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Steady Motions Exhibited by Duffing's Equation

— A picture book of regular and chaotic motions -

Yoshisuke UEDA¥

Department of Electrical Engineering, Kyoto University

Abstract. Various types of steady states take place in the system
exhibited by Duffing's equation. Among them harmonic, higher harmonic
and subharmonic motions are popularly known. Then ultrasubharmonic
motions of different orders are fairly known. However chaotic motions
are scarcely known. By using analog and digital computers, this re-
port makes a survey of the whole aspect of steady motions exhibited by
Duffing's equation.

1. Introduction. Duffing's equation appears in various physical
and engineering problems. It is one of the simplest and the most im~
portant nonlinear differential equations. The aim of this report is
to give the whole aspect of steady states exhibited by the equation.
Throughout this paper the term steady state or steady motion means
physical state which continues infinitely after the transient has van-
ished.

There are various types of steady motions exhibited by Duffing's
equation. Among them deterministic or regular motions are generally
known, e.g., harmonic, higher harmonic, and subharmonic motions. How-
ever, owing to the perfectly deterministic nature of the equation, any
reference has not been made to the possibility of the existence of cha-
otic motions for a long time. The occurrence of chaotic motions was
originally studied by the author [1, 2, 3, 4]. Holmes has also observ-
ed chaotic behavior in analog computer solutions of Duffing's equation
[5, 6]. Further Moon has performed experiment for the forced vibra-

tions of a buckled beam and showed the existence of chaotic motions

[7, 81.
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The purpose of this report is to make a survey of the steady motions
exhibited by Duffing's equation which takes the form

d2x dx 3
2

+k—=—4+x =Becos t (1)
dt

dat

Since the solution of Egq. (1) cannot be obtained ahalytically, we have
relied on analog and digital computers. Thus computer solutions are
examined and summarized in this report. Therefore, from the mathemati-
cal point of view, they may raise new questions, yet it is of value and

interest to introduce them to many researchers in various fields.

2. Preliminaries.

2.1 Discrete dynamical system. Equation (1) is rewritten as

ax _ & -y - 3 ’
il Srs ky - x + Bcos t (2)

Let us here introduce a diffeomérphism on the xy plane into itself by
using the solutions of Egs. (2). Let x = x(t, X5 yo), v =y(t, x.,
yo) be a solution of equation (2) which starts from a point Py = (x.,
yo) at t = 0. Let p, = (xl, yl) be the location of the solution at the
instant of t = 27, i.e., xl = x(2w, XO’ yo), Yl = y(2n, xO, yo); then

a Cm—diffeomorphism

£ R2—> R2, Py Pl, r = (k, B) - (3)
of the xy plane into itself is defined.

A periodic solution of Egs. (2) is represented by a fixed or n-peri-
odic point of £y, i.e., p = fﬁ(p), (nez¥). A ftixed point p is char-
acterized by the eigenvalues m,, m, of DfA(p), the derivative of f,
evaluated at the point. A simple fixed or periodic point is classi-
fied into: (i) completely stable fixed or periodic point or sink (S),
(ii) completely unstable point or source (U), (iii) directly unstable
point or saddle (D) and (iv) inversely unstable point or saddle (I).

The steady motion exhibited by Egs. (2) is represented by an attract-
or of the diffeomorphism fA' If an attractor is composed of a single

periodic group, the corresponding motion turns out to be periodic and
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nence deterministic or regular. But if it is composed of a closed, in-
variant set of fA containing infinitely many unstable periodic groups,
chaotic motion appears resulting from the small uncertain factors in
the real system.

2.2 Chaotically transitional processes and strange attractors. A

periodic motion is represented by asymptotically stable periodic solu-

tion. It corresponds to a sink of the diffeomorphism f, having a wide

basin as compared with random noise in the real system.x On the other
hand a chaotic motion is represented by a bundle of solutions in the
txy space which is asymptotically orbitally stable and contains infi-
nitely many unstable periodic solutions. The representative point of
the physical state wanders chaotically among the solutions of this bun-
dle under the influence of small uncertain factors in the real system.
Considering this nature, we have called the phenomenon chaotically
transitional process [1].

The set of points on the xy plane consisting of the cross section of
the bundle at t = 2nm (n € Z) is called a strange attractor. We have
emphasized that the strange attractor is identical with a closure of
unstable manifolds of a saddle of the diffeomorphism fk'

3. Experimental results on the steady motions.

3.1 kB chart for different types of steady states. In the forced

oscillatory system exhibited by Eq. (1), various types of steady states
are sustained depending on the system parameters A = (k, B) as well as
on the initial conditions. Figure 1 shows the regioné on the kB plane
in which different steady motions are observed. These regions are ob-
tained by using analog and digiral computers. The Roman numerals T,
IT, IT*, II" , IIT and IV characterizé harmonic motions. The fractions
m/n (m=1, 3, 4, 5, 6, 7, 11 and n = 2, 3) indicate the regions in
which subharmonic or ultrasubharmonic motions of order m/n are sustain-
ed. An ultrasubharmonic motion of order m/n is a periodic motion whose
principal frequency is m/n times the frequency of external force. Cha-

otic motions take place in the shaded regions. In the area hatched by
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Regions of different steady states for the system exhibited by Eq. (1).

Fig. 1.



fyll lines, chaotic motion occurs uniquely, while in the area hatched
py dotted lines, two different steady states take place, i.e., chaot-
jc and regular motions. Which one occurs'depends on the initial condi-
{ions.

Ultfasubharmonic motions of higher orders (n = 4, 5, ...) can occur
naturally in the system, but they are omitted in Fig. 1. Further we
should like to add that, though we performed the experiment carefully
and repeatedly, the chart is far from perfect. In particular, the re-
gions which lie between B = 5 and 15 are regarded as very serious prob-
Jems. Details are doubtful and further investigations‘will be requir-
ed.

3.2 A collection of steady motions. In order to illustrate the re-

gions of kB chart, we choose a set of parameters A = (k, B) from every
region. The location of these parameters are indicated by alphabets
from a to u in Fig. 1. Figure 2 shows the trajectories of the steady
motions on these points. Almost all steady motions which will occur
for these parameters are supposed to be collected. In the figure, po-
sitions of the representative point at the instant t = 2n7 (n € Z+) are
marked x. So the marks x on the periodic trajectories are the com~

pletely stable fixed or periodic points of the diffeomorphism f The

three cases (k), (ll) and (ol) show chaotic motions, in which tﬁe'traj—
ectories are drawn after the transients have vanished and hence the
marks X appear on the strange attractors.

The periodic motion whose trajectory is symmetric about the origin
is expanded into Fourier series consisting of odd order harmonics only.
While the motion whose trajectory is unsymmetric about the origin is
accompanied by even order harmonics in addition to the odd order ones.
In such a case, as we see in Fig. 2 there exist a pair of trajectories

symmetric to each other;

3.3 Chaotically transitional processes. The outlines of the strange

attractors for the cases (k), (ll) and (ol) are shown in Fig. 3. They

are plotted after the transients have vanished. As mentioned before,
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the strange attractors are identical with the closures of unstable

manifolds of some saddles of The waveforms which are the realiza-

tions of these chaotically tra;sitional processes are given in Fig. L.
The global phase plane structure of fA for the case (ol) is shown in
Ref. [2]. 'The transition of the strange attractors and average power
spectra are also reported in Ref. [3].

3.4 Remarks on the experimental results. Here we briefly summarize

the experimental results obtained in the preceding sections.

(1) Periodic motions with period 2w, i.e., harmonic or higher har-
monic ones, occur almost everywhere except in the regions surrounded
by 5/2 harmonic region. In particular, two types of 2m periodic mo-
tions are observed in the regions I, II, II"™ , III and IV, and four
types of ‘them in the region II'. On the boundaries of I, II' and III,
Jump phenomenonvtakes place. In other words, SD coalescence (SD ex-
tinction or generation) occurs on them, while on the boundaries II and
IV, SI branching occurs.

(2) As B increases, the order of ultrasubharmonics grows larger.
Ultrasubharmonic regions of all orders except 5/2 and 7/3 lie within
the limits of k less than 0.2.

(3) Ultrasubharmonic regions of order 5/2 and 7/3 participate close-
1y in the chaotic regions [3]. Though ultrasubharmonic motions of
higher orders appear in the chaotic regions, they are omiﬁted in Fig.
1. Similar circumstances are discussed in detail in Ref. [4]. The
main results and remaining unsolved problems are also summarized there
relating to chaotically transitional processes exhibited by Duffing's

equation.

4. Conclusion. By using analog and digital computers, the whole
aspect of steady motions exhibited by Duffing's equafion has been sur-
veyed experimentally. It is hoped that the results will be applied to
various physical problems and will deserve attention as material for

mathematical study.
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