind his theory is that a crack will begin to
propagate if the elastic energy released by its growth is greater
than the energy required to create the fractured surface (see
[131; Historical remarks). This concept of Griffith's energy
balance has been generalized (see, e.g., Palaniswamy and Knauss

[11]) by means of the concept of energy release rate which is

defined as the variational derivative of potential energies

with respect to crack growth. Irwin[4] in applying Griffith's
concept to solve fracture problems recognized the importance

of the intensity of the local stress field. He proposed three
modes of crack extension which are identified with their respective

stress intensity factors K, K, and K3 (see [133). In two

dimensional case it has been shown by Rice[TZ] that the energy



232

release rate is expressed as a path-independent integral, which
is called J-integral in fracture mechanics. In three dimensional
case it has been proved more precisely by Ohtsuka!9! that
analogous representations of the energy release rates hold for

a linear (non-homogeneous) elastic body containing a smooth
crack which means a 2-dimensional oriented smooth manifold with
boundary. Perhaps these representations will be valid for
nonlinear elastic body, but nonlinearity gives rise to
mathematical difficulty in the calculation of the energy release
rate.

In this paper we shall connect these concepts from
mathematical viewpoint. We consider only an isotropic plate
containing a crack lying on the line X, = 0. In the next
section we shall explain the classical energy release rate and
J-integral in such elastic plate and show that the result of
Rice! 12! indicates the crack extension force is attributed to
singularity at a crack tip. In section 3 we shall analyze
singularity at a crack tip and show that the stress intensity
factors are coefficients of singular terms. Furthermore it will

be proved that J-integral acts only on this singularity.
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2 ZEnergy release rate and J-integral ‘Let G be a simply

connected and bounded domain of R2 containing the origin and

let the boundary S of G be smooth. Let Z be the segment
{x € R2; -ag x4 a8y X, = O}, with some a > 0,

such that ¥ C G. Throughout this paper we denote Q = G - Z.
Let us now consider an elastic plate containing the crack
~Z, that is: |
For a positive number h being "small", we denote by
Q X (-h,h) the set occupied by the interior of this elastic
plate in its non-deformed state (see Fig. 2), and call [u,S,G],
in this order, the displacement vector, the linearized strain
tensor and the stress tensor. We consider here the case when
[u,i,W] is a plane stress state which is approximately achieved
~in a thin lamiha deformed under the action of forces lying in its
median plane. Then [u,E,W] depends only on two Cartesian
coordinates X4 and X5 and the stress components 031, 032, 633
arelequal to zero. We admit possible discontinuities of [u,S,Wﬂ
across L. In addition we assume the following; [u,E,G] is a
linear isotropic state on @, the elastic plate cannot move along
S, (C 8), the surface force F is given on S, =S - S,» the
body force f is given in Q, and the stress is free on <
(see Pig. 3). Here S, 1is a subset of S which is measurable
with respect to the line element dS of S and has positive
measure.
In thesé‘circumstances the stress-displacement relations and

stress equations of this plate are given by
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( &ij(u) = (Djui + Diuj)/z (strain tensor)
Gij(u) = aijklskl(u) (strain tensor; Hooke's law)
(2.1) =
25k = A8 38 + M(85857 + 85185

- D.th(u) =f, in Q (balance equation),

in which AN > 0O and M > 0 denote Lamé's modulus and the shear

modulus, respectively, and the folloWing boundary conditions are

given:

(2.2) u=0 on S,

(2.3) 0'ij(u)nj =F, on S,

(2.4) G,(w)* = 9, (u)” =0 on = (i=1,2),

Eij"qij’ fi and F; are the components of u, Ef

g, f and 7F, respectively, nj the components of the unit

where Uy

outward normal to S and Sij Kronecker's delta. Here 512(11)+
512(u)' denote the traces of 5}_2(11) on L and T_ of I

and we have chosen (0,1) as the unit outward normal to X%.

n » Ix1

Pig, 3

X2

u(x) - -~

-

dS/

The deformed state under

a load (f,F) 4is shown by the dotted line.
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Let Q be an open set of R°. We denote by HM(Q) the
usual Sobolev space of order m with the norm denoted by I'lm o
E B4

We shall use the notation
E™(Q) = {E™(@)}?, %) = {t2@)? (= m%(0)),
which are equipped with the usual product norm denoted by #+1
The problem (2.1) - (2.4) is reformulated as follows:

(2.5) Pind a displacement vector u € V(¢) under a load
(£,F) € £2(?) x ©®(S,) such that

0 q;_J(U)SlJ(V) dx = JO fv dx + JS‘} r.v dsS

for all v € V(Q) = {v € H1(Q); v=0 on SOE.

Then we have the following results (cf. [9]):

Theorem 2.1 (a) For each load &£ = (f,F) € mZ(Q) X m2(51),

there exists a unique solution u € V(©) of the problem (2.5).
Furthermore Green's operator T: {, — u is a bounded linear
operator from mZ(Q) X m2(81) into V(Q).

(b) Let B be an arbitrary open neighborhood of X
such that BC ¢ and N an arbitrary open neighborhood of o%
such that ¥ C B. Then { — T(£)] (g_y)» IS a bounded linear
operator from mz(Q) X mz(sj) into Hz((B-ﬁ)'), where
(B-N)' = (B-N) n Q.

The crack extension process is considered to occur in a
quasi-static manner. When we refer to time we use it as a
parameter which indicates the sequence of events such as in
crack pfogression (see [11}). Here we assume that the direction
of crack propagation to be-know a priori as follows: A newly

created crack by extending the crack % in the length of time

5
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t ( >0) 1is expressed by
z(t) = {x€ R%; - a - t<x,La+t, x,= OS.
Here we assume that X(t)C G for t < a. During crack extension

let a load £, be independent of t. Then the quasi-static problen

we now consider is the following:

(2.6) TFor a given load { = (£,F) € LZ(Q) X,m2(81), we seek
displacement vectors v(t) € V(Q(t)) such that

Jg(t) oiJ(V(t))iJ(V) dx =’I9(t') f-V dx + JS1 Fe.v dS
for all v € V(2(t)); 0L t< a, where Q(t) = G - L(t) and
V(1)) = {ve B'(@(t)); v=0 on s}

By virtue of Theorem 2.1 there exists a unique displacement
vector v(t) for each time +t wunder a load L.

The potential energy just prior to.crack extension and
same quantity after fhe crack has extended by the increment

Z(t) - Z are given as follows:
1({;2) =% IQ T 5(u) & 5(u) ax - fﬂ f-u dx - IS1 F.-u dS,
I(£:5(t)) = % JQ(t) T4 (v(£)) & 4(v(8)) ax -
- o) £rV(E) dx - js1 Fiv(t) ds,

where u = v(0). Thus the potential energy released by the
increment 3F(t) -} is written in the form

CIE) - IWD() = JQM T 5 (u=v () ;5 (u-v(t)) ax.
Now consider the limit

. _ I({;Z) - I(A;T(t
¢@;{z(0)}) = Lin s T
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where JZ(t) - 1 is the length of the increment E(t) - I.
If it exists, we call G(&;{Z(t)}) the (classical) energy
release rate under the load . A. A. Griffith seems to have
believed that the crack propagation in a brittle solid becomes
possible when the energy release rate reaches a critical value
depending on the material considered.

The following representation of the energy release rate

is available (see [9]).

Theorem 2.2 For each load 4 the energy release rate is

expressed as

(2.7) 6@ {z0)]}) = T2 T ),
where u = T({) (see Theorem 2.1) and Jk(u) is given by
k-1
- f (Du) dx}.
Aﬁ 1 |
As illustrated in Fig. 4, Ck is any closed path surrounding
the crack tip Ty Ak the open set enclosed by Ck, Ai = Ak D,
W = % Uij(u)éij(u), s the traction vector defined by the outward

normal n along ‘Ck; s; = T .(u)n, and dl the line element

of C1l(or 02).

i ’*xz A,
Flg. 4 n
5
2 C1
+ J 1 xl
Z‘w -
Ay
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Jk(u) is independent of the choice of Cy. In the case when

body force is zero, a path independent integral

7= (c [Wn,- s (Du)] ab

is called J-integral in fracture mechanics. Rice[12] has shown
that the energy release rate is expressed as J-integral in the
following case: the body force - f 1is zero and [u,&,w] is a
homogeneous nonlinear elastic state, i.e., there exists the strain
energy density W, depending only on €, by which the stress-
strain relation is given as follows; T.. = 9W/3E. ..

J-integral will vanish if uIN, € HZ(N') for an arbitrary
open neighborhood N of o (or <,), where N' = N N Q.
Since the first component of the unit normal of X is zero, we

obtain by the divergence theorem

But D.W = Gij(u)éﬁj(D1u)’ so that, integrating by parts, we have

+ Jc1 o 5(u)n Dyu; af.
Thus we have J,(u) = O. '

This indicates the following interesting fact: If this elastic
plate is regular at the crack tips fﬂ,@é} for all loads, the
crack will not progress by any loads, which is contradictory to
our experience. Hence there exists a load such that the elastic
plate under this load is singular at the crack tip. The cause
of brittle fracture is such a singularity at the crack tip.

Here we adopted the following definition.
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Definition 2.3 ILet B be a point of ¥ and let

u=T() € V() r\Hiac(Q). We call £ a regular point of
elastostatic field of this plate under the load & if there
exists an open neighborhood VB of B8 such that

u!(vﬁ,\ 0y € H?(V N ©). We call £ a singular point if & is

not a regular point.

3 Stress intensity factors 1In this section we shall examine

the behavior of a solution of the problem {2.5) near the crack tips.
There are many attempts to obtain solutions for this crack problem
(see, e.g., [13]). But these attempts are achieved by assuming
some simplification of loading. Our interest is to decompose
displacement vectors into singular terms and regular terms,
under general loads f, € EQ(Q) X m2(81). To our knowledge such a
calculation has not appeared in the literature. Our proof
basically consists in applying the method by Merigot[?] in the
analysis of single 2m-order elliptic equations in Lp-spéces.
We note that Kondrat'ev's method[14] (in Lz—space) is not
applicable, because the solution operator (which depends on a
complex parameter § ) for ordinary differential equations given
by the biharmonic problem has poles atk 5 =0, +1/2, +1, +3/2,-¢-,
In this paper we merely state our main results; the proofs will
appear elsewhere.

Let us consider the following elastic plate problem without
crack:

(3.1) Find a displacement vector u, € V(G) such that

IG G'ij(uo)iij(‘f) dx = IG £+¢ dx + Js1 Fry ds

for all Y € V(G). This problem is uniguely solvable and Green's

)
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operator To: - u, is a bounded linear operator from
p2(e) x L?(s,) into V(G).
Next we consider the following elastic problem with crack:

(3.2) Pind a displacement vector uI€ Eﬂ(Q) such that

fg 0; 5 (up)€; () dx = - ﬁa T (T @NIHT ax,

for all ¥ €H'(Q), where Ly, 0 = ¢ - ¥

Lemma 3.1 The problem (3.2) is solvable. Moreover there
exists a function U € H2(Q) N CP(Q), called Airy's stress
function, such that

Gqlup) = DpoU, Fp(ug) = = DyU and  Go(up) = Dy,
where Dij = DiDj’ and U satisfies:
(AU =0 in Q,

(]
]

L

(1)120)+ = (Dy,0)” 7, (T, (@) on %,

kDaU=O on S for lalg 1.

The existence of Airy's stress function is not trivial, because
Q 1is not simply connected.
Let "lécg)(Rz) such that " = 1 near Z and supp 1| C G.

We can easily construct the vector un:€ V(Q) such that

fQ G;.j(u]I)s,ij(v) dx = jQ G'ij((1 - ug) Sij(v) dx
for all v € V(Q) and up= 0 near Z;)e Then u = T(L) is

written in the form

u = uo + quI + uH.

10
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Here we notice that u, and Uy have not singular pocints
in G. For qul, the usual arguments using partition of unity

together with Lemma 3.1 bring us to the following problen.

(%Y = £ in (%,

+
D11V(1‘,-_!_-TL) = g;(r)a
(3.3) { "
DyoV(r,smw = g5(r),
| D%V =0 on 30 for targ 1,

where gz, gi € H1/2(R+) (k = 1,2); R, = (0,m), such that

+
gi(r) = gi(r) near r = 0 and gi(r)
f € H-1(G). Here we set

O for r >1, and

G = {x € R%; x = (rcosfh,rsin), ogrg T, ..T\‘.<9<IL].

The problem

\...-r—’

AZ,VO f in B = {lxl<1

a
DUV,

]

0 on B for Ilal

I

Ty

has a unigue solution v, € HB(B).
Setting V, =V - V_, we can deduce from (3.3) that

2 2
) 1 9 1 97,2 .
(5? + T 57 + ;? -e—gg) V1 = 0 in O',
2 +
sirg V,(r,+m) = h3(r),
1 9%

(—g = + 75738 ) Vq(r,xm) = hy (r),

where h;(r) = 81(r) - D11V0(r,nj, hg(r) = gg(r) - D,V O(r ).
. - 1 -
Here we notice that+ hi, hy € H /2(R+) (kx = 1,2), hk(r) = hk(r)

near r = 0 and hi(r) =0 for r > 1.

Then we have:

11
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Lemma 3.2 The problem (3.3) has a unique solution V,

which is expressed in the form
V(x) = %(K1//§ﬁ3{3003(9/2) + cos(39/2)} r3/2 +
+ @/ D= 810(9/2) - sin(30/2)} x3/2 4 w(x),
where W € H3(®O and
K, = -F?‘J;D {h'g(t) + hg(t)}t'vz dt.

The polar stress components is expressed by means of Airy's

stress function 'ﬁ as follows:

A1 A I P R 111 SO
Tre ST3ST " 7 592" 98 T 32" "re T T S8 T 3Top

Putting the above equations into transformations

T4

o"rrcos2 B+ Spe sin@ - TpSin 2 6,

a5 g-rrsin2 0+ 0—990052 0+ q-resin 29,
To = (S - cree)sinGcose+ O're(coszﬁ- sinzﬁ),
we thus have

Theorem 3.3 ILet u be a solution of the problem (2.5)

under a load (f,F). We introduce local polar coordinates

related to each of the crack tips {U},Gé} (see Fig. 5); let T

be the distance from x to 05 and Gj the angle between the

vector 033 and the line X, = 0. Then there exist constants

K, 3 and Kz,j; j = 1,2 such that

T u,(x) - ) K, ; cos QQ(K-1+2sin2 %}) g o

(SO4) = =1 > rzm . . (I‘-)I‘. +
u, (x) ! : sin -%3~(K+1-2cos2 %9) .

12
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05 2 8 |
sin (K+1+2cos ) w, (x)
AN WL
T 2j=1 Zpjon Y 5 84 3773 ’
-cos 7% (k-1-2sin 1%) WZ(X)
where K = -?—:—:-j- (v; Poisson's ratio), J€ Cg)(ﬁ:) such that

g(r) = 1t for 05; r<a/2 and 3(r) =0 for r >a/2, and

wisW, € 51(9) are regular in G.

In fracture mechanics the constants K1 3 - and K2 3
b4 Hd

called the stress intensity factors for mode 1 (opening) and

are
mode 2 (inplane shearing), respectively, see Lemma 3.2 and Fig. 6.

Fig. 5 | P

) ;
2///j//;2 ;ilﬁ/@1 .
oo :

Mode 1 ' Mode 2

Each mode represents deformation shown in above figure.

Mode % is obtained from antiplane strain state, but we study

only plane stress state for the sake of simplicity.

13
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Combining Thébrem 2.2 with Theorem 3.3, we obtain the following,

Theoremy3.4 J-integral (2.8) acts only on the singular

terms given in (3.4). Moreover

1.2 2 k
Je(w) = ¢ {K1,k + Koo
where E is Young's modulus, and hence by (2.7)
. 1 2 2 2
o(; {=(6)}) = g 5.2, {K‘],k + K2,k"
It is important how these constants K1 K and K2 X
’ ?

depend on the given load and the crack, but, in general, we do

not know it. For special cases we refer to Ishida|s], [12], [13].
Proof Substituting (3.4) into (2.8), we obtain
Jk(u) = Jk(z) + Jk(w) + Mk(z,w)

where 2z 1is the singular term of u, w the regular term of u,

and
M (z,w) = jck [aijklwkl(z)sij(w)n1 - ﬁj(u)njDﬂ”i] al -
- e, T 5(w)nyDyz; al.
Since w is regular at o, Jk(w) = 0. Using the Schwarz

inequality, we have

I (z,w)1< C b2ty g Wl g -

Choosing Ck = {lx! = P}, we obtain the inequalities
| 21 - ‘ |
=1/242
Bwﬂ1’cké; C.llwllz,Al,c (by the trace theorem),

in which we can take for C the constant independent of f,

so that we have

14
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le(z,w)lég C uwuz,Aé,
where the constant C is independent of f. Furthermore we

obtain the estimate

£-(Dy2) d Cuf Ly e
! J’Ai (py2) ax| L ¢t ‘O»AE“Z'1’Ai

Then, letting f — 0, it is clear that only the singular terms
of (3.4) contribute. An explicit calculation based on these

singular terms leads to
o1 2 2
Te(u) = 5 (K5, + K5 ) -

Finally we shall state further results on J-integrals.

4 Comments 1) Let us consider the following direction

of crack extension (see Fig. 7):

(4.1)  ZLet ey be the unit vector in the x1-direction and
let Uk(t); k = 1,2, the crack tips of newly created crack x(t)
by‘extending the crack 3 such that
(i) the map t ~—» Gk(t) is a Smooth curve,
(ii) there exist positive number a,B such that
w3 () )go = aeqs op(B)}y o = -ey.

Then, by implicit function theorem, there exist a positive

number to and a smooth curve
{ = {(x000x0))5 %, € B, b € c2(R) |

such that Z&to)(: ¥ (see Fig. 7).

15
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o (t)
bez | \ 1 )
= b
0','](1:0) r'/‘ ::2 (X.]
X, = b(x1) /" \
\1 ,/ \.\_ Xl
N\ g " ol
AL E
.\—7

0'2('t) 0'2(1;0)

Then we have (see [9]):

Theorem 4.1 We denote by T(x) the vector field

X —» (1,b'(x1)) and by X¢ the differegtiél operator
D, + b'(x1)D2. Then the energy release rate G(L;{Z(t)}) along
the crack extension {z(t)} given in (4.1) under the load L

is independent of the given numbers a,8 and
6 (& {2(0)]) = 352, T (u;T),
where u = T({) and Jk(u;r) is given by

I (use) = (-1)k‘1{fck Wn) - s-(Xw)] af
- JAI'( f+(Xgu) dx

h. .
fAl,{[vij(u)Dj't Du; - W(div )] dx},
where Ck, Ai, W, s, n and d{ are the same symbols given in

Theorem 2.2.
By virtue of Theorem 3.3 and 3.4, we can prove that

Corollary 4.2 TFor any crack extensions xz(t)} as in (4.1),

the energy release rates G(L;{Z(t)}) take the same value

1o 2 (.2 2
E 2 ko1 {Kk,1 + Kz,k}'

16
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2) Next we shall consider general elastic bodies (or plates).
When the elastic body does not contain the crack or another
defect, i.e., elastic fields are regular (see Definition 2.3),
J-integral gives rise to a coservation law for regular elasto-
static fields appropriate to homogeneous but not necessarily
isotropic solids. Gunther[3], and Knowles and Sternbergfé]
derive three types of surface (path) integrals, which is closely
related to a famous work by Noether[S]. A generalization of
these surface integrals are considered in [9]. By use of these
surface integrals (conservation laws), physical interpretations
of energy release ratesare given in Eshelby[Z], Budiansky and.

Rice[1].
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