Various aspects of unipotent group actions in algebraic geometry

Masayoshi Miyanishi (Osaka University)

§1. Unipotent group actions on complete varieties

1.1. Let \(k \) be an algebraically closed field of characteristic zero. Let \(G \) be a connected algebraic group defined over \(k \). Assume that \(G \) acts non-trivially on an algebraic variety \(V \),

\[
\sigma : G \times V \longrightarrow V.
\]

Then we have the canonical Lie algebra homomorphism

\[
\sigma_* : \mathfrak{g} := \text{Lie}(G) \longrightarrow \mathcal{D}^0(V, \mathcal{O}_V),
\]

where \(\mathcal{O}_V := (\Omega^1_{V/k})^* \). If \(V \) is smooth over \(k \), \(\mathcal{O}_V \) is a locally free \(O_V \)-Module associated with the tangent bundle \(T_V \). For every element \(\tau \) of \(\mathfrak{g} \), \(\sigma_*(\tau) \) is thus a holomorphic (tangent) vector field of \(V \).

Now assume that \(V \) is a nonsingular projective variety defined over \(k \). Let \(X \) be a holomorphic vector field on \(V \) such that \(X \neq 0 \). A point \(P \) of \(V \) is said to be a zero of \(X \) if \(X(P) = 0 \); the set of all zeros of \(X \) is denoted by
Zero(X), which is a closed subvariety of X. Let P ∈ Zero(X).
Then we can consider the Lie derivative L_X:

\[L_X : T_{V,P} \to T_{V,P} ; \quad L_X(Y) = [X,Y]. \]

X is said to be generic at P (or X has a simple zero at P) if L_X is nondegenerate on \(T_{V,P} \). X is said to be generic (or X has only simple zeros) if L_X is nondegenerate for every zero P of X. If X has a simple zero at P, we can consider the eigenvalues \(\theta_1(P), \ldots, \theta_n(P) \) of L_X, where \(n = \dim V \). The existence of holomorphic vector fields (or actions of algebraic groups) on V imposes some restrictions on the topology and the numerical characters of V. We shall quote some of the known results.

1.2. Let V be a nonsingular projective variety defined over k and let X be a holomorphic vector field on V such that X ≠ 0. Let Z := Zero(X). Define the contraction operator \(i_X \) as follows:

\[i_X : \Omega_X^P \to \Omega_X^{P-1} \]

\[i_X(fdx_1 \wedge \ldots \wedge dx_p) = f(\sum_{i=1}^P (-1)^{i-1} X(x_i)dx_1 \wedge \ldots \wedge dx_{i} \wedge \ldots \wedge dx_p). \]

The definition is well-defined, and if \(\omega^P \) is an element of \(H^0(V, \Omega^P_V) \) then \(i_X(\omega^P) \in H^0(V, \Omega^{P-1}_V) \). Let

\[\mathcal{Y}^1 := \{ X \in H^0(V, \Theta_V) \mid i_X : H^0(V, \Omega^1_V) \to H^0(V, \Theta_V) \}. \]

is the zero map

Then \(\mathcal{Y}^1 \) is a Lie subalgebra of \(H^0(V, \Theta_V) \).
1.2.1. THEOREM. With the above notations, we have:

(1) (Kobayashi [7]). If 0 ≤ dim Z < n := dim V, then \(P_m(V) = 0 \) for every \(m > 0 \). Hence \(\kappa(V) = -\infty \).

(2) (Carrell–Lieberman [1]). Assume that \(Z \neq \emptyset \). Then

\[h^p,q = \dim_k H^q(V, \Omega^p_V) = 0 \quad \text{whenever} \quad |p-q| > \dim_k Z. \]

(3) (Carrell–Lieberman [1]). Every element \(X \) of \(\mathfrak{g}_j^{1} \) has zeros. Hence, if \(h^{1,0}(V) = \dim H^0(V, \Omega^1_V) = 0 \) then every holomorphic vector field has zero. Hence, if \(V \) has a holomorphic vector field without zero, \(h^{1,0}(V) > 0 \).

1.2.2. COROLLARY. Assume that \(\dim V = 2 \) and \(V \) has a holomorphic vector field \(X \) with \(\dim \operatorname{Zero}(X) = 0 \). Then \(V \) is rational.

Proof. The assumption \(\dim \operatorname{Zero}(X) = 0 \) implies \(h^{1,0}(V) = 0 \). Since \(X \neq 0 \), we have \(P_m(V) = 0 \) for every \(m > 0 \). Hence \(V \) is rational by Castelnuovo's criterion of rationality.

1.2.3. THEOREM. Let \(k = \mathbb{C} \). Assume that \(V \) has a holomorphic vector field \(X \) possessing only simple zeros. For a point \(P \) of \(\operatorname{Zero}(X) \), let \(\theta_1(P), \ldots, \theta_n(P) \) be the eigenvalues of \(L_X \).

Assume that \(\Re \theta_i(P) \neq 0 \) for \(1 \leq i \leq n \) and every point \(P \in \operatorname{Zero}(X) \). Then the Betti numbers of \(V \) are given as follows:

\[b_{2p}(V) = \# \{ P \in \operatorname{Zero}(X) | \# \{ j | \Re \theta_j(P) > 0, 1 \leq j \leq n \} = p \} \]

\[b_{2p+1}(V) = 0, \quad \text{(cf. Carrell–Lieberman [1]).} \]

1.3. Examples.

(1) Let \(G \) be a semi-simple algebraic group, let \(P \) be
a parabolic subgroup of G, let T be a maximal torus with $T \subseteq P$ and let $V := G/P$. Let t be a regular element of infinite order in T such that there exists a one-dimensional subtorus S of T passing through t. Let S act on V via left translations of G. Let X be a holomorphic vector field on V defined by the canonical Lie algebra homomorphism

$$\alpha_* : \mathfrak{g} := \text{Lie}(S) \longrightarrow H^0(V, \mathcal{O}_V).$$

Then \textbf{Zero}(X) is a finite set and X has only simple zeros.

\textbf{Proof.} We claim that:

(gP) is a fixed point of $S \mapsto g^{-1}tg \in P \mapsto g \in N(T)P$.

Indeed, S is the closure of $\{tm \mid m \in \mathbb{Z}\}$, and hence (gP) is a fixed point if and only if $g^{-1}tg \in P$. Then $t \in gp^{-1}$.

Therefore $g^{-1}tg = p^{-1}tp$ for some element $p \in P$. Hence $gp^{-1} \in N(T)$. Since $\#(N(T)P/P) < +\infty$, there are only finitely many fixed points of S on V. Let (gP) be a fixed point of S. Let \mathfrak{g} and \mathfrak{p} be the Lie algebras of G and P, respectively.

Now, $T_V, (gP)$ is identified with $\mathfrak{g}/\mathfrak{p}$ via $g_{*,*} : \mathfrak{g}/\mathfrak{p} \longrightarrow T_V, (gP)$.

Then the Lie derivative L_X on $T_V, (gP)$ is identified with

$$Y \pmod{\mathfrak{p}} \mapsto \text{Ad}(g^{-1}tg)(Y) \pmod{\mathfrak{p}}.$$

Noting that $g^{-1}tg \in P$, we know that L_X is non-degenerate at (gP).

(2) Let $V = \mathbb{P}^n_k$ with homogeneous coordinates (x_0, x_1, \ldots, x_n). Let $\alpha_0, \ldots, \alpha_n$ be pairwise prime integers such that $\alpha_0 + \ldots + \alpha_n$
= 0. Let \(G_m \) act on \(V \) via
\[
t(x_0, x_1, \ldots, x_n) = (t^{\alpha_0} x_0, t^{\alpha_1} x_1, \ldots, t^{\alpha_n} x_n).
\]
Then the fixed points of \(G_m \) on \(\mathbb{P}^n \) are \(O_i \)'s, where \(O_i = (0, \ldots, 0, 1, 0, \ldots, 0) \). Let \(u_j = x_j/x_i \) and \(\xi_j = \frac{\partial}{\partial u_j} \) for \(0 \leq j \leq n \) and \(j \neq i \). Then we have
\[
T_{\mathbb{P}^n, O_i} = \sum_{j=0}^{n} k \xi_j \quad \text{and} \quad L_X(\xi_j) = (\alpha_j - \alpha_i) \xi_j.
\]

Instead, consider the following action of \(G_a \) on \(\mathbb{P}_k^n \),
\[
G_a = \{ \exp(tA) \mid t \in k, A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & 0 \end{pmatrix} \in M_{n+1}(k) \}
\]
\[
t(x_0, x_1, \ldots, x_n) = \exp(tA) \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{pmatrix}.
\]
Then \(O := (1, 0, \ldots, 0) \) is the unique fixed point of \(G_a \). The holomorphic vector field \(X \) on \(\mathbb{P}^n \) defined by this action has the following Lie derivative \(L_X \) on \(T_{n, O} \mathbb{P}^n \):
\[
u_j = x_j/x_0, \quad \xi_j = \frac{\partial}{\partial u_j} \quad (1 \leq j \leq n),
\]
\[
T_{\mathbb{P}^n, O} = \sum_{j=1}^{n} k \xi_j,
\]
\[
L_X(\xi_j) = 0 \quad \text{if} \quad j = 1; = -\xi_{j-1} \quad \text{if} \quad j > 1.
\]
Hence the zero of \(X \) at \(O \) is not simple.

1.4. Now, we shall be mainly interested in the unipotent group actions on complete algebraic varieties. A main problem is the Carrell conjecture, which we shall state below.
Let G be a unipotent algebraic group defined over k. We shall summarize some of the known results on unipotent group actions.

1.4.1. THEOREM. (1) [Borel fixed point theorem](cf. Fogarty [2], Horrocks [6]). If a connected solvable affine algebraic group G acts on a complete algebraic variety V then the fixed point locus V^G is nonempty. If G is unipotent, V^G is connected if and only if V is connected.

(2) Let G be a connected affine algebraic group. Then G is unipotent if and only if, for any connected complete variety V on which G acts, V^G is connected (cf. Fogarty [2]).

(3) Let G and V be the same as in (2) above. Then the canonical inclusion $\iota : V^G \hookrightarrow V$ induces an equivalence between the categories of etale coverings $\text{Et}(V)$ and $\text{Et}(V^G)$. In particular, the inclusion ι yields an isomorphism of algebraic fundamental groups,

$$i_* : \pi_1(V^G)_{\text{alg}} \xrightarrow{\sim} \pi_1(V)_{\text{alg}},$$

(cf. Horrocks [6]).

1.4.2. We also recall the following result:

THEOREM (Matsumura [8]). Assume that V is a nonsingular complete variety. Then the group of all birational automorphisms of V, $\text{Bir}(V)$, contains an affine algebraic group of positive dimension if and only if V is birationally equivalent to $\mathbb{P}^1 \times W$ ($V \cong \mathbb{P}^1 \times W$ as notation), where W is a complete variety. Thus, if the Kodaira dimension $\kappa(V) \geq 0$, $\text{Bir}(V)$ cannot contain any affine algebraic group.
1.4.3. Now, we consider the following:

CARRELL CONJECTURE. Assume that a connected unipotent group G acts on a nonsingular projective variety V in such a way that the fixed point locus V^G consists of a single point. Then V is rational.

1.4.4. A partial solution of the above conjecture is this:

THEOREM. Let G and V be the same as in the Carrell conjecture. Then we have:

1. If $\dim V \leq 2$, the Carrell conjecture is affirmative.
2. If $\dim V = 3$, V is one of the following:
 1. V is rational,
 2. $V \sim \mathbb{P}^1 \times W$, where W is a nonsingular projective surface with $\kappa(W) \geq 1$ and $p_g = q = 0$. Moreover, W is simply connected.

Proof. Without loss of generality, we may assume that the action of G is effective, i.e., the canonical homomorphism $G \longrightarrow \text{Aut} (V)$ is injective.

1. The case $\dim V = 1$ is obvious by virtue of Matsumura's theorem. Suppose that $\dim V = 2$. If $\dim G = 1$, the action of G on V gives rise to a holomorphic vector field X on V such that $\text{Zero}(X) = V^G$, which consists of a single point. Then, by virtue of Corollary 1.2.2, V is rational. Assume that $\dim G = 2$. Then G is commutative, i.e., $G \cong G_1 \times G_2$ with $G_1 \cong G_2 \cong G_a$. By virtue of Matsumura's theorem, $V \sim \mathbb{P}^1 \times C$, where C is a complete nonsingular model of $k(V^G)$.

Then G_2 acts on C effectively. Hence $C \sim \mathbb{P}^1$, and $V \sim \mathbb{P}^1 \times \mathbb{P}^1$.

-7-
Namely, V is rational.

(2) Assume that $\dim V = 3$. Consider first the case where $\dim G = 3$. Then G has a central series of subgroups

$$G \supset G_1 \supset G_2 \supset (1),$$

such that $G/G_1 \cong G_1/G_2 \cong G_2/G_0$. By Matsumura's theorem, $V \cong \mathbb{P}^1 \times W$, where W is a nonsingular projective surface such that W is a complete nonsingular model of $k(V^G)$ and the unipotent group G/G_2 acts effectively on W. By virtue of the above case where $\dim V = \dim G = 2$, we conclude that $W \cong \mathbb{P}^1 \times \mathbb{P}^1$; note that we did not use in the proof the assumption $V^G = \{\text{single point}\}$. Hence $V \cong \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$. Suppose next that $\dim G = 2$. By a similar reasoning as above, we know that $V \cong \mathbb{P}^1 \times \mathbb{P}^1 \times C$, where C is a nonsingular complete curve.

Since V^G consists of a single point, we know that $\pi_1(V)_{\text{alg}} = (0)$ (cf. Theorem 1.4.1, (3)). Since $\pi_1(V)_{\text{alg}} \cong \pi_1(\mathbb{P}^1 \times \mathbb{P}^1 \times C)_{\text{alg}}$, we know that $\pi_1(C)_{\text{alg}} = (0)$, i.e., C is simply connected. This implies that $C \cong \mathbb{P}^1$. Hence V is rational. Suppose finally that $\dim G = 1$. By virtue of Matsumura's theorem, $V \cong \mathbb{P}^1 \times W$, where W is a complete nonsingular model of $k(V^G)$. We may assume that W is relatively minimal. Let p_1 and p_2 be the canonical projections from $\mathbb{P}^1 \times W$ to \mathbb{P}^1 and W, respectively. Then we have,

$$\Omega^1_{\mathbb{P}^1 \times W} \cong p_1^* \Omega^1_{\mathbb{P}^1} + p_2^* \Omega^1_W$$

and

$$\Omega^2_{\mathbb{P}^1 \times W} \cong p_1^* \Omega^1_{\mathbb{P}^1} \wedge p_2^* \Omega^1_W + p_2^* \Omega^2_W.$$

By virtue of Theorem 1.2.1, (1), we have $h^{1,0}(V) = 0$ for
i = 1, 2, because the action of G yields a holomorphic vector field X on V with $\text{Zero}(X) = V^G = \{\text{single point}\}$. Since $h^i,0(V)$ is a birational invariant (cf. Griffiths-Harris [16; p. 494]), we know that $h^1,0(W) = h^2,0(W) = 0$. Hence $p_g = q = 0$ for W. Moreover, since $\pi_1(V)_{\text{alg}} = (0)$, we know that $\pi_1(W)_{\text{alg}} = (0)$. Namely, W is simply connected. If W is rational, V is rational. Suppose that W is not rational. If $\kappa(W) = 0$ then $p_g = q = 0$ implies that W is an Enriques surface, which is, however, not simply connected. Hence $\kappa(W) \geq 1$.

Q.E.D.

1.5. We shall give the following result on the existence of a G_a-action.

LEMMA (cf. [9; p. 35]). Let W be a variety defined over k and let $\pi : V \rightarrow W$ be a \mathbb{P}^1-bundle over W. If there exists a nontrivial G_a-action on V whose orbits are contained in fibers of the projection π, then the fixed point locus V^G contains a cross-section S of π. Then there exists a locally free O_W-module E of rank 2 such that E is an extension of O_W by an invertible sheaf L on W, $V \cong \mathbb{P}(E)$, and S is the cross-section corresponding to L. Moreover, we have $H^0(W,L^{-1}) \neq 0$. Conversely, if $H^0(W,L^{-1}) \neq 0$, there exists a G_a-action on V along fibers of π.

Proof. Let V^G_1 be the union of irreducible components of V^G of codimension 1, and consider V^G_1 as a reduced effective divisor on V. Since G_a acts on V along fibers of π, each general fiber contains one and only one fixed point. Hence
$(V_1^G \cdot \ell) = 1$, where ℓ is a general fiber of π. This implies that V_1^G contains only one irreducible component S, which is a cross-section of π. Let $L = O_S(S)$ and let $E = \pi_* O_Y(S)$. Then we have an exact sequence,

$$0 \rightarrow O_W \rightarrow E \rightarrow L \rightarrow 0.$$

By construction, S is the cross-section corresponding to L. The remaining part is proved in [9; p. 35]. Q.E.D.

§ 2. **Unipotent group actions on affine varieties**

2.1. Let k be an algebraically closed field of characteristic ≥ 0. Recall the following very well-known results:

2.1.1. **THEOREM** (Nagata [13], Haboush [5]). Let R be a finitely generated k-algebra and let G be a connected reductive algebraic group. Assume that G acts on R as k-automorphisms of R in such a way that:

For every $f \in R$, a k-submodule $\sum_{g \in G} f^g k$ of R is a finite k-module; then we say that G acts rationally on R.

Let R^G be the subring consisting of G-invariant elements in R. Then R^G is finitely generated over k.

2.1.2. **THEOREM** (Nagata [14]). There exists a unipotent algebraic group G acting rationally on a polynomial ring $R := k[x_1, \ldots, x_n]$ such that R^G is not finitely generated over k.

The writer believes that there should exist a rational action of the additive group G_a on a polynomial ring $R = k[x_1, \ldots, x_n]$ such that R^{G_a} is not finitely generated over k. If there is
such an action, we must have \(n \geq 4 \) by virtue of Zariski's theorem (cf. Nagata [14]), and the action is not linear by virtue of the following result of Weitzenböck:

2.1.3. THEOREM (cf. Seshadri [15]). Let there be given a linear action of \(G_a \) on a polynomial ring \(R = k[x_1, \ldots, x_n] \), where \(\text{char}(k) = 0 \). Then \(R^a \) is finitely generated over \(k \).

2.2. For the sake of simplicity, we assume that \(\text{char}(k) = 0 \).

THEOREM. Assume that \(G_a \) acts non-trivially on a polynomial ring \(R = k[x_1, \ldots, x_n] \), where \(n \leq 3 \). Let \(A \) be the \(G_a \)-invariant subring of \(R \). Then we have:

1. \(A \) is a finitely generated over \(k \), and \(A \) is a unique factorization domain.

2. If either \(n \leq 2 \) or \(A \) is regular then \(A \) is a polynomial ring over \(k \).

Proof. For the proof of the assertion (1) and the case \(n \leq 2 \) in the assertion (2), see Miyanishi [9; §§ 1, 3 of Chap.1]. We shall prove the assertion (2) in the case where \(n = 3 \) and \(A \) is regular.

(i) By virtue of Zariski's theorem [14; p. 52], \(A \) is finitely generated over \(k \). Moreover, \(A \) is a UFD and the set \(A^* \) of all invertible elements of \(A \) is \(k^* := k-(0) \). Let \(Y := \text{Spec}(R) \), let \(X := \text{Spec}(A) \) and let \(\pi : Y \rightarrow X \) be the dominant morphism induced by the injection \(A \hookrightarrow R \). We shall prove that the logarithmic Kodaira dimension of \(X \) has value \(\kappa(X) = -\infty \).

Then we can apply the following characterization of the affine plane (cf. Miyanishi-Sugie [12] and Fujita [3] as well as the
papers of Iitaka's given in the references of these papers):

Let \(X = \text{Spec}(A) \) be a nonsingular affine surface. Then \(X \cong \mathbb{A}^2_k \) if and only if \(A \) is a UFD, \(A^* = k^* \) and \(\bar{k}(X) = \infty \).

(ii) We claim that \(\pi : Y \to X \) is a faithfully flat, equi-dimensional morphism of dimension 1.

We shall first show that \(\pi \) is surjective. Suppose \(\pi \) is not surjective. Then there exists a maximal ideal \(\mathfrak{m} \) of \(A \) such that \(\mathfrak{m} \mathfrak{R} = \mathfrak{R} \). Let \((0, t_0) \) be a discrete valuation ring of the quotient field \(K \) of \(A \) such that \(L \) dominates \(A_{\mathfrak{m}} \).

Let \(\mathfrak{R}' = \mathfrak{R} \otimes L \), which is identified with a subring of the field \(L = k(x_1, x_2, x_3) \). Let \(\Delta \) be a locally nilpotent derivation on \(\mathfrak{R} \) associated with the given \(G_a \)-action on \(Y \) (cf. [9; § 1, Chap. I]). Then \(\Delta \) extends naturally to a locally nilpotent \(\mathfrak{R} \)-derivation in \(\mathfrak{R}' \), and \(\mathfrak{R} \) is the ring of \(\Delta \)-invariants in \(\mathfrak{R}' \), i.e., \(\mathfrak{R} = \{ r \in \mathfrak{R}'; \Delta(r) = 0 \} \). By assumption, we have \(t\mathfrak{R}' = \mathfrak{R}' \), where \(t \) is a uniformisant of \(\mathfrak{R} \). Hence \(t\mathfrak{R} = 1 \) for some element \(r \in \mathfrak{R}' \). Then \(t\Delta(r) = 0 \), whence \(r \in \mathfrak{R} \). This is a contradiction. Thus \(\pi \) is surjective.

Secondly, we shall show that every irreducible component of a fiber of \(\pi \) has dimension 1. Note that general fibers of \(\pi \) are isomorphic to \(\mathbb{A}^1_k \) (cf. [9; § 1, Chap. I]). Hence each irreducible component of a fiber has dimension \(\geq 1 \). Suppose that an irreducible component \(T \) of a fiber \(\pi^*(P) \) (with \(P \in X \)) has dimension 2. Since \(\mathfrak{R} \) is a UFD, there exists an irreducible element \(a \in \mathfrak{R} \) such that \(T = \text{Spec}(\mathfrak{R}/a\mathfrak{R}) \). Since \(T \) is \(G_a \)-stable, \(a \) is \(G_a \)-invariant, i.e., \(a \in A \). Let \(C = \ldots \)
Spec(A/aA). Since A is a UFD, C is an irreducible curve on X and $\pi^{-1}(C) = T \subset \pi^{-1}(P)$. This is a contradiction because π is surjective. Thus π is an equi-dimensional morphism of dimension 1.

Finally, we shall show that R is flat over A. Let q be a prime ideal of R and let $p = q \cap A$. Then R_q dominates A_p. Since A_p is regular and R_q is Cohen-Macaulay, R_q is flat over A_p (cf. EGA [4; IV,15.4.2]). Hence π is faithfully flat.

(iii) Let $U := \{P \in X; \pi^*(P) \text{ is irreducible and reduced} \}$. Then, by virtue of [9; Th.4.1.1,p.46], $W := \pi^{-1}(U)$ is an A^1-bundle over U. We claim that $\kappa(X) = -\infty$.

Let H be a hyperplane in $Y = A^3_k$ such that $H \cap W \neq \emptyset$. Suppose $\kappa(X) \geq 0$. Let C be an irreducible curve on H. Consider a morphism:

$$\varphi : C \times A^1_k \hookrightarrow H \times A^1_k = Y \xrightarrow{\pi} X,$$

and assume that φ is a dominant morphism. Since $\dim(C \times A^1_k) = \dim V = 2$, we have

$$-\infty = \kappa(C \times A^1_k) \geq \kappa(X) \geq 0,$$

which is a contradiction. Hence φ is not a dominant morphism.

Let D be the closure of $\varphi(C \times A^1_k)$ in X. Then $C \times A^1_k \subset \pi^{-1}(D)$. Suppose $C \cap W \neq \emptyset$. Then the general fibers of $\pi : \pi^{-1}(D) \rightarrow D$ are isomorphic to A^1_k. This implies that $\pi^{-1}(D)$ is irreducible and reduced. Since $\dim(C \times A^1_k) = \dim \pi^{-1}(D) = 2$, we have $C \times A^1_k = \pi^{-1}(D)$.

Let Q be a point on H, and let C_1, \ldots, C_r be irreducible
curves on H such that $C_1 \cap \ldots \cap C_r = \{Q\}$ and that $C_i \cap W \neq \emptyset$ for $1 \leq i \leq r$. For any point Q on H, we can find such a set of irreducible curves. Indeed, H is the affine plane \mathbb{A}^2_k and $H \cap (Y-W)$ has dimension ≤ 1; thus we have only to take a set of suitably chosen lines on H passing through Q. Let D_i be the irreducible curve which is the closure of $\pi(C_i \times \mathbb{A}^1_k)$ on X for $1 \leq i \leq r$. Then $C_i \times \mathbb{A}^1_k = \pi^{-1}(D_i)$ for $1 \leq i \leq r$. Since we have

$$(Q) \times \mathbb{A}^1_k = (C_1 \cap \ldots \cap C_r) \times \mathbb{A}^1_k = (C_1 \times \mathbb{A}^1_k) \cap \ldots \cap (C_r \times \mathbb{A}^1_k) = \pi^{-1}(D_1) \cap \ldots \cap \pi^{-1}(D_r) = \pi^{-1}(D_1 \cap \ldots \cap D_r),$$

we know that $D_1 \cap \ldots \cap D_r = \{P\}$, P being a point on X. The correspondence $Q \mapsto P$ defines a morphism $\psi : H \rightarrow X$ such that $(Q) \times \mathbb{A}^1_k = \pi^{-1}(P)$. If ψ is a dominant morphism, we have

$$-\infty = \bar{k}(H) \geq \bar{k}(X) \geq 0,$$

which is a contradiction. Hence ψ is not a dominant morphism. Let F be the closure of $\psi(H)$ in X. Then, for every point P of F, we have $\dim \psi^{-1}(P) \geq 1$, and $\pi(\psi^{-1}(P) \times \mathbb{A}^1_k) = \psi(\psi^{-1}(P)) = P$. This contradicts the assertion proved in the step (ii). Therefore $\bar{k}(X) = -\infty$. Q.E.D.

Natural as it is, the situation of G_a-actions on a polynomial ring $R = k[x_1, \ldots, x_n]$ becomes complicated and worse as n increases. If $n \leq 2$, R is a polynomial ring in one variable over the subring A of G_a-invariants (cf. [9; §1, Chap.I]). However, this does not hold in the case where $n = 3$. Still, the property that A be a polynomial ring seems to hold without the assumption that A is regular. When $n = 3$, - 4 -
another criterion for A to be a polynomial ring is that A
contains one of coordinates x_1, x_2, x_3. Thus, if G_a
acts linearly on $R = k[x_1, x_2, x_3]$, then A is a polynomial ring.
Perhaps, A no longer is a polynomial ring for a general G_a-
action on R if $n \geq 4$.

2.3. Finally, we shall state the following result without proof:

THEOREM (cf. [11]). Assume that $\text{char}(k) = 0$. Let $X =$
$\text{Spec}(A)$ be a normal affine surface defined over k, possessing
a non-trivial action of the additive group G_a. Then every
singular point of X is a cyclic quotient singularity.

The result no longer holds if X is not affine.

REFERENCES

 35-51.
 28 (1966).
5. Haboush, W.J.: Reductive groups are geometrically reductive:
 A proof of the Mumford conjecture. Ann. of Math. 102
 (1975), 67-83.
6. Horrocks, G.: Fixed point schemes of additive group

