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TWO PROBLEMS ON ORDERABLE SEMIGROUPS

Té6ru SAITO

I. A semigroup S 1is said to be an orderable semigroup or

an o-semigroup if S admits a simple order to make it a simply

ordered semigroup.

PROBLEM 1. Characterise right cancellative, right simple

o-semigroups without idempotents. (This problem was proposed in

our lecture note [6].)

In connection with the above problem we have the following

two results.

RESULT 1. Let p, g be two infinite cardinals such that

g £ p and let S(p,q) be a Baer-Levi semigroup of type (p,q).

Then S(p,q) is a right cancellative, right simple semigroup

without idempotents but is not an o-semigroup.

The first assertion is given in [1] Theorem 8.2. Now by way
of contradiction, wé assume that S(p,q) is an o-semigroup.
Thus S(p,q) can be considered as a simply ordered semigroup.
First suppose p = g. By definition, there exists a set A
such that |A| = p and S(p.p) is the family of all injective
mappings o of A into A witﬁ |A\eA| = p. Let By B,, By be
mutually disjoint subsets of A such that |[B,] = |B,| = ]B3l =p

and B, UB, YUB, =A. Then for i =1, 2, 3, there exists an

1 2 3
injective mapping oy of A onto Bi' Without loss of generality,

we assume o; < a, < O3 in the simply ordéred semigroup S(p,p).



122

Since S(p,p) is simply ordered without idempotents, we have either

2 2 2 .
0y < a, or o, < Oy Suppose oy < Qg e Then, since S(p,p) has

2

no idempotents, it follows from [5] Lemma 2 that we have g < 3.

2 _ 2 _ -
We have Aa, = Bya, < Aa, = B, and Aaj; = Bjaz S Aag = Bj.

Moreover

p =B < |B; v (B,uRad)| < |A] = p,

p=1B| < B U (Byvad)| < |A] = p,
and so |[B; U (B,U Aaé)l = IBl U (B, Au%)] = p. Since p is an
infinite cardinal, we can choose a mutually dosjoint sets C and
D such that C UD =B, YV (B,Y Aag) and |C| = |D| = p.  Since
lBl v (B3U Aag)l =p = ICI, there exists an injection vy of
Bl u (B3U Aag) onto C. Now we define a mapping B8 by:

-1 2
xa3 if x ¢ Aa3,

XB = xa, if x e B2'
: 2
u u
1 (B3V Aa3).
Then B is a injection of A into A and

b if x e B

|a\28| = [aA\ (Aa; UBya, vC)| = D] = p
and so 8 ¢ S(p,p). Moreover, for every X € A, we have

Xa, € Aaz = B2 and xu§ € Aag and so xazB = xag and xagﬁ

S S _ 2 2, _ . 2

= xa3u3r = xa3. Hence aZB = u2 and a38 = a3. Since az < “2'

we have ag < ug and,'since S(p,p) has no idempotents, we have.
2

0q < Oy Hence

3 _ 2 _ _ 2, _ _ 2
ay < a, = aya, = ay(a,B) = a8 = (a,B)B= a,B
and so o, < 82. Hence by [5] Lemma 2, we have 82 < ([32)2 = 84.
But 82 < B would imply that 64 < 83 < 82. Since S(p,p) is
simply ordered, we have B8 < 62. Hence

2 2,2 _ 2,0, _

agB 2 a3B 2 a3B” = (a3B)B = a,B

and so u38 = ugs. Hence

ay = age = a3(a3B)A= a3(a§B) = ags = u3(a§8) = ag,

which contradicts the assumption that S(p,p) has no idempotents.
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In the case where ug < a,, we can deduce a contradiction in
a similar way.

Next we consider a general S(p,q). We take an arbitrary
o € S(p,gq) and put T = { & € S(p,q); aé =0 }. Since S(p,q)
is right simple, we have 0S8 = S and so T is nonempty. If
£, neT, then a(&n) = (c€)n =oan =a, &E&n e T and so T is
a subsemigroﬁp of S(p,q). Since a e S(p,gq), o 1is an injection
of a set A into A such that |a| = p and |A\Aa| = g. Also
for £ ¢ é(p,q), £ e T if and only if & induces the identity
mépping on Aa. For each & € T, we denote by % the restriction
of & to A\\Aa. Since £ is an iﬁjection of A into A which
induces the identity mapping on Ao, % is an injection of A\ Aca
into A\\Aa. Moreover, since» ]A\\Aa] = g and

| (a\2a0) \(a\an)g| = [a\ag] = q,

T={%; £e T} is a Baer-Levi semigroup S(q,q). Further the
mapping of T onto T which maps & into € is an isomorphism
of T onto T. Now since S(p,g) is an o-semigroup, the sub-
semigroup T of S(p,g) 1is also an o-semigroup. Hence T = S(g,q)

is an o-semigroup, which contradicts the fact proved above.

RESULT 2. There really exists‘g right cancellative, right

simple o-semigroup without idempotents.

In fact, let S bbe the set of all realvalued continuous
functions « defined on the closed interval [0,1], satisfying
the conditions that 0 < Oa, 1la < 1 and the graph of o can
be represented by a finite number of strictly increasing segments.

It can be proved that S 1is a semigroup under the operation of

composite of mappings and the semigroup S is right cancellative,
right simple and has no idempotents (cf. [3]). Also it can be
shown that S 1is a simply ordered semigroup under the order

defined by:
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for o, B e S, a< B if'and only if there exist real
numbers ¢ and ¢ such that 0 g cx< 1, ¢ > 0, =xa = xB

for every 0 < x < ¢ but xo < xB for every ¢ < x < c + §.

IT. RESULT 3. The collection of all idempotent o-semigroups

does not form a variety.

In fact, let 'L be a left zerb semigroup and let R be a
riéht zero semigroup. Then it can be checked that, with respect to
an arbitrary simple order on L, L 1is a simply ordered semigroup
and, with respect to an arbitrary simple Qrder on R, R is a
simply ordered semigroup. Hence 1L and R are o-semigroups.

In particular, if |L| > 2 and |R| > 2 and if S is the direct
product semigroup of L and R, then S is a rectangular band
which is neither a left zero semigroup nor a right zero semigroup.
Hence by [4] Theorem 1, S 1is not an o-semigroup. Hence the .

collection of all idempotent o-semigroups is not closed with

respect to the formation of direct products and so is not a variety.

Since the intersection of a family of varieties of semigroups
is a variety of semigroups, we can consider a variety of semigroups
which is generated by idempotent o-semigroups.

In connection with this, we give the following problem.

PROBLEM 2. Give the concrete description of the variety of

semigroups generated by idempotent o-semigroups.
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