Various aspects of unipotent group actions in algebraic geometry

Masayoshi Miyanishi (Osaka University)

§ 1. Unipotent group actions on complete varieties

1.1. Let k be an algebraically closed field of characteristic zero. Let G be a connected algebraic group defined over k. Assume that G acts non-trivially on an algebraic variety V,

$$\sigma : G \times V \to V.$$

Then we have the canonical Lie algebra homomorphism

$$\sigma_* : \mathfrak{g} := \text{Lie}(G) \to H^0(V, \mathcal{O}_V),$$

where $\mathcal{O}_V := (\Omega^1_{V/k})^*$. If V is smooth over k, \mathcal{O}_V is a locally free O_V-Module associated with the tangent bundle T_V. For every element τ of \mathfrak{g}, $\sigma_*(\tau)$ is thus a holomorphic (tangent) vector field of V.

Now assume that V is a nonsingular projective variety defined over k. Let X be a holomorphic vector field on V such that $X \neq 0$. A point P of V is said to be a zero of X if $X(P) = 0$; the set of all zeros of X is denoted by
Zero(X), which is a closed subvariety of X. Let P ∈ Zero(X).
Then we can consider the Lie derivative L_X:

$$L_X : T_{V,P} \rightarrow T_{V,P} \ ; \ L_X(Y) = [X,Y].$$

X is said to be generic at P (or X has a simple zero at P) if L_X is nondegenerate on $T_{V,P}$. X is said to be generic (or X has only simple zeros) if L_X is nondegenerate for every zero P of X. If X has a simple zero at P, we can consider the eigenvalues $\theta_1(P), \ldots, \theta_n(P)$ of L_X, where $n = \dim V$. The existence of holomorphic vector fields (or actions of algebraic groups) on V imposes some restrictions on the topology and the numerical characters of V. We shall quote some of the known results.

1.2. Let V be a nonsingular projective variety defined over k and let X be a holomorphic vector field on V such that $X \neq 0$. Let $Z := \text{Zero}(X)$. Define the contraction operator i_X as follows:

$$i_X : \Omega^P_X \rightarrow \Omega^{P-1}_X$$

$$i_X(fdx_1 \wedge \ldots \wedge dx_P) = f(\sum_{i=1}^{P} (-1)^{i-1}X(x_i)dx_1 \wedge \ldots \wedge dx_i \wedge \ldots \wedge dx_P).$$

The definition is well-defined, and if ω^P is an element of $H^0(V, \Omega^P_V)$ then $i_X(\omega^P) \in H^0(V, \Omega^{P-1}_V)$. Let

$$\mathfrak{f}^1_V = \{ X \in H^0(V, \Theta_V) \mid i_X : H^0(V, \Omega^1_V) \rightarrow H^0(V, \Omega_V) \}.$$

is the zero map

Then \mathfrak{f}^1_V is a Lie subalgebra of $H^0(V, \Theta_V)$.

--- 2 ---
1.2.1. **Theorem.** With the above notations, we have:

1. (Kobayashi [7]). If \(0 \leq \dim Z < n := \dim V\), then \(P_m(V) = 0\) for every \(m > 0\). Hence \(\kappa(V) = -\infty\).

2. (Carrell-Lieberman [1]). Assume that \(Z \neq \emptyset\). Then
\[
h^p,q = \dim_k H^q(V, \Omega^p_V) = 0 \quad \text{whenever} \quad |p-q| > \dim_k Z.
\]

3. (Carrell-Lieberman [1]). Every element \(X\) of \(L^1_J\) has zeros. Hence, if \(h^{1,0}(V) = \dim H^0(V, \Omega^1_V) = 0\) then every holomorphic vector field has zero. Hence, if \(V\) has a holomorphic vector field without zero, \(h^{1,0}(V) > 0\).

1.2.2. **Corollary.** Assume that \(\dim V = 2\) and \(V\) has a holomorphic vector field \(X\) with \(\dim \text{Zero}(X) = 0\). Then \(V\) is rational.

Proof. The assumption \(\dim \text{Zero}(X) = 0\) implies \(h^{1,0}(V) = 0\). Since \(X \neq 0\), we have \(P_m(V) = 0\) for every \(m > 0\). Hence \(V\) is rational by Castelnuovo's criterion of rationality.

1.2.3. **Theorem.** Let \(k = \mathbb{C}\). Assume that \(V\) has a holomorphic vector field \(X\) possessing only simple zeros. For a point \(P\) of \(\text{Zero}(X)\), let \(\theta_1(P), \ldots, \theta_n(P)\) be the eigenvalues of \(L_X\). Assume that \(\text{Re} \theta_i(P) \neq 0\) for \(1 \leq i \leq n\) and every point \(P \in \text{Zero}(X)\). Then the Betti numbers of \(V\) are given as follows:

\[
b_{2p}(V) = \#\{P \in \text{Zero}(X) | \#\{j | \text{Re} \theta_j(P) > 0, 1 \leq j \leq n\} = p\}
\]

\[
b_{2p+1}(V) = 0, \quad \text{(cf. Carrell-Lieberman [1]).}
\]

1.3. **Examples.**

1. Let \(G\) be a semi-simple algebraic group, let \(P\) be
a parabolic subgroup of G, let T be a maximal torus with $T \subseteq P$ and let $V := G/P$. Let t be a regular element of infinite order in T such that there exists a one-dimensional subtorus S of T passing through t. Let S act on V via left translations of G. Let X be a holomorphic vector field on V defined by the canonical Lie algebra homomorphism

$$\alpha_* : \mathfrak{j} := \text{Lie}(S) \longrightarrow H^0(V, \mathcal{O}_V).$$

Then $\text{Zero}(X)$ is a finite set and X has only simple zeros.

Proof. We claim that:

(gP) is a fixed point of $S \mapsto g^{-1}tg \in P \mapsto g \in N(T)P$.

Indeed, S is the closure of $\{t^m \mid m \in \mathbb{Z}\}$, and hence (gP) is a fixed point if and only if $g^{-1}tg \in P$. Then $t \in gPg^{-1}$.

Since t is a regular element, $T \subseteq gPg^{-1}$. Hence $g^{-1}Tg \subseteq P$.

Therefore $g^{-1}Tg = p^{-1}Tp$ for some element $p \in P$. Hence $gp^{-1} \in N(T)$. Since $\#(N(T)P/P) < +\infty$, there are only finitely many fixed points of S on V. Let (gP) be a fixed point of S. Let \mathfrak{g} and \mathfrak{p} be the Lie algebras of G and P, respectively.

Now, $T_V(gP)$ is identified with $\mathfrak{g}/\mathfrak{p}$ via $\mathfrak{g}_{\mathfrak{p}} : \mathfrak{g}/\mathfrak{p} \longrightarrow T_V(gP)$.

Then the Lie derivative L_X on $T_V(gP)$ is identified with

$$Y \pmod{\mathfrak{p}} \mapsto \text{Ad}(g^{-1}tg)(Y) \pmod{\mathfrak{p}}.$$

Noting that $g^{-1}tg \in P$, we know that L_X is non-degenerate at (gP).

(2) Let $V = \mathbb{P}^n_k$ with homogeneous coordinates (x_0, x_1, \ldots, x_n). Let $\alpha_0, \ldots, \alpha_n$ be pairwise prime integers such that $\alpha_0 + \cdots + \alpha_n$.
= 0. Let \(G_m \) act on \(V \) via
\[
t(x_0, x_1, \ldots, x_n) = (t^{a_0}x_0, t^{a_1}x_1, \ldots, t^{a_n}x_n).
\]
Then the fixed points of \(G_m \) on \(\mathbb{P}^n \) are \(O_i \)'s, where \(O_i = (0, \ldots, 0, 1, 0, \ldots, 0) \). Let \(u_j = x_j/x_i \) and \(\xi_j = \frac{\partial}{\partial u_j} \) for \(0 \leq j \leq n \) and \(j \neq i \). Then we have
\[
T_{\mathbb{P}^n, O_i} = \sum_{j=0}^{n} k\xi_j \quad \text{and} \quad L_X(\xi_j) = (\alpha_j - \alpha_i)\xi_j.
\]
Instead, consider the following action of \(G_a \) on \(\mathbb{P}^n_k \),
\[
G_a = \{ \exp(tA) \mid t \in k, A = \begin{pmatrix} 0 & 1 & 0 \\ & & \\ 0 & \ddots & 1 \\ & & 0 \end{pmatrix} \in M_{n+1}(k) \}
\]
\[
t \left(\begin{array}{c} x_0 \\ x_1 \\ \vdots \\ x_n \end{array} \right) = \exp(tA) \left(\begin{array}{c} x_0 \\ x_1 \\ \vdots \\ x_n \end{array} \right).
\]
Then \(O := (1,0,\ldots,0) \) is the unique fixed point of \(G_a \). The holomorphic vector field \(X \) on \(\mathbb{P}^n \) defined by this action has the following Lie derivative \(L_X \) on \(T_{\mathbb{P}^n, O} \);
\[
u_j = x_j/x_0, \quad \xi_j = \frac{\partial}{\partial u_j} \quad (1 \leq j \leq n),
\]
\[
T_{\mathbb{P}^n, O} = \sum_{j=1}^{n} k\xi_j,
\]
\[
L_X(\xi_j) = 0 \quad \text{if} \quad j = 1; = -\xi_{j-1} \quad \text{if} \quad j > 1.
\]
Hence the zero of \(X \) at \(O \) is not simple.

1.4. Now, we shall be mainly interested in the unipotent group actions on complete algebraic varieties. A main problem is the Carrell conjecture, which we shall state below.
Let G be a unipotent algebraic group defined over k. We shall summarize some of the known results on unipotent group actions.

1.4.1. THEOREM. (1) [Borel fixed point theorem] (cf. Fogarty [2], Horrocks [6]). If a connected solvable affine algebraic group G acts on a complete algebraic variety V then the fixed point locus V^G is nonempty. If G is unipotent, V^G is connected if and only if V is connected.

(2) Let G be a connected affine algebraic group. Then G is unipotent if and only if, for any connected complete variety V on which G acts, V^G is connected (cf. Fogarty [2]).

(3) Let G and V be the same as in (2) above. Then the canonical inclusion $\iota : V^G \hookrightarrow V$ induces an equivalence between the categories of etale coverings $\text{Et}(V)$ and $\text{Et}(V^G)$. In particular, the inclusion ι yields an isomorphism of algebraic fundamental groups,

$$\pi_* : \pi_1(V^G)_{\text{alg}} \xrightarrow{\sim} \pi_1(V)_{\text{alg}},$$

(cf. Horrocks [6]).

1.4.2. We also recall the following result:

THEOREM (Matsumura [8]). Assume that V is a nonsingular complete variety. Then the group of all birational automorphisms of V, $\text{Bir}(V)$, contains an affine algebraic group of positive dimension if and only if V is birationally equivalent to $\mathbb{P}^1 \times W$ ($V \sim \mathbb{P}^1 \times W$ as notation), where W is a complete variety. Thus, if the Kodaira dimension $\kappa(V) \geq 0$, $\text{Bir}(V)$ cannot contain any affine algebraic group.
1.4.3. Now, we consider the following:

CARRELL CONJECTURE. Assume that a connected unipotent group G acts on a nonsingular projective variety V in such a way that the fixed point locus V^G consists of a single point. Then V is rational.

1.4.4. A partial solution of the above conjecture is this:

THEOREM. Let G and V be the same as in the Carrell conjecture. Then we have:

(1) If $\dim V \leq 2$, the Carrell conjecture is affirmative.

(2) If $\dim V = 3$, V is one of the following:

(i) V is rational,

(ii) $V \sim \mathbb{P}^1 \times W$, where W is a nonsingular projective surface with $\kappa(W) \geq 1$ and $p_g = q = 0$. Moreover, W is simply connected.

Proof. Without loss of generality, we may assume that the action of G is effective, i.e., the canonical homomorphism $G \to \text{Aut} \ (V)$ is injective.

(1) The case $\dim V = 1$ is obvious by virtue of Matsumura's theorem. Suppose that $\dim V = 2$. If $\dim G = 1$, the action of G on V gives rise to a holomorphic vector field X on V such that $\text{Zero}(X) = V^G$, which consists of a single point. Then, by virtue of Corollary 1.2.2, V is rational. Assume that $\dim G = 2$. Then G is commutative, i.e., $G \cong G_1 \times G_2$ with $G_1 \cong G_2 \cong G_a$. By virtue of Matsumura's theorem, $V \sim \mathbb{P}^1 \times C$, where C is a complete nonsingular model of $k(V^G)$. Then G_2 acts on C effectively. Hence $C \sim \mathbb{P}^1$, and $V \sim \mathbb{P}^1 \times \mathbb{P}^1$.

Namely, V is rational.

(2) Assume that $\dim V = 3$. Consider first the case where $\dim G = 3$. Then G has a central series of subgroups

$$G \supseteq G_1 \supseteq G_2 \supseteq 1,$$

such that $G/G_1 \cong G_1/G_2 \cong G_2 \cong G_a$. By Matsumura's theorem, $V \sim \mathbb{P}^1 \times W$, where W is a nonsingular projective surface such that W is a complete nonsingular model of $k(V^G)$ and the unipotent group G/G_2 acts effectively on W. By virtue of the above case where $\dim V = \dim G = 2$, we conclude that $W \sim \mathbb{P}^1 \times \mathbb{P}^1$; note that we did not use in the proof the assumption $\mathcal{V}^G = \{\text{single point}\}$. Hence $V \sim \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$. Suppose next that $\dim G = 2$. By a similar reasoning as above, we know that $V \sim \mathbb{P}^1 \times \mathbb{P}^1 \times C$, where C is a nonsingular complete curve.

Since \mathcal{V}^G consists of a single point, we know that $\pi_1(V)_{\text{alg}} = (0)$ (cf. Theorem 1.4.1, (3)). Since $\pi_1(V)_{\text{alg}} \cong \pi_1(\mathbb{P}^1 \times \mathbb{P}^1 \times C)_{\text{alg}}$, we know that $\pi_1(C)_{\text{alg}} = (0)$, i.e., C is simply connected.

This implies that $C \cong \mathbb{P}^1$. Hence V is rational. Suppose finally that $\dim G = 1$. By virtue of Matsumura's theorem, $V \sim \mathbb{P}^1 \times W$, where W is a complete nonsingular model of $k(V^G)$.

We may assume that W is relatively minimal. Let p_1 and p_2 be the canonical projections from $\mathbb{P}^1 \times W$ to \mathbb{P}^1 and W, respectively. Then we have,

$$\mathcal{O}_{\mathbb{P}^1 \times W} \cong p_1^* \mathcal{O}_{\mathbb{P}^1} + p_2^* \mathcal{O}_W,$$

$$\mathcal{O}_{\mathbb{P}^1 \times W} \cong p_1^* \mathcal{O}_{\mathbb{P}^1} \wedge p_2^* \mathcal{O}_W + p_2^* \mathcal{O}_W^2.$$

By virtue of Theorem 1.2.1, (1), we have $h^{1,0}(V) = 0$ for
i = 1, 2, because the action of \(G \) yields a holomorphic vector field \(X \) on \(V \) with \(\text{Zero}(X) = V^G = \{ \text{single point} \} \). Since \(h^{1,0}(V) \) is a birational invariant (cf. Griffiths-Harris [16; p.494]), we know that \(h^{1,0}(W) = h^{2,0}(W) = 0 \). Hence \(p_g = q = 0 \) for \(W \). Moreover, since \(\pi_1(V)_{\text{alg}} = (0) \), we know that \(\pi_1(W)_{\text{alg}} = (0) \). Namely, \(W \) is simply connected. If \(W \) is rational, \(V \) is rational. Suppose that \(W \) is not rational. If \(\kappa(W) = 0 \) then \(p_g = q = 0 \) implies that \(W \) is an Enriques surface, which is, however, not simply connected. Hence \(\kappa(W) \geq 1 \).

Q.E.D.

1.5. We shall give the following result on the existence of a \(G_a \)-action.

LEMMA (cf. [9; p. 35]). Let \(W \) be a variety defined over \(k \) and let \(\pi : V \rightarrow W \) be a \(\mathbb{P}^1 \)-bundle over \(W \). If there exists a nontrivial \(G_a \)-action on \(V \) whose orbits are contained in fibers of the projection \(\pi \), then the fixed point locus \(V^G \) contains a cross-section \(S \) of \(\pi \). Then there exists a locally free \(O_W \)-module \(E \) of rank 2 such that \(E \) is an extension of \(O_W \) by an invertible sheaf \(L \) on \(W \), \(V \cong \mathbb{P}(E) \), and \(S \) is the cross-section corresponding to \(L \). Moreover, we have \(H^0(W,L^{-1}) \neq 0 \). Conversely, if \(H^0(W,L^{-1}) \neq 0 \), there exists a \(G_a \)-action on \(V \) along fibers of \(\pi \).

Proof. Let \(V_1^G \) be the union of irreducible components of \(V^G \) of codimension 1, and consider \(V_1^G \) as a reduced effective divisor on \(V \). Since \(G_a \) acts on \(V \) along fibers of \(\pi \), each general fiber contains one and only one fixed point. Hence
(V^G, \mathfrak{L}) = 1$, where \mathfrak{L} is a general fiber of π. This implies that V^G contains only one irreducible component S, which is a cross-section of π. Let $L = O_S(S)$ and let $E = \pi_* O_V(S)$. Then we have an exact sequence,

$$0 \rightarrow O_L \rightarrow E \rightarrow L \rightarrow 0.$$

By construction, S is the cross-section corresponding to L. The remaining part is proved in [9; p. 35]. Q.E.D.

§ 2. Unipotent group actions on affine varieties

2.1. Let k be an algebraically closed field of characteristic ≥ 0. Recall the following very well-known results:

2.1.1. THEOREM (Nagata [13], Haboush [5]). Let R be a finitely generated k-algebra and let G be a connected reductive algebraic group. Assume that G acts on R as k-automorphisms of R in such a way that:

For every $f \in R$, a k-submodule $\sum_{g \in G} f^g k$ of R is a finite k-module; then we say that G acts rationally on R.

Let R^G be the subring consisting of G-invariant elements in R. Then R^G is finitely generated over k.

2.1.2. THEOREM (Nagata [14]). There exists a unipotent algebraic group G acting rationally on a polynomial ring $R := k[x_1, \ldots, x_n]$ such that R^G is not finitely generated over k.

The writer believes that there should exist a rational action of the additive group \mathbb{G}_a on a polynomial ring $R = k[x_1, \ldots, x_n]$ such that $R^{\mathbb{G}_a}$ is not finitely generated over k. If there is
such an action, we must have \(n \geq 4 \) by virtue of Zariski's theorem (cf. Nagata [14]), and the action is not linear by virtue of the following result of Weitzenböck:

2.1.3. **Theorem** (cf. Seshadri [15]). Let there be given a linear action of \(G_a \) on a polynomial ring \(R = k[x_1, \ldots, x_n] \), where \(\text{char}(k) = 0 \). Then \(R^a \) is finitely generated over \(k \).

2.2. For the sake of simplicity, we assume that \(\text{char}(k) = 0 \).

Theorem. Assume that \(G_a \) acts non-trivially on a polynomial ring \(R = k[x_1, \ldots, x_n] \), where \(n \leq 3 \). Let \(A \) be the \(G_a \)-invariant subring of \(R \). Then we have:

1. \(A \) is a finitely generated over \(k \), and \(A \) is a unique factorization domain.

2. If either \(n \leq 2 \) or \(A \) is regular then \(A \) is a polynomial ring over \(k \).

Proof. For the proof of the assertion (1) and the case \(n \leq 2 \) in the assertion (2), see Miyanishi [9; §§ 1, 3 of Chap.I]. We shall prove the assertion (2) in the case where \(n = 3 \) and \(A \) is regular.

(i) By virtue of Zariski's theorem [14; p. 52], \(A \) is finitely generated over \(k \). Moreover, \(A \) is a UFD and the set \(A^* \) of all invertible elements of \(A \) is \(k^* = k-(0) \). Let \(Y := \text{Spec}(R) \), let \(X := \text{Spec}(A) \) and let \(\pi : Y \rightarrow X \) be the dominant morphism induced by the injection \(A \hookrightarrow R \). We shall prove that the logarithmic Kodaira dimension of \(X \) has value \(\kappa(X) = -\infty \). Then we can apply the following characterization of the affine plane (cf. Miyanishi-Sugie [12] and Fujita [3] as well as the
papers of Iitaka's given in the references of these papers):

Let \(X = \text{Spec}(A) \) be a nonsingular affine surface. Then \(X \cong \mathbb{A}^2_k \) if and only if \(A \) is a UFD, \(A^* = k^* \) and \(\overline{\kappa}(X) = -\infty \).

(ii) We claim that \(\pi : Y \to X \) is a faithfully flat, equi-dimensional morphism of dimension 1.

We shall first show that \(\pi \) is surjective. Suppose \(\pi \) is not surjective. Then there exists a maximal ideal \(m \) of \(A \) such that \(mR = R \). Let \((O, tO) \) be a discrete valuation ring of the quotient field \(K \) of \(A \) such that \(O \) dominates \(A_m \). Let \(R' = R \otimes O \), which is identified with a subring of the field \(L := k(x_1, x_2, x_3) \). Let \(\Delta \) be a locally nilpotent derivation on \(R \) associated with the given \(G_a \)-action on \(Y \) (cf. [9; § 1, Chap. I]). Then \(\Delta \) extends naturally to a locally nilpotent \(O \)-derivation in \(R' \), and \(O \) is the ring of \(\Delta \)-invariants in \(R' \), i.e., \(O = \{ r \in R'; \Delta(r) = 0 \} \). By assumption, we have \(tR' = R' \), where \(t \) is a uniformising element of \(O \). Hence \(t \Delta(r) = 0 \) for some element \(r \in R' \). Then \(t \Delta(r) = 0 \), whence \(r \in O \). This is a contradiction. Thus \(\pi \) is surjective.

Secondly, we shall show that every irreducible component of a fiber of \(\pi \) has dimension 1. Note that general fibers of \(\pi \) are isomorphic to \(\mathbb{A}^1_k \) (cf. [9; § 1, Chap. I]). Hence each irreducible component of a fiber has dimension \(\geq 1 \). Suppose that an irreducible component \(T \) of a fiber \(\pi^*(P) \) (with \(P \in X \)) has dimension 2. Since \(R \) is a UFD, there exists an irreducible element \(a \in R \) such that \(T = \text{Spec}(R/aR) \). Since \(T \) is \(G_a \)-stable, \(a \) is \(G_a \)-invariant, i.e., \(a \in A \). Let \(C := \ldots \)}
Spec(A/aA). Since A is a UFD, C is an irreducible curve on X and \(\pi^{-1}(C) = T \subset \pi^{-1}(P) \). This is a contradiction because \(\pi \) is surjective. Thus \(\pi \) is an equi-dimensional morphism of dimension 1.

Finally, we shall show that \(R \) is flat over \(A \). Let \(q \) be a prime ideal of \(R \) and let \(p = q \cap A \). Then \(R_q \) dominates \(A_p \).

Since \(A_p \) is regular and \(R_q \) is Cohen-Macaulay, \(R_q \) is flat over \(A_p \) (cf. EGA [4, IV, 15.4.2]). Hence \(\pi \) is faithfully flat.

(iii) Let \(U := \{ P \in X; \pi^*(P) \) is irreducible and reduced\}. Then, by virtue of [9, Th.4.1.1,p.46], \(W := \pi^{-1}(U) \) is an \(\mathbb{A}^1 \)-bundle over \(U \). We claim that \(\overline{k}(X) = -\infty \).

Let \(H \) be a hyperplane in \(Y = \mathbb{A}^3_k \) such that \(H \cap W \neq \emptyset \).

Suppose \(\overline{k}(X) \geq 0 \). Let \(C \) be an irreducible curve on \(H \).

Consider a morphism:

\[
\varphi : C \times \mathbb{A}^1_k \rightarrow H \times \mathbb{A}^1_k = Y \xrightarrow{\pi} X,
\]

and assume that \(\varphi \) is a dominant morphism. Since \(\dim(C \times \mathbb{A}^1_k) = \dim V = 2 \), we have

\[
-\infty = \overline{k}(C \times \mathbb{A}^1_k) \geq \overline{k}(X) \geq 0,
\]

which is a contradiction. Hence \(\varphi \) is not a dominant morphism.

Let \(D \) be the closure of \(\varphi(C \times \mathbb{A}^1_k) \) in \(X \). Then \(C \times \mathbb{A}^1_k \subset \pi^{-1}(D) \). Suppose \(C \cap W \neq \emptyset \). Then the general fibers of \(\pi : \pi^{-1}(D) \rightarrow D \) are isomorphic to \(\mathbb{A}^1_k \). This implies that \(\pi^{-1}(D) \) is irreducible and reduced. Since \(\dim(C \times \mathbb{A}^1_k) = \dim \pi^{-1}(D) = 2 \), we have \(C \times \mathbb{A}^1_k = \pi^{-1}(D) \).

Let \(Q \) be a point on \(H \), and let \(C_1, \ldots, C_r \) be irreducible
curves on \(H \) such that \(C_1 \cap \ldots \cap C_r = \{ Q \} \) and that \(C_i \cap W \neq \emptyset \) for \(1 \leq i \leq r \). For any point \(Q \) on \(H \), we can find such a set of irreducible curves. Indeed, \(H \) is the affine plane \(\mathbb{A}_k^2 \) and \(H \cap (Y-W) \) has dimension \(\leq 1 \); thus we have only to take a set of suitably chosen lines on \(H \) passing through \(Q \). Let \(D_i \) be the irreducible curve which is the closure of \(\pi(C_i \times \mathbb{A}_k^1) \) on \(X \) for \(1 \leq i \leq r \). Then \(C_i \times \mathbb{A}_k^1 = \pi^{-1}(D_i) \) for \(1 \leq i \leq r \).

Since we have

\[
(Q) \times \mathbb{A}_k^1 = (C_1 \cap \ldots \cap C_r) \times \mathbb{A}_k^1 = (C_1 \times \mathbb{A}_k^1) \cap \ldots \cap (C_r \times \mathbb{A}_k^1) = \pi^{-1}(D_1) \cap \ldots \cap \pi^{-1}(D_r) = \pi^{-1}(D_1 \cap \ldots \cap D_r),
\]

we know that \(D_1 \cap \ldots \cap D_r = \{ P \} \), \(P \) being a point on \(X \). The correspondence \(Q \mapsto P \) defines a morphism \(\psi : H \rightarrow X \) such that \((Q) \times \mathbb{A}_k^1 = \pi^{-1}(P) \). If \(\psi \) is a dominant morphism, we have

\[
-\infty = \overline{k}(H) \geq \overline{k}(X) \geq 0,
\]
which is a contradiction. Hence \(\psi \) is not a dominant morphism.

Let \(F \) be the closure of \(\psi(H) \) in \(X \). Then, for every point \(P \) of \(F \), we have \(\dim \psi^{-1}(P) \geq 1 \), and \(\pi(\psi^{-1}(P) \times \mathbb{A}_k^1) = \psi(\psi^{-1}(P)) = P \). This contradicts the assertion proved in the step (ii). Therefore \(\overline{k}(X) = -\infty \).

Natural as it is, the situation of \(G_a \)-actions on a polynomial ring \(R = k[x_1, \ldots, x_n] \) becomes complicated and worse as \(n \) increases. If \(n \leq 2 \), \(R \) is a polynomial ring in one variable over the subring \(A \) of \(G_a \)-invariants (cf. [9; §1, Chap.I]). However, this does not hold in the case where \(n = 3 \). Still, the property that \(A \) be a polynomial ring seems to hold without the assumption that \(A \) is regular. When \(n = 3 \),
another criterion for A to be a polynomial ring is that A
contains one of coordinates x_1, x_2, x_3. Thus, if G_a acts
linearly on $R = k[x_1, x_2, x_3]$, then A is a polynomial ring.
Perhaps, A no longer is a polynomial ring for a general G_a-
action on R if $n \geq 4$.

2.3. Finally, we shall state the following result without proof:

THEOREM (cf. [11]). Assume that char(k) = 0. Let $X =$
Spec(A) be a normal affine surface defined over k, possessing
a non-trivial action of the additive group G_a. Then every
singular point of X is a cyclic quotient singularity.

The result no longer holds if X is not affine.

REFERENCES

 35-51.
 28 (1966).
5. Haboush, W.J.: Reductive groups are geometrically reductive:
 A proof of the Mumford conjecture. Ann. of Math. 102
 (1975), 67-83.
6. Horrocks, G.: Fixed point schemes of additive group
8. Matsumura, H. : On algebraic groups of birational
transformations. Rend. della Acad. Naz. del Lincei. 34
(1963), 151-155.
9. Miyanishi, M. : Lectures on curves on rational and
unirational surfaces. Tata Institute of Fundamental
12. Miyanishi, M., Sugie, T. : Affine surfaces containing
cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980),
11-42.
15. Seshadri, C.S. : On a theorem of Weitzenböck in invariant