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ON THE STRUCTURE OF EXPONENT SEMIGROUPS

Yuji Kobayashi

1. Introduction. Let S be a semigroup and let P be the

multiplicative semigroup of all positive integers. The subset
E(S) = {neP | (xy)'=x"y" for all x,ye s}

of P forms a subsemigroup of P and is called the exponent
semigroup of S (Tamura [9]). If m&E(S) for some m>2, we say
S is an E~m semigroup. The structure of E-m semigroups has
been studied by Nordahl [7] and Cherubini and Varisco [1].
However, the structure of E(S) itself had been veiled until

a recent date except for the original results on order-bounded
groups by Tamura [9]. Only recently, Clarke, Pfiefer and
Tamura have proved that if 2€ E(S), E(S) is equal to either

P or PN\{3} ([3]). 1Inspired by their work, Kobayashi [6] studied
the case 3€E(S) and has determined the structure of such E(S)
up to modulo 6.

On the analogy of the results on the case 3¢ E(S), we
present in this paper two conjectures which describe the structure
of the exponent semigroups containing m up to modulo m(m-1).
Several results which support the validity of the conjectures
are given. Above all, the structure of the exponent semigroups
of finite semigroups is described. The exponent semigroups of
separative‘(=right and left separative) semigroups, of O-simple

semigroups and of regular semigroups are completely determined.
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Detailed proofs of the results will appear elsewhere.
2. Conjecture I. In this section an integer m32 is fixed

and S is always an E-m semigroup. In view of [6, Theorem 1],

it is not unnatural to make the following conjecture:

Conjecture I. If k€E(S) for some kz2 , then gm(m-1)+k € E(S)

for all ¢30.

For some special k the conjecture is true, for example,

Proposition 1. If ke E(S) for some k22 such that k = 1

(mod m-1), then am(m-1)+k € E(S) for all o20.

Corollary (Cherubini and Varisco [1]). am(m-1)+me€E(S)

for all a20.

Proposition 2. om(m-1)+1€E(S) for all o32.

Using the propositions above, we can prove that the follow-

ing weakened forms of Conjecture I are true.

Theorem 1. If k€ E(S) for some k;m2, then gm(m-1)+k € E(S)

for all a20.

Theorem 1'. If k€ E(S), then am(m-1)+k € E(S) for all a22k.

3. Conjecture II. S continues to be an E-m semigroup in
this section. Naturally, Theorem 1' urges us to define the

subset Eﬁ(s) of Z (the residue class ring modulo m(m-1)

m(m-1)
of the integers I) associated with S by

E (S) = {ne Lo(m-1) | DEES, n>2},
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where n denotes the class of n modulo m(m-1). Eﬁ(s) is a

multiplicative subsemigroup of I and we call it the

m(m-1)
exponent semigroup mod m(m-1) of S. For an integer n>1 we

define two subsets M{(n) and N(n) of P by

M(n)

{kn+1, kn+n | k=0,1,2,...},

N(n)

[}

{kn+1 | k=0,1,2,...},
and two subsets Mm(n) and Nm(n) of Zm(m—l) by

M _(n) = {kn, kn+1 | k=0,1,2,...},

=z
3
"

{kn+¥1 | k=0,1,2,...}.

Conjecture II. A subset E of Zm(m-l) (m>2) is an exponent
semigroup mod m(m-1) of some E-m semigroup if and only if E is

expressed as
—_— S — ——
(#) E = QMm(ni)ﬂNm(n)

for a finite number of integers n .,nsg2 and n2>l1 such that

l’.l
nilm or ny|(m-1) for i=1,...,s

and
n|(m-1).

The results [6] on E-3 semigroups support the conjecture.
Cherubini and Varisco [2] have shown that the conjecture is
true for mg9. The "if" part of the conjecture 1s true (see
Theorem 3 in §5). For that reason we say "Conjecture II is true
for S" to mean "Eﬁ(s) is expressible as (#) in Conjecture II
for me E(S) (m22)". One of the main results in this paper is
that Conjecture II is true for finite semigroups (see Corollary 1

of Theorem U4 in §6).
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4., Separative semigroups. Following Petrich [8], we

call a semigroup S separative if x2=xy and y2=yx imply x=y,

and x2=yx and y2=xy imply x=y, for all x,ye&S.

Theorem 2. Let S be a separative semigroup. Then E(S)
is equal to either {1} or

S

(##) () M(m,)
i=1

for a finite number of integers ml,...,mS;Z. Conversely, for
any subset E of P given as (##), there is a finite group G
such that E = E(G).

We mention here only the second assertion of the theorem.
In an elementary way it 1s shown that for the assertion we may
only consider the case E=M(m), where m is either a prime power
or a produdt of two distinct primes. The followihg examples

show the existence of desired groups in this case.

Example 1. Let p be a prime and e2l. Let G be the group

of 3%3 matrices over Zpe given by

lac
¢=13{01b [ ab,cel of-
001 b

©) M(p®) if p#2
E(G) =
Mm%ty 1 p=2.

Then we have

Example 2. Let p and q be distinct primes. Let G be a
group defined by a set {xl,...,xq,y} of generators and the

following defining relations:
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P, . =xP=y%=
(1) Xl xq y°=1,
(2) Xixj=xjxi (i,3=1,...,4),

(3) yxl=x2y, e yx =X y) yx =X

a-1"%q q 1Y

Then we have E(G) = M(pq).

Corollary 1. Let S be a separative semigroup. If m,n
€E(S) for some m,n22 such that (m(m-1), n(n-1)) = 2, then

S is commutative.

A semigroup S is called finite-subdirectly irreducible

if for any congruences p and ¢ on S, p[\c = 1 (the equality
relation) implies p=1 or o=1. The result [9, Proposition 6.1]

on order-bounded groups is generalized as follows.

Corollary 2. Let S be a finite-subdirectly i1rreducible
separative semigroup. Then E(S) is either {1} or M(m) for

some m>2.

Remark. Since an E-m inverse semigroup is separative by
[7, Corollary 1.12], the same conclusions as in Theorem 2 and

its corollaries hold for inverse semigroups.

5. O-simple semigroups. Using Theorem 2 and [7, Proposi-

tion 1.6], we can get

Theorem 3. Let S be a O-simple semigroup. Then E(S) is

equal to either {1} or

S
(###) M\ MmN (m)
i=1

for a finite number of integers m .,msg2 and m21. Conversely,

1°°°
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for any subset E of P given as (###), there is a completely
simple finite semigroup S such that E = E(S).

By the second assertion of Theorem 3, we can say that
every type of exponent semigroups supposed in Conjecture II

comes from completely simple finite semigroups.

Corollary. Let S be a simple semigroup. Then

(1) If m,ne€E(S) such that (m-1, n-1) = 1, then S is a
rectangular group.

(2) If myneE(S) such that (m(m-1), n(n-1)) = 2 and 2|mn,

then S is a rectangular abelian group.

6. Finite semigroups. To prove that Conjecture II is

true for finite sémigroups, we need to study the exponent

semigroups of two special ideal extensions.

Proposition 3. Let N be a null semigroup and T be any

semigroup with 0. Let S be an ideal extension of N by T. If

S is an E-m semigroup, then Eﬁ(s) = Eﬁ(T).

Theorem 4. Let U be a [0-]simple semigroup and T be any
semigroup with 0. Let S be an ideal extension of U by T.

Then, either E(S) = {1} or
E(S) = E(U)[ )E(T)\N(2)
for some 221.
The proof of Theorem 4 is done by a calculation using the

normalized expression of the translational hull of a completely

simple semigroup due to Clifford and Petrich [4].
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By a principal series of a semigroup S, we mean a finite

chain
5=5) C 8, S;— e <£- Srg Sp+179

of ideals S, of S such that there is no ideal of S strictly

i

between Si and Si+l' The Rees quotient 51/31+1 is either

[0-]simple or null. If Si/S is [0-J]simple (resp. completely

i+l
[0-]simple) for every i, then we say S is semisimple (resp.

completely semisimple) (see [5, Chapter 2.6 and Chapter 6.6]).

Corollary 1. Conjecture II is true for semigroups with

principal series, especially for finite semigroups.

Corollary 2. Let S be a semlsimple semigroup with a
principal series. If E(S) # {1}, then S 1is completely semisimple

and E(S) is expressed as (###) in Theorem 3 in §5.

7. Regular semigroups. Using Corollary 2 of Theorem 4,

we can prove

Theorem 5. Let S be a semilattice of simple semigroups.
Then E(S) is either equal to {1} or expressed as (###) in

Theorem 3.

Since an E-m regular semigroup is a semilattice of simple

semigroups by [7, Corbllary 1.11], we get

Corollary. Let S be a regular semigroup, then E(S) is

either {1} or expressed as (###) in Theorem 3.
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