TWO PROBLEMS ON ORDERABLE SEMIGROUPS

Tôru SAITÔ

I. A semigroup S is said to be an <u>orderable semigroup</u> or an o-<u>semigroup</u> if S admits a simple order to make it a simply ordered semigroup.

PROBLEM 1. Characterise right cancellative, right simple o-semigroups without idempotents. (This problem was proposed in our lecture note [6].)

In connection with the above problem we have the following two results.

RESULT 1. Let p, q be two infinite cardinals such that $q \le p$ and let S(p,q) be a Baer-Levi semigroup of type (p,q).

Then S(p,q) is a right cancellative, right simple semigroup without idempotents but is not an o-semigroup.

The first assertion is given in [1] Theorem 8.2. Now by way of contradiction, we assume that S(p,q) is an o-semigroup. Thus S(p,q) can be considered as a simply ordered semigroup.

First suppose p=q. By definition, there exists a set A such that |A|=p and S(p,p) is the family of all injective mappings α of A into A with $|A\setminus \alpha A|=p$. Let B_1 , B_2 , B_3 be mutually disjoint subsets of A such that $|B_1|=|B_2|=|B_3|=p$ and $B_1 \cup B_2 \cup B_3 = A$. Then for i=1,2,3, there exists an injective mapping α_i of A onto B_i . Without loss of generality, we assume $\alpha_1 \leq \alpha_2 \leq \alpha_3$ in the simply ordered semigroup S(p,p).

Since S(p,p) is simply ordered without idempotents, we have either $\alpha_2 < \alpha_2^2$ or $\alpha_2^2 < \alpha_2$. Suppose $\alpha_2 < \alpha_2^2$. Then, since S(p,p) has no idempotents, it follows from [5] Lemma 2 that we have $\alpha_3 < \alpha_3^2$. We have $A\alpha_2^2 = B_2\alpha_2 \stackrel{c}{-} A\alpha_2 = B_2$ and $A\alpha_3^2 = B_3\alpha_3 \stackrel{c}{-} A\alpha_3 = B_3$. Moreover

$$p = |B_1| \le |B_1| \cup (B_2|A\alpha_2^2) \le |A| = p,$$

 $p = |B_1| \le |B_1| \cup (B_3|A\alpha_3^2) \le |A| = p,$

and so $|B_1 \cup (B_2 \cup A\alpha_2^2)| = |B_1 \cup (B_3 \cup A\alpha_3^2)| = p$. Since p is an infinite cardinal, we can choose a mutually dosjoint sets C and D such that $C \cup D = B_1 \cup (B_2 \cup A\alpha_2^2)$ and |C| = |D| = p. Since $|B_1 \cup (B_3 \cup A\alpha_3^2)| = p = |C|$, there exists an injection γ of $B_1 \cup (B_3 \cup A\alpha_3^2)$ onto C. Now we define a mapping β by:

$$\mathbf{x}\boldsymbol{\beta} = \begin{cases} \mathbf{x}\boldsymbol{\alpha}_3^{-1} & \text{if } \mathbf{x} \in \mathbf{A}\boldsymbol{\alpha}_3^2, \\ \mathbf{x}\boldsymbol{\alpha}_2 & \text{if } \mathbf{x} \in \mathbf{B}_2, \\ \mathbf{x}\boldsymbol{\gamma} & \text{if } \mathbf{x} \in \mathbf{B}_1 \cup (\mathbf{B}_3 \cup \mathbf{A}\boldsymbol{\alpha}_3^2). \end{cases}$$

Then β is a injection of A into A and

$$|A \setminus A\beta| = |A \setminus (A\alpha_3 \cup B_2\alpha_2 \cup C)| = |D| = p$$

and so $\beta \in S(p,p)$. Moreover, for every $x \in A$, we have $x\alpha_2 \in A\alpha_2 = B_2$ and $x\alpha_3^2 \in A\alpha_3^2$ and so $x\alpha_2\beta = x\alpha_2^2$ and $x\alpha_3^2\beta = x\alpha_3^2\alpha_3^{-1} = x\alpha_3$. Hence $\alpha_2\beta = \alpha_2^2$ and $\alpha_3^2\beta = \alpha_3$. Since $\alpha_2 < \alpha_2^2$, we have $\alpha_2^2 \le \alpha_2^3$ and, since S(p,p) has no idempotents, we have $\alpha_2^2 < \alpha_2^3$. Hence

 $\alpha_2^2 < \alpha_2^3 = \alpha_2 \alpha_2^2 = \alpha_2 (\alpha_2 \beta) = \alpha_2^2 \beta = (\alpha_2 \beta) \beta = \alpha_2 \beta^2$ and so $\alpha_2 < \beta^2$. Hence by [5] Lemma 2, we have $\beta^2 < (\beta^2)^2 = \beta^4$. But $\beta^2 \le \beta$ would imply that $\beta^4 \le \beta^3 \le \beta^2$. Since S(p,p) is simply ordered, we have $\beta < \beta^2$. Hence

$$\alpha_3 \beta \le \alpha_3^2 \beta \le \alpha_3^2 \beta^2 = (\alpha_3^2 \beta) \beta = \alpha_3 \beta$$

and so $\alpha_3 \beta = \alpha_3^2 \beta$. Hence

$$\alpha_3 = \alpha_3^2 \beta = \alpha_3(\alpha_3 \beta) = \alpha_3(\alpha_3^2 \beta) = \alpha_3^3 \beta = \alpha_3(\alpha_3^2 \beta) = \alpha_3^2,$$

which contradicts the assumption that S(p,p) has no idempotents.

In the case where $\alpha_2^2 < \alpha_2$, we can deduce a contradiction in a similar way.

Next we consider a general S(p,q). We take an arbitrary $\alpha \in S(p,q)$ and put $T=\{\xi \in S(p,q); \alpha \xi=\alpha \}$. Since S(p,q) is right simple, we have $\alpha S=S$ and so T is nonempty. If ξ , $\eta \in T$, then $\alpha(\xi\eta)=(\alpha\xi)\eta=\alpha\eta=\alpha$, $\xi\eta \in T$ and so T is a subsemigroup of S(p,q). Since $\alpha \in S(p,q)$, α is an injection of a set A into A such that |A|=p and $|A\setminus A\alpha|=q$. Also for $\xi \in S(p,q)$, $\xi \in T$ if and only if ξ induces the identity mapping on $A\alpha$. For each $\xi \in T$, we denote by $\overline{\xi}$ the restriction of ξ to $A\setminus A\alpha$. Since ξ is an injection of A into A which induces the identity mapping on $A\alpha$, $\overline{\xi}$ is an injection of $A\setminus A\alpha$ into $A\setminus A\alpha$. Moreover, since $|A\setminus A\alpha|=q$ and

 $|(A \setminus A\alpha) \setminus (A \setminus A\alpha)\xi| = |A \setminus A\xi| = q$

 $\overline{T}=\{\ \overline{\xi};\ \xi\ \epsilon\ T\ \}$ is a Baer-Levi semigroup S(q,q). Further the mapping of T onto \overline{T} which maps ξ into $\overline{\xi}$ is an isomorphism of T onto \overline{T} . Now since S(p,q) is an o-semigroup, the subsemigroup T of S(p,q) is also an o-semigroup. Hence $\overline{T}=S(q,q)$ is an o-semigroup, which contradicts the fact proved above.

RESULT 2. There really exists a right cancellative, right simple o-semigroup without idempotents.

In fact, let S be the set of all realvalued continuous functions α defined on the closed interval [0,1], satisfying the conditions that $0 < 0\alpha$, $1\alpha < 1$ and the graph of α can be represented by a finite number of strictly increasing segments. It can be proved that S is a semigroup under the operation of composite of mappings and the semigroup S is right cancellative, right simple and has no idempotents (cf. [3]). Also it can be shown that S is a simply ordered semigroup under the order defined by:

for α , $\beta \in S$, $\alpha < \beta$ if and only if there exist real numbers c and δ such that $0 \le c < 1$, $\delta > 0$, $x\alpha = x\beta$ for every $0 \le x < c$ but $x\alpha < x\beta$ for every $c < x < c + \delta$.

II. RESULT 3. The collection of all idempotent o-semigroups does not form a variety.

In fact, let L be a left zero semigroup and let R be a right zero semigroup. Then it can be checked that, with respect to an arbitrary simple order on L, L is a simply ordered semigroup and, with respect to an arbitrary simple order on R, R is a simply ordered semigroup. Hence L and R are o-semigroups. In particular, if $|L| \ge 2$ and $|R| \ge 2$ and if S is the direct product semigroup of L and R, then S is a rectangular band which is neither a left zero semigroup nor a right zero semigroup. Hence by [4] Theorem 1, S is not an o-semigroup. Hence the collection of all idempotent o-semigroups is not closed with respect to the formation of direct products and so is not a variety.

Since the intersection of a family of varieties of semigroups is a variety of semigroups, we can consider a variety of semigroups which is generated by idempotent o-semigroups.

In connection with this, we give the following problem.

PROBLEM 2. Give the concrete description of the variety of semigroups generated by idempotent o-semigroups.

REFERENCES

- 1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups vol.II, Amer. Math. Soc., 1967.
- 2. U. K. Kuspanov, On the classes of orderable semigroups in varieties, Semigroup Forum 16 (1978), 117-131.
- 3. T. Saitô, An example of left simple semigroup, Bull. Tokyo Gakugei Univ., 10 (1959), 139-142.
- 4. T. Saitô, Ordered idempotent semigroups, J. Math. Soc. Japan, 14 (1962), 150-169.
- 5. T. Saitô, Regular elements in an ordered semigroup, Pacific J. Math. 13 (1963), 263-295.
- 6. T. Saitô, Cours sur les demi-groupes totalement ordonnes, Université de Paris VI, 1972.
- 7. T. Saitô, The orderability of idempotent semigroups, Semigroup Forum 7 (1974), 264-285.

Department of Mathematics

Nippon Institute of Technology

Miyashiro, Saitama