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1l. Introduction

The purpose of this paper 1is to show that a widéspread
ﬁegative view [1, 6, 7, 8, 16, 21] of Wijngaarden grammars [20]
(also known as two-level grammars; henceforth referred to as VW-
gramnars) among computer scientists is not necessarily
appropriate for actual programming languages. More precisely,
the prevailing view may be stated as follows:

"W-grammars are essentially context-free grammars (CFG)
being attached to attribute equations. Even in a toy W-grammar,
present techniques for solving such equations 1are not powerful
enough to treat them mechanically. Hence, writing a
specification in a W-grammar is a waste of time."

Our objection to the above view is as follows:

(1) Although the mechanical translatability of w-gfammars into
procedural languages 1s negative in principle, it is also
true that we can wusually convert the definition of
programming languages given in W-grammars into that of
attribute grammars [13] (also known as Knuthian grammars and
K—grammérs) in a semi-automatic manner;

(2) Features of W-grammars viewing as a specification language
are less appreciated among computer scientists. We believe
we should encourage the use of W-grammars as an explicit
specification language in various applications.

We shall elaborate these points later by illustrating many small

but essential examples.

The organization of this paper is as follows. 1In section 2,
we explain several features of W-grammars as a specification

language. In section 3, we briefly compare features of attribute
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grammars with that of W—grammafs. In section 4, we give a general
strategy to transform a specification given 1in W-grammars into
that of attribute grammars, . then we give two elementary
transformation examgles. In section 5, we consider an advanced
problem which seems difficult to transform by the strategy given
in section 4. 1In section 6, we give conclusiohs.

In what follows, wé assume that the reader is familiar with
basic terminology of W-grammars and K-grammars (see (4, 15], for

example).

2. W-grammars as a specification language

This section presents an illustration of features of W-

grammars when we regard W—grammars‘as a-specificationylanguage.

Problem A. (Negation is not easy)
A-1 Construct a predicate EQUAL such that EQUAL is true, if two
givenvcharactérs are equal; EQUAL is undefined, otherwise.
A-2 Construct a predicate NOT_EQUAL such that NOT_EQUAL 1is
true, 1if two given characters are different; NOT_EQUAL is
undefined, otherwise. |
Solution. | ’
A-1 ALPHA :: a; b3 c; d; e; f3 g3 h; i; j; k3 13 m; n; o3 p; Q3
r; s; t; u; vy w; X3 y3 2. |
EMPTY :: .
ALPHA is equal to ALPHA : EMPTY.

A-2 STRING :: ALPHA STRING; EMPTY.
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ALPHAl is not equal to ALPHAZ2
(STRINGIAALPHAl STRING2 ALPHA?2 STRING3)
is equal to (abecdefghijklmnopgrstuvwxyz).

(STRING) is.equal to (STRING) : EMPTY.

Problem B. (Disjunction and Conjunction are easy)
B—I'Constrﬁct a predicate EQUAL_AND NOT_EQUAL équivalent to
EQUAL and NOT_EQUAL.
B-2 Construct a predicate EQUAL_OR_NOT_EQUAL equivalent to
EQUAL or NOT_EQUAL. .
Solution.
B-1 ALPHAl is equal to and not equal to ALPHAZ2 :
ALPHA1l is equal to ALPHA2,
ALPHAl is not equal to ALPHAZ2.
B-2 ALPHAl is equal to or not equal to ALPHA2 :
ALPHAl is equal to ALPHAZ2;

ALPHAl is not equal to ALPHAZ2.

Problem C. (Existential quantifier and Recursion are easy)
C-1 Construct a predicate AT _LEAST ONE such that AT_LEAST ONE
is true, if the following equation
x3+ 11X = 6x2+ 6
‘has at least one positive integer solution; AT _LEAST ONE is
undefined, otherwise.

Solution.
C-1 VAL :: one VAL; one.
the equation has at least one positive integer solution

VALl VAL2 is equal to VAL3 one one one one one one,
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VALl is cubic of VAL,
VALZ2 is equal to
VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL,
VAL3 is equal to VALY VALY VALYU VAL4 VALY VALU,
VALY is square of VAL.
VAL is equal to VAL : EMPTY.
VALl VAL VAL one is square of VAL one :°
VALl is sqﬁare of VAL.
one is square of one : EMPTY.
VALl VALZ2 VAL2 VAL2 VAL VAL VAL one is cubic of VAL one
VALl is cubic of VAL,
VAL2 is square of VAL.

one is cubic of one : EMPTY,

Problem D. (Universal quanfifier over finite domain is not
difficult)

D~1 Construct a predicate PRIME such that PRIME is true, if a
given positiye integer is a prime number; PRIME 1is
undefined, otherwise.

Solution.
D-1 VAL one is prime : .
. VAL one is equal to one one;
VAL one is equal to one one VALl,
VAL one is checked by one one to VAL,
VAL one is checked by VALl to VAL :
VALl VAL2 is equal to VAL,
VAL one is not divisible by VALl,

VAL one is checked by VALl one to: VAL,
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VAL one is checked by VAL to VAL :
VAL one is not divisible by VAL,
VALl VAL is not divisible by VAL :
VALl is not divisible by VAL.
VALl is not divisible by VAL :
VALl VAL2 is equal to VAL.

VAL is egual to VAL : EMPTY.

Problem E. (The use of global context is easy; moreover, reverse
recursive thinking is possible)
Construct a symbol +table of a simple block structured
programming language.
Solution. )
E-1 DEC :: identifier ALPHA has INTBOOL type.
" DECS :: DEC DECS; DEC.
NEST :: new EMPTY; NEST new DECS.
intbool ::: integer;.bodl.
- ALPHA ::*a; b; c; d; e; 3 g3 h; i3 j; k3 13 m; n; o3 p; 4;
r; s; ty; u; v; w3 X3 y; z.
new EMPTY program :
begin symbol,
declaration train with: DECS,
go on symbol,
new EMPTY new DECS statement train,
end sympol.
declaration train with DEC DECS :

declaration with DEC,

go on symbol,
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declaration train with DECS.
declaration train with DEC :
declaration with DEC.
declaration with identifier ALPHA has INTBOOL type :
INTBOOL symbol,
letter ALPHA symbol.
NEST statement train
NEST statement,
go on symbol,
NEST statement train.
NEST statement train
NEST statement.
NEST statement : ) _
NEST non-block statement.
NEST statement
begin symbol,
declaration train with DECS,
go on symbol,
NEST ne& DECS statement train,

end symbol.

From the above examples, we may safely say that the simple
mechanism of W-grammars is quite powerful to most neatly describe

recursively enumerable sets.
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3. Attribute grammars as a procedural language

In this section we briefly review features

page 7.

of K-grammars

{2, 3, 11, 12, 13] taking account of features of W-grammars. in

order to introduce our notation of K-grammars in this paper, we

first give a classical example of K-grammars.

Example. (The value of a binary integer)

1)

2)

3)

)

5)

Scale : Inherited, Value : Synthesized,
number : digit series.

Scale(digit series):= 0,
Value(number) := Value(digit series).
digit seriesl : digit series2, digit.

Scale(digit):= Scale(digit seriesl),

Scale(digit series2):= Scale(digit seriesl) + 1,

Value(digit seriesl):= Value(digit series2) + Value(digit).

digit series. : digit.
Scale(digit) := Scale(digit series),
Value(digit series):= Value(digit).
digit : one symbol.

Value(digit):= 2 ¥#%¥ Scale(digit).
digit : zero symbol.

Value(digit):= 0.

As you can easily notice from the above

example, attribute

grammars may be considered as a restricted subclass of W-grammars

in the foilowing sense,

(1) Attributes are classified into inherited attributes and

synthesized attributes disjointedly.
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(2) The order of evaluation of attributes isk determined 1locally
to each production. Hence, 1if the attribute grammar has no
circular defiﬁition, the topological sorting of a dependency
orderingiis enough to determine every value of attributes.

(3) Once the value has been defined, there will be no change of
value. Moreover, by any evaluation order, thé ultimately
defined value is unique. | |

Therefore‘it is important to give a general practicai "method to

transform W-grammars into K-grammars. We will‘de3cribe such a

method in Section 4.

4, W-grammars as almost K-grammars

We first describe the outline of general strategy to
transform a naturally written Wijngaarden specifiéation to thaF
of K-grammars. Then ‘we‘ give two eiémentary transformation
examples. 1

[General Strafegy]

(1) [Extract CFG poftions from given Hypérfulésj.'Try tovseparate
METANOTIONS ffom Hyperruiés, and ‘reéard the remaining
portions as extracﬁed CFG. ‘Regard these METANOTIONS as
attributes associated with those CFG. In the case that a
METANOTION has a finite domain, we must choose to either
merge it in CFG or separéte it as an attribute.

(2) [One pass generation of protonotions] Using oracle generation
of ‘protonotions and check of relations :among these

protonotions, establish semantic functions of attributes
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where every value of attributes (proﬁonotions) is determined
in a top-down way.

- (3) [Introduction of synthesized attributes and édditional
inherited attributes] If there is an attribute whose value is
determined at some level of CFG produétion, then ¢try +to
introduce a synthesized attribute whose value will be carried
up successively until the most recent point of oracle
generation. If necessary, introdqce additional inherited
attributes at the point of voracle generation. Repeat the

process until there are no oracle generation.

Problem F,
Generate the following language
{a"‘b”ch | n)%}.

Solution.,

large . s becomes small a large s large b large c end;
large s becomes small a small large c end;
large ¢ large b becomes large b large c end;

small b large b becomes small small b end;

o o o o

small b large c becomes small small ¢ end;
small ¢ large ¢ becomes small ¢ small c end.
PRODS - :: PROD PRODS; PROD. |
STRING .:: large ALPHA STRING; small ALPHA STRING;4EMPTY.
SMALLSTRING. :: small ALPHA SMALLSTRING; EMPTY, |
THIHG :: ALPHA THING; EMPTY.
ALPHA :: a; b; c; d; e; £3 g3 hy I3 j; k; 13 m; n; o; p; 4d;

r; s; t; ug V3 W3 X3 Y3 Z.
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EMPTY :: .

start : SMALLSTRING,
where SMALLSTRING is from large s via PRODS series.

where STRING3 is from STRINGl via PROD PRODS series :
where STRING2 is from STRING1 via PROD series,
where STRING3 is frbm STRING2 via PRODS series.

where STRINGZ2 is from STRING1 via PROD series :
where (STRING1l) is (STRING5 STRING3 STRING6),
where (STRING2) is (STRINGS STRINGY4 STRING6),
where (PROD) is (STRING3 becomes STRINGA end).
where (THING) is (THING) : EMPTY,

small ALPHA SMALLSTRING :

letter ALPHAléymbol, SMALLSTRING.
F-2 PRODUCTION HH | .
large s becomeé small a large a small b large b small
¢ large ¢ end;
large a becomes small a large a end;
large b becomes-small b large b end;
large c bécomes small ¢ large c end;
large a becomés’end;
large b becomes end;
large ¢ becomes end.

PRODUCTIONS :: PRODUCTION'PRODUCTIONS; PRODUCTION,

LOOP :: 1arge\a becomes small a lafge a end large b
becomes small b largéfb end large cfbecomes small c
large ¢ end LOOP; EMPTY,

CONTROLLED :: large s bebomes small a large a small b

‘large b small c¢ large ¢ end LOOP large a becomes end
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large b becomes end large é becomes end.
start : SMALLSTRING,
where SMALLSTRING is from large s
via PRODUCTIONS series,
where (PRODUCTIONS) is ( CONTROLLED) .
F-3 VALUE :: one VALUE; one.
EACH :: a; 5; c.
start : VALUE é seriés, VALUE.b series, VALUE c series.
oﬁe VALUE EACH series
letter EACH symbol, VALUE EACH series.

one EACH series : letter EACH symbol.

Problem F'.
Transform the above W-grammar F-3 into a K-grammar.
Solution. |
[1] 1) start : a series, b series, c series.
2) a seriesl : letter avSymbol, a series?2
3) a series : letter a symbol.
‘H) b seriesl : letter b symbol, b.series2.
5) b series : letter b symbol.
6) ¢ Seriesl : letter c symbol,bc series?2.
7) c series : letter c symbol.

[2] Value : Inherited, Bool : Synthesized.

1) Value(a series):= ml, Value(b series):= m2,

Value(c series):= m3,

Bool(start):= true, if ml = m2 = m3,

Bool(start):= false, otherwise.

2) Value(a series2):= Value(a seriesl) - 1.
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)
5)
6)
7)
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| 30}
(Value(a series) = 1.)
Value(b series?):= Value(b seriesl) - 1.
(Value(b series) = 1.5
Value(c series2):= Value(c seriesl) - 1.
(Value(c series) = 1.)

[3] Value, Bool : Synthesized.

1)

2)
3)
L)
5)
6)
7)

Bool(start):= true, if Value(a series) =

Value(b series) Value(c series),
Bool(start):= false, otherwise.

Value(a seriesl):= Value(a series2) + 1.

Value(a series):= 1.

Value(b seriesl):= Value(b series2) + 1.

Valué(b series):= 1.

Value(c seriesl):= Value(c series?2) + 1.

Value(c series):= 1.

Problem E'.

Transform the W-grammar E-1 into a K-grammar.

Solution.

(11 1)

2)

3)
L)

5)

program : begin symbol, declaration train;
go on symbol, statement train, end symbol.
declaration trainl : declaration, go on symbol,
declaration train?.
declaration train : declaration.
declaration :kinteger symbol, letter a symbol.
declaration : integer symbol, letter b symbol.

statement trainl : statement, go on symbol,
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statement fraihz.
6) statement train : statement.
7) statement : non-block statement.
8) statement : begin symbol, declaration train,
go on symbol, statement train, end symbol.
[2] Dec, Hest : Inherited.

1) Dec(declaration train5:= d,

Nest(statement train):¥ new new d.
2) Dec(declaration):= First(Dec(declaration trainl)),

Dec(declaration train2):=

Rest(Dec(declaration trainl)).
3) Dec(declaration):= Dec(declaration train),.
4) (Dec(declaration) = identifier a has integer type,
. )

5) Nest(statement):= Nest(statement trainl), |

Nest(statement train2):= Nest(statement trainl).
6) Nest(statement) := Nest(statement train). |
7) Nest(non-block staﬁément):= Nest(statement).
8) Dec(declaration train):= d,

Nest(statement frain):= Nest(statement) new d.

[{3] Dec : Synthesized, Nest : Inherited. |
1) Nest(statement train):= new new Dec(declaration train).
2) Dec(déclarétion trainl):=
Dec(declaration) Dec(declaration train2)

3) Dec(declaration train):= Dec(declaration).
b) Dec(declaratioh):= identifier a has integer type,

5) Nest(statement):= Nest(statement traihl),
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Nest(statement train?2):= Nest(statement trainl).
6) Nest(statement):= Nest(statement train).
7) Nest(non-block statement):= Nest(statement).

§) Nest(statement train):=

Nest(statement) new Dec(declaration train).

~As you see from these examples, the transformation strategy we
illustrated here is heavily dependent on the possibility of
changing the reverse recursive description into a normal bottom-

up description.

5. An Advanced Problem

In this section we consider an advanced’ problem naturally
arisen in the semantic definition of Balancing in Algol 68 [20]
or Overloading [5, 9] in Ada [10, 19]. It 1is not- necessarily
easy to describe' neat semantic definition of these features in
terms of K-grammars, since the nature of the features seems.
combinatorial.

For the sake of simple presentation, we consider the problem

in the following setting.

Problenm G.
We can assign either 1 or 2 or 3 to each node  of the

following labeled directed tree T
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X1
RN
X2 X3
X4 \\XS
PN /

o

X6 X7 X8 °X

according the following permissible assignment relation R

(X1; X235 X3) (2; 1; 1) or (1; 3; 2),

(X3; X4; X5)

il

(1; 231) or (1; 13 2) or (23 1; 3),

1

(Xl; X6; X7) = (13 13 2) or (2; 13 2) or (3; 1; 2),

(X5; X8; X9)

(1; 15 2) or (2; 1; 2).

G-1 ﬁetermine whether or not the ¢tree T has at least one
assignment to all the nodes under the restriction R.

G-2 Determine whether or not the ¢tree T has exactly one

assignment to all:ﬁhe nodes under the restriction R.

We summarize our observations to this type of problem. .
(1) It is straightforward to write a specification of the problem

G-1 in a W-grammar. (However, it is very tedious to write G-

2 in terms of a W-grammar.)

‘Solution.
G-1 VAL :: VAL onej; one.

start : VAL x1
one one x1 : one x2 symbol, one x3.
one xl1 : one one one X2 symﬁol, one one x3.
one x3 : one one x4, one x5.
one x3 : one x4, one one x5.
one one x3 : one x4, one one one x5.

one x4 : one x6 symbol, one one x7 symbol.
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one one x4 : one x6 symbol, one one x7 symbol.
one one one x4 : one x6 symbol, one one x7 symbol.
one x5 : one x8 symbol, one one x9 symbol.

one one x5 : one x8 symbol, one one x9 symbol.

(2) Three pass evaluation strategy is sufficient for the problem
G-2 in the following sense: We.first topologically sort the
permissible assignment relations. Then we evaluate from
bottom to top according to the topological ordering. Then we
evaluate again from top to bottom according to the reverse
topological ordering. Thus we obtain the set of all
solutions at each node. (We can prove the validity of this
algorithm by the induction on the size of a problem, i.e. the

height of the tree.)

Solution.
G-2 Bool, S : Synthesized, 1 : Inherited.

Root(i,j,k) : Function
Root 1is initially empty;
for each relation (ti; tj; tk) at Xi, Xj and Xk
do if (XJj is a leaf or tj is in S(Xj)) and |

(Xk is a leaf or tk is in S(Xk))
then add ti to Root fi

od.

Leaf(i,j,k,1) : Function
Leaf is initially eﬁpty;
for each relation (ti; tj; tk) at Xi, Xj and Xk

do if ((Xi is the root and ti is in S(Xi)) or
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(Xi is not the root and ti is in I(Xi)))
and (Xj is a leaf or tj is in S(Xj)) and
(Xk is a leaf or tk is in 3(Xk))

then add tl1 to Leaf fi
od.
1) x1 : x2 symbol, x3.
S(x1):= Root(1,2,3),

I(x2):

Leaf(1,2,3,2),

1

I(x3):= Leaf(1,2,3,3), »
Bool(x1):= (S(x1l) and I(x2) are single sets) and Bool(x3).

2) x3 : x4, x5.

S(x3):= Root(3,4,5),
I(xl4):= Leaf(3,4,5,4),
I(x5):= Leaf(3,4,5,5),

Bool(x3):= (I(x3) is a single set) and
Bool(x4) and Bool(x5).
3) x4 : x6 symbol, x7 symbol. -
S(xk) 1= Root(,6,7), |

I(x6):= Leaf(4,6,7,6),

il

I(x7):= Leaf(4,6,7,7),
Bool(x#4):= (I(x4), I(x6) and I(x7) are single sets).

4) x5 : x8 symbol, x9 symbol.

S(x5) := Root(5,8,9),
I(x8):= Leaf(5,8,9,8),
I(x9):= Leaf(5,8,9,9),

Bool(x5):= (I(x5), I(x8) and I(x9) are single sets),.

(3) If we consider the problem G-1 on an undirected graph T in

general, then this problem becomes NP-complete when we
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consider the size of the problem as the number of nodes of T.

The k-colorability problem of T can be coded as follows. 1r

nodes X1, ..., Xn are neighbors of node. X0,

permissible assignment relation:

then add

(X0; X1; ...; Xn) = (i0; 11; ...; in) for integers 10,

il, ..., in from 1 to k such that

il, ..., in are not equal

to i0.

This completes our observations of this type of problem.

6. Conclusions

We have shown that W-grammars have nice features

explicitly use W-grammars as a specification language.

when we

Then we

have shown that a naturally written W-grammar ‘specification can

be transformed intdé a K-grammar definition in a semi-automatic

way. Finally we mentioned a type of problem whose specification

in a W-grammar eannot be easily transformed into a K-grammar

according to the transformation strategy we presented.
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