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ADVENTURES WITH RAMSEY THEORY

Frank HARARY, University of Michigan, Ann Arbor, MI, U.S.A.

Professor Iri has introduced me as the most distinguished mathematician
in the world. This is not true. Maybe I am one of the best-known graph
theorists but certainly not mathematician. I'll tell you one of my
fa&orite introductions. I was in England and, as you know, the English
don't always write things the way they pronounce them. They write
Leicester, but they pronounce it Lester. The chairman of the Mathematics
Department there stood up and said, "Today's speaker is so well known that
he needs no introduction." And he sat down.

The following notation will be very useful, so it is introduced at
once. Let G =+ F,H mean that, whenever you color the edges of G with
two colors, without loss of generality green and red (like traffic
lights--green means go; red means stop), you must get a green graph F
or a red graph H . There is no avoiding it.

Now, where did this notation G - F,H come from? Paul Erdgs, who
is really the most\active mathematician in the world, invented this use of
the arrow and wrote G =+ G,,G_, . Then, David Sumner, without realizing it,
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just took the letters on both sides of letter G (standing for graph).
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I was very happy to see my initials in Sumner's paper, because in 1962
I discovered the ramsey numbers for those graphs which are not necessarily
complete.
Here is an example for the complete graphs, which is very well known:

K6 > K3,K3 . For brevity, G > F , F is also written G > F when the

two graphs F and H are the same; so here we can write K. > K, .

6 3

This is usually stated as a puzzle problem as follows:

Consider six people at a party where some of them know each other
and some do not know each other. Now, if they know each other, you draw
a green line between the two points because they can talk to each»other.’
If they don't know each other, you draw a red line; Now we will prove that
K6 > K3 , meaning that, whenever you have six people at aiparty, there
must be a triangle consisting of people who all know each other or a
triangle of strangers, in other words--a green triangle or a red triangle.
Here's how you prove it. First, we note the lemma that K6 arrows Kl,3 ’
the graph of the letter Y . To show this, consider person number 1.
There are five other people, and five is an odd number. So, either he
must know at least three people or not know at least three. Therefore,

there must be a green K or a red K1 3 proving the lemma.
’

1,3 v
We now use this preliminary observation K6 - Kl 3 to show that
14
K_—» K, . Let's say that person 1 is a friendly chap, and he knows

6 3

these three people. Now there are two possibilities: either two of these
three people already know each other (in that case, you have a green
triangle), or none of these three people know each other (then you have

a red triangle).
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The original theorem of Frank P. ' Ramsey, published in 1930 in the .

is the cardinality of the integers.

Now we -are.-up to ramsey numbers. : The graph theoretic corollary
of Ramsey's original theorem is that for all m and n there is a
number p such that Kp > K K- (If you are a number theorist,
p is always a prime number. I am . not a number theorist, so I usé p for
the number of pointé. And if you are a group theérist, G 1is always a
. group. vBut I am not a group theoriét, so for me G is always a gréph.)

Then you can define the classical ramsey number r(m,n) as the minimum

pP: Kp arrows K . (The colon, : , means "such that", the top dot

n'Kn

is SUCﬁ‘and the bottom one is THAT.) As a corollary tb this corollary

of Ramsey's ﬁheorem, for all graphs F and ‘H ;with no isolated points,

théreheXists a number p; Kp arrows F,H .krTo prove this, let F have

m points and H have n pbinté. Sincevthé£e>is a p; KP arrows

K /K ,4tﬁe'§iéeﬁykﬁﬁ (if éﬁf) must céhﬁéih F or fhévred Kn }contéinslbﬂ.
The éiéésiééi raﬁéey‘ﬂumbers' f(z,ﬁ)v=‘h aré‘;eallé Ftri&ial'ﬁ;vérifé.

For oni ﬁQipoints,'if'théré'is no éfeenﬁbkz tﬁeié'mQSt be a red_ Kn ;

Hence, we onlyzheed éonsider' r(m,n) for 3 f;m <n as 6bviously

r(m,n) = f(n,ﬁ).’ In 1969, my book Giagh Theééi,.liétéd exactly six

classical famsey nﬁmberSVWhich ﬁere determiﬁéd éxacfly, aé in Table 1.

Noy it is a decade later, and no oﬁher ciaséical>ramséy numbers have since

been calculated. This appeérs to beia véry diffiéultrpfobiem; There are

no poWérful methods known, dnly exhaustive consideration of all possible

cases. Up to now, computer programs have not been helpful either.
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TABLE 1. All the known ramsey numbers r(m,n) with 3 <m <n .

o olo3 4 5 6 7

Twice how in my career, I have been a Visiting Professor--once for
one year in London, onée for a half year in Waterloo; both times Erdds
wa; a Visiting Professor in the same university at the same time!

This was very lucky for me--partly because Erdgs is the one who taught

me how to travel, but mostly because he is such a great and curious
mathematician whose enthusiasm is. contagious. .In fact, it was in my

book, A Seminar on Graph Theory, that I first began to write these little

stories, which I hope will eventually come out as a somewhat auto-
biographical book printed in Japanese with Professor Akiyama translating
it. Erdos talks about mathematics to everyone and writes joint papers
with almost everyone--I also learned that from him. He was once in a
train in Hungary, and the friendly conductor said, "014 man, you look
like an interesting person. Are you a scientist?" He replied, "I am
a mathematician. Let me tell you my latest research." And he began to
tell him new theorems. Later, a rumor circulated that he wrote a
joint paper with the conductor. When I asked him if it was true, he
said, "No. I wrote it myself."

In London, after hearing Erdos speak on r(m,n) = r(Km,Kn), I told
him that you can define r(F,H) for any two graphs F and H with no

isolates, not necessarily complete graphs. He replied that it will not
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be interesting. And I said "It will!" He said "It won't!" Again I
said "It will!"™ and he insisted "It won't!", so I did not work on it then.

Eight years later in Waterloo, Ontario, Canada, he and I were having

a cup of tea. Suddenly, he said, "You must come with me right now!

There is a very good show about to begin. A genius is defending his
thesis, and his name is Viclav Chvdtal." His thesis was on ramsey theory
for hypergraphs; and I could see he was so smart that, if I told him
my idea about the ramsey number of not necessarily complete graphs, he
will understand it at once. I offered to share it with him, because I
am in the happy situation that I have more research ideas than the time
to write all of them down, so I share them with people. Last year, I
was very lucky to have Professor Akiyama to share ideas with in Ann
Arbor; and he also had many original ideas and shared them with me.

When I shared this "generalized iamsey theory" with Chvé%al, it
led to four joint papers. First, we sent a research announcement .to the

Bulletin of the American Mathematical Society. Then in Ramsey I, the

first numbered paper in my series, there were some ramsey numbers given for
stars and there were some bounds. We sent this one to Periodica

Mathematica Hungarica. Because it was a new journal, we thought it would

be published quickly. 'In fact, the second paper came out before the
first one did!

As a joke, we defined a "small graph" as one with no isolated points
and with p < 4 points. There are just ten small graphs, as shown in
Figure 1 togethe? with the conventional notation for graphs as given
in my book, Graph Theory (=GT). By the way, in 1979, more copies Qf the

Japanese translation of GT were sold in Japan than copies in English all
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over the world. Thus, eventually, Japan may become Number 1 in Graph

Theory research just as she is already almost Number 1 in many branches

of industry. It is basic research which leads to progress in engineering
and industry, and it is research in graph theory which assists both
basic and applied research because it is so very useful as an appropriate

mathematical model.

K2 P3 21(2 K3 P4
+ ° -—
Kl,3 C4 Kl,3 e K4 e K4
. ) . [
Figure 1. The ten small graphs and their names

In Ramsey II, we found the small diagonal numbers xr(F), and in
Ramsey III, the off-diagonal numbers, r(F,H). These numbers are all

given in Table 2 using the notation from Figure 1.
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TABLE 2. The diagonal and off-diagonal ramsey numbers of the
small graphs.

K2 P3 2K2 K3 P4 K1,3 C4 Kl’3+e K4—e K4
K2 2 3 4 3 4 4 4 4 4 4
P3 3 4 5 4 5 4 5 5 7
2K2 5 5 5 5 5 5 5 6
K3 6 7 7 7 7 7 7 9
P4 5 5 5 7 7 10
Kl,3 6 6 7 7 10
C4 6 7 7 10
Kl,3+e 7 7 10
K4—e 10 11
K4 ; 18

When Chvdtal got a job as an assistant professor at Stanford, he
was too far from AnnArbor to talk with except for an occasional .. telephone
call. One day I was having lunch with my Doctoral Son Number 2, Geert
Prins, in Detroit in a Chinese restaurant. He said, "Frank, I have more
time than ideas, and you have more ideas than time. Please give me a
problem to work on." And so I told him my definition of the ramsey
multiglicitzrof a graph F , denoted by R(F) to distinguish it from
the ramsey number r(F) . By R(F) is meant the smallest possible number
of monochromatic (all one color, either green or red) copies of F which
can occur in any 2-coloring of the lines of the complete graph having

r(F) points.
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The way I invented ramsey multiplicity was that I noticed that
there was a well-known little theorem that when you take six points and
color each line of K6 either green or red, you not only must get one

triangle all one color, but you must get at least 2! So, I said the ramsey

multiplicity of K, is 2 , written R(K3) = 2 . What are the ramsey

3
multiplicities of all other small graphs? Obviously R(K2) =1

for as soon as you color the one line of K

2 green or red, you have
made just one copy of K2 , and similarly R(P3) =.l . It is immediate
that R(2K2) = 3, as r(2K2)= 5 and the lines of K5 can be colored with
green K3 U K2 and red K2'3 giving three green copies of 2K2 . Also,

I had already verified by exhaustion that R(C4) = 2 . Then Prins

found the ramsey multiplicity for all the other small graphs except

K4 ; that's still an unsolved problem! In particular, the fact that the
ramsey multiplicity of the random graph K4 -~ e 1is 15 was found with

the help of Allen Schwenk (Doctor Number 12). Thus, we thought the ramsey
multiplicity of K4 would be tremendous, but an Englishman recently
proved that it is at most 12 and said that he thinks 12 will be the

exact value. I am inclined to agree with his conjecture. Table 3 shows

the ramsey multiplicity of the small graphs.

TABLE 3. The ramsey multiplicity of the small graphs

R(F) 1 1 3 2 10 3 2 12 15 122
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The ramsey multiplicity of a graph was only just introduced in
our 1974 paper and already there is going to be a survey of the subject
by Burr and Rosta, which is to appear in the only journal entirely

devoted to our beautiful subject, the Journal of Graph Theory.

Pavol Hell is Chvatal's best friend; they were fellow students
in Prague, Czechoslovakia. Pavol and I were in Las Vegas at the same time,
not to gamble, but to attend a meeting of the American Mathematical Society.
Hell and I were walking along "the Strip," which is what they call the main
street in Las Vegas; and he said, "You write papers with so many people,
let's write a paper together." I said, "Okay, let's study the ramsey
number of a directed graph.” We agreed and discussed it while we walked
for an hour on the Strip. Later, he wrote out the rest of it and sent
it to me, and I rewrote it and so forth and that became Ramsey V. And
now here comes a coincidence that happens so often in graph theory. A
French gentleman called Bermond in Paris wrote a paper with almost exactly
the same results, and it appéared the same month. Independent discovery |
happens so often! Most of the time, with independent discoveries, I am
thé winner since I fell in love with graph theory in 1950 which was
earlier than most people now fascinated by graphs. So when the same result
is discovered independently, I usually found it first. But I have been
the loser. In fact, Bob Norman (Doctor Number 1) and I derived some
equations about matchings and coverings; and we submitted them to Paul
Halmos for possible publication in the Proceedings of the American

Mathematical Society. By return mail, we received word that Gallai had

done it ten years earlier, so we were the losers. Sometimes you win;

sometimes you lose.
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The next one was with Dick Duke on simplicial complexes, because we
were both interested in this. I was visiting him in Seattle in his
house boat. Duke Univeréity in North Carolina was founded by somebody
named Duke with miilions of dollars made from manufacturing cigarettes.

There they have the Duke Mathematical Journal. So I thought it would be

a great joke if I sent the paper Ramsey VI with Richard Duke to the

Duke Mathematical Journal. Unfortunately, they sent back the paper by

return mail, not refereed, with a letter saying that their backlog is
over three years, so they will not consider any more paper this year.

It was a great pity. Instead, it went to the Journal of the Australian

Mathematical Society.

When Allen Schwenk was my doctoral student, he was the one that I
shared all my ideas with because he was smart and HE WAS THERE. So, I
gave him the idea of finding out whether or not there is a ramsey number
for multigraphs and for networks. If you have a network, the value on a
line might be 0.7. Then, maybe you color 0.4 of it green and 0.3 of it
red, and you see what you can get. Schwenk proved a very nice theorem
that either the ramsey number for a given multigraph does not exist or
it is equal to the ramsey number of its underlying graph. It's a nice
theorem, and because it was subtitled Multigraphs and Networks, Ramsey VII
was published in the journal, Networks.

Zevi Miller (Doctor Number 13) developed my idea which turn out to
be an independent discovery again. Let ;(F,H) ; called in English
"r-hat," be the smallest number of lines in a graph G such that G - F,H

This is called the size ramsey number because recently some graph theorists
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are calling the number p of points in G its order; and the number

q of the lines the size. For example, we found that the size ramsey
number of the random graph is 44. .You see, its ramsey number is 10,

and the number of lines in K is 45. We found that when you take any

10

one line out of KlO » the resulting graph still arrows the random graph;
but if you remove any two lines, it does not! We found the size ramsey

. This is still an unsolved

number for all the small graphs except K4

problem.

Now another irndependent discovery! At the same time in Memphis,
Tennessee, the two ramsey specialists Faudree and'Shelp were also
discovering the size ramsey number! They wrote a paper on it jointly
with their colleague Rousseau and with the great Erdos himself,
but it did not overlap ours as they found bounds.

Ramsey IX was with Robert Robinson. We were in Canberra, Australia
for the two weeks beginning 14 August 1977 at a combinatorial meeting.

There Robinson and I developed the isomorphic ramsey number of a graph F .

Here you have to color the lines of a complete graph in such a way that the
two parts (one green and one red) are isomorphic, and you get a self-
complementary graph. Or, if you use three colors, you are going to have
three isomorphic graphs: Green, Red, Blue, and you will have isomorphic
ramsey numbers of three colors, etc. This invariant is a combination

of ramsey theory with isomorphic factorization. What started us on this
was that we noticed that every self-complementary graph with 8 points
contains a triangle, not with 5 points, and there aren't any such

graphs with 6 of 7 points. Thus the isomorphic ramsey number of a triangle

is 8, and we found the isomorphic ramsey numbers for all the small graphs.
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Ramsey X was with Grossman and Klawe. Grossman is at Oakland
University, 60 miles from Ann Arbor, and Maria Klawe was also teaching
there then. She came to a lecture that I gave in Windsor, Onatario,

just across the bridge from Detroit, because she had never seen me and

had heard a rumor that sometimes I give an interesting talk. She asked
me if I would please give her a question to work on. Of course, I said
Okay: find the ramsey numbers for all the double stars.. She talked it
over with Grossman, and they worked together; so they both joined me,
which was very agreeable. By the way, we dedicated this paper to
Ron Graham and Paul Erdds calling them double stars! They really are
stars in mathematics because they shine and sparkle, and are adjacent
to so many other mathematicians

Now we are up to Ramsey XI! The reason for the exclamation point is
that is is the first article in my ramsey series which I wrote by.myself.
I was asked the other day which theorem that I founa do I like best? This-
is my favorite personal theorem. A positive integer n is a ramsey
number if and only if n is different from 4 . Four is the only number
which is not the ramsey number for some graph. So, if you want to make
a joke, you could say that this is a new way to define the number 4. The
proof is not immediate, but it's easy after you know it. I'll‘just describe
it to you. It is clear that 4 cannot be a ramsey number because the
two graphs having two lines have ramsey numbers 3 and 5 (Table 2), and
the smallest ramsey number of the graphs with three lines is 5. When you
have more lines, you can never get a lower ramsey n;mber; so 4 is not
a ramsey number. To show that every ﬁ #4 is a ramsey‘number, I looked

at the known formulas for the ramsey numbers of the paths, the stars,
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the cycles, and so forth. Putting them all together, I got every number
as a ramsey number except for n = 16. Then Grossman told me that we
already have 16 and he showed me our paper, Ramsey X, where the double
star S(4,6) has ramsey number 16. It was already in our paper, but

I had not noticed it. It was like a deétective story.

The Ramsey XII paper with Harborth and Mengersen came to exist
because I gave a lecture in Braunschweig, Germany. We studied bipartite
ramsey sets. This means you start with a complete bipartite graph and
color its lines gréen or red. Then for a given bipartite graph F ,

a pair of numbers (m,n) is in the bipartite ramsey set of F if m

and n are minimal for guaranteeing that the bipartite graph F will
be formed in one color, i.e., that Km,n > F .

Finally, Ramsey XIII, also written by myself, is to appear in the
proceedings book of the Fourth International'Conference on Graph Theory.
It was held in Kalamazoo, Michigan during 6 - 9 May 1980 and was
dedicated to both my friend Edward Noxdhaus, on the occasion of his retire-
ment from Michigan State University,and to me to celebrate in advance
my forthcoming Sixtieth Birthday which is scheduled to take place on
11 March 1981. My talk was both a technical summary of the previous
papers in this ramsey series and introduced achievement and avoidance
numbers for graphs.

I take this opportunity to express my heartfelt thanks to all my
co—authors of these rémsey papers. It has been a pleasure for me to

do research with such brillant and dedicated scholars, who are now

listed in alphabetical order:
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Chvatal, vdclav

Duke, Richard

Grossman, Jerrold

Harbbrth, Heiko

- Hell, Pavol

Klawe, Maria

Mengersen, Ingrid

Miller, Zevi

Priﬁs, Geert

Robinson, Robert

Schwenk, Allen

It gives me special pleasure to announce that two additional
papers in this series are being written with a world éxpert on matroid
théory, Masao Iii. One will develof»the redﬁced-ramsy numpber of a graph
by combining homomorphisms with subcontractioﬁs; the other will introduce

the ramsey number of a uniform matroid.
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