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Uniformly Finite-to-one and Onto Extensions

of Homomorphisms between Directed Graphs

Masakazu Nasu

Research Institute of Electrical Communication, Tohoku University

‘Introduction

For two directed graphs G1 and GZ’ a homomorphism h of Gl into G2 is,

roughly speaking, a mapping of the set of arcs of Gl into the set of arcs of
G2 that preserves the adjacency of arcs. The homomorphism h is naturally

extended to a mapping h* of the set of all paths in G, into the set of all

1
paths in G,, which is called the extension of h.

The main object of this paper is to establish two properties of uniformly
finite-to-one and onto extensions of homomorphisms between strongly connected
directed graphs. One of them is shown to be also a property of those between‘
directed graphs with no restriction, from which the following result is imme-

diately obtained. For two directed graphs G, and Gz, if there exists a homo-

1
morphism h of Gl into G2 such that the extension h* of h is uniformly finite-
to-one and onto, then the adjacency matrices M(Gl) of Gl and M(Gz) of G2 have
the same maximal characteristic value but also the characteristic polynomial
of M(Gl) is divided by that of M(Gz). The other property is stated as follows.
If Gl and G2

cency matrices have the same maximal characteristic value, then for any homo-

are two strongly connected directed graphs such that their adja-

morphism h of G, into GZ’ h* is uniformly finite-to-one if and only if h* is

1

onto.
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1. Preliminaries

Let A be a finite nonempty set. A sequence of finite length of elements

of A is called a string over A. The sequence of length 0 is also a string

and is denoted by A. For a string x, 1lg(x) denotes the length of x. The set
of all strings over A is denoted by A*, TFor a non-negative integer n, A" is
the set of all stfiﬁgs of length n over A. For x, v € A*, xy denotes the
string obtained by concatenating the two strings x and y.

A graph (directed graph with labeled arcs and labeled points) G is defined
to be a triple (P,»A, ) where P is a finite set of elements called points,
A is a finite set of elements called arcs and ¢ is a mapping of A into P X P.

If z(a) = (u, v) for a € A and u, v € P, then u is called the initial endpoint

of a, v is called the terminal endpoint of a, and we say that a goes from u

to v.

Let G = (P, A, ) be a graph. A string x = a '-'ap (p 2 1) over A with

1
a; € A (di=1, +--, p) is called a path of length p in G if the terminal end-

point of a; is the initial endpoint of a4 for 1 =1, ++-, p~1. The initial

endpoint u of a; is called the initial endpoint of x, the terminal endpoint v

of ap is called the terminal endpoint of x, and we say that x goes from u to v.

Each point u of G is a path of length 0 (going from u to itself). The set of

all paths in G is denoted by 1(G). The set of all paths of length p(z 0) in G
is denoted by H(p)(G). Note that n(p)(G) = AP N 1(G) for p > 1.

A graph G = (P, A, ¢ ) is said to be strongly connected if p ¥ ¢ and for

any u, v € P, there exists a ﬁath from u to v in G." Of course, a graph con-
sisting of exactly one point and no arc is strongly connected. But, for con-
venience, in what fdllows we assume, unless otherwise stated, that a strongly
connected graph has at least one arc. However, we remark that all theorems,

the proposition, and all lemmas concerning strongly connected graphs in this
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paper trivially hold for strongly connected graphs with one point and no arc.

Let Gl = (P, A, 51 > and G2 =(Q, B, Lo ) be two graphs. A homomorphism
h of Gl into G2 is a pair (h, ¢) of a mapping h : A - B and a mapping ¢ : P -
Q such: that for any a € A, if Cl(a) = (u, v) with u, v € P, then gz(h(a)) =
(b, 6(v)).

If Gi-is>strongly connected, then a homomorphism h = (h, ¢) of Gl into

G2 is uniquely determined by h. Therefore, when G, is strongly connected, we

1
say that h is a homomorphism of Gl into G2 and we denote: by ¢h the unique

mapping ¢ such that (h, ¢) is a homomorphsm of.G1 intO'Gz.

For a homomorphism h = (h, ¢) of a graph Gl =(P, A, Cl > into a graph

G2 =(Q, B, Cz y and a subgraph G! = (P', A", Ci Y of G,, we denote the sub~

1 1
graph. (¢ (P'), h(A'), cé y of G2 by h(Gi). (A graph G' =(P', A', ¢') is a

subgraph of a graph G = (P, A, T) if P' C P, A' C A, and ¢'(a) = t(a) for

all a' € A'.) It is easy to see that if Gi is strongly connected, theﬁ'h(Gi)

is strongly connected. When Gi is' strongly connected, we often denote h(Gi)
1)
by h(Gl).~ .
Let Gl ={P, A, 5y ) and G2 = (Q, B, 2y ) be graphs. Let h = (h, ¢) be

a homomorphism of Gl into G2. We define the extension h* : H(Gl) - H(Gz) of

h as follows. For each x € H(Gl), if 1g(x)

0y i.e., x is a point of Gl,
then

h* (%) = ¢(x)

1, «++, p), then

1 = ce i [ 1
and if x = a a, ‘p > 1) w1th a; €A (;

* = LRI
h"(x) = h(al) h(ap)f-

When Gl is strongly connected, we often use h* instead of h* and say that n*

is the extension of the homomorphism h,

A mapping £ : A > B is said to be uniformly finite-to-one if there exists
a positive number N such that |f-l(y)| < N for all y € B.
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1 into GZ’

Two paths x and y in Gl are said to be indistingushable by h if x and y have

Let Gl and G2 be two graphs. Let h be a homomorphism of G

the same initial endpoint and the same terminal endpoint and h*(x) = h*(y).

Proposition 1. Let Gl =(P, A"Cl) be a strongly connected graph and
let G2 =(Q, B, ;2) be a‘graph. Let h : A> B be a homomorphism of Gl into
G2. Then h¥* : H(Gl) »‘H(Gé) is’uniformly finite~to-one if and only if no

two distinct paths in G, are indistinguishable by h;

1

Proof. Suppose that X and x, are two distinct paths in Gl such that

they have the same initial endpoint, séy u, and the same terminal endpoint,
say v, and h*(xl) = h*(xz); Since Gl is‘stroﬁgly connéétéd, there e#ist% a
path z going from v to u. Forvany positiﬁe integer N, we have ](h*jﬂl((ﬁ*(
xl)h*(z))N)l > 2V, Hence h* is not uniformly finite-to-ome. o
Suppose that h* is not uniformly finite-to-one. Then there ekists a’
path y € H(Gz) such that |(h*)_l(y)l > ‘P‘z. Since the number of paths x's’
in (h*)—l(y) is gerater than the number of all possible pairs of the initial
endpoint and the terminal endpoint ofva path in Gl’ there exist two distinct

paths with the same initial endpoint and the same terminal endpoint in (h*)_l(y).[]

For a graph G = (P, A, T ) with P = {ul, ey, un}, the adjacency matrix
M(G) is the square matrix (mij) of order n such that mij is the number of
arcs going from u; to uj (1<1i, j < n). |

A matrix M with real elements is said to be non-negative if all elements
of M are non-negative. By the Frobenius Theorem (cf. Gantmacher [2] or Nikaido
[71), any non-negative square matrix M has a‘nbn—nggafive real char#cteristic

value which the moduli of all the other characteristic values of M do not

exceed. We call that maximum real characteristic value the maximal character-
istic value of M. TFor a graph G, we denote the maximal characteristic value
of M(G) by r(G).

A square matrix M is said to be irreducible if there is no permutation
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matrix H such that H_lMH has the form

(1.1)
M, Mg

where M1 and M3 are square matrices and 0 is a zero matrix. For a graph G,
G is strongly connected if and only if M(G) is irreducible.

Let M be an irreducible non-negative square matrix of order n. Let r be
the maximal characteristic value of M. By the Perron-Frobenius Theorem (cf.
Gantmacher [2] or Nikaido [7 ]), r > 0 and to the maximal characteristic

value r there corresponds a characteristic vector w = (Wl’ s wn) with weo>

O for i =1, ***y, n. Let D = (dij) be the diagonal matrix of order n such

“that dii =w, (i =1, *++, n). Then the sum of all the coordinates of each
column vector of DMD_l is equal to r. (CE. [2]). ‘ For any matrix K,
let us denote the sum of all the elements of K by S(K). Then, since for each

non-negative integer p, MP = D—l(DMD—l)pD and S((DMD_l)P) = nrP, we have

ar? s sP) <P (p=0,1, -00) (1.2)
where ¢ = n min (w./w.) and B = n max (Wi/W')'
1<i,jsn  * 17 1<i,js<n h|

Lemma 1. let Gl and G2 be two strongly connected graphs. Let h

be a homomorphism of G1 into G2. Then the following two statements are
valid.

(1) 1If h* is uniformly finite-to-one, then r(Gl) < r(Gz).

(2) 1f h* is onto, then r(Gl) > r(Gz).

Proof. Assume that h* 1is uniformly finite-to-one. Then there exists a

positive number N such that |(h*)-1(y)|

IA

N for all y € H(Gz). Thus since for

each non-negative integer p, }H(p)(G )] l(h*)_l(y)l, it follows
1 (p)
yEIEo(6,)

that
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1® ) < N1 ® ()| (=0, 1, ) (1.3).
Since for i = 1, 2,
1P @) | = scae,))HP (®=0,1, =),
using (1.2) and (1.3) we have r(G;) = r(G,).
bAssume that h* is ontg. Then it follows that
1P @l s 1Py (=0, 1, ).

Hence by the same argument as above, we have r(Gl) > r(Gz).[]

2. Uniformly finite-to-one and onto extensions.

Let G = (P, A, ¢ ) be a graph with A = {al, SN al}. Let Z be the ring

of integers. We consider the polynomial ring Z[al, ceey, al] in indeterminates

ap, “tt, a, over Z. Let P = {ul, teey un}. Let M = (mij) bevthe matrix of

order n with elements in Z[al, ey ag] such that mij = apl + e+ apk if

a , °**, a are all arcs from u, to u, in G, and m,. = 0 if there exists no
P1 Pk 1 J 1]

arc from u; to uj (1 < i, j £ n). Then the matrix M is called the representa-
tion matrix of G and is denoted by ﬁ(G). Let X be an indeterminate not con-
tained in A. Let fG be the polynomial in Z[al, e, az, X] which is equal to
the characteristic polynomial of ﬁ(G), i.e., let fG be the polynomial defined
by

fG(al, Ttts A, X) = det (Xlﬂ - M(G))

where'In is the identity matrix of order n. Then fG(al, c+e, a , X) is

Q,’
homogeneous of degree n. Let fG(X) be the characteristic polynomial of the

adjacency matrix M(G) of G. Then clearly
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fG(X) = fG(l, *c, 1, X).
In this section we shall prove the following theorem.

Theorem 1. Let Gl = (P, A, <) ) and G2v=:(Q, B, %y ). be two strongly

connected graphs with A =’{al, LN al} and B = {bl, teey, bm}. Let h : A->B

be a homomorphism of G

1 into G,. Let g be the polynomial in Z[bl, ‘e, b, X]

o m
R ;

obtained from fG (al, e g, X) by substituting h(ai) for a; in fG for i =

1 1
1, ***, . Then, if h* is uniformly finite-to—one and onto, then r(Gl) = r(Gz)
and sz(bl’ LN bm’ X) divides g(bl, LN bm’ X) in Z[bl’ LN bm’ X].

Theorem 1 can be generalized to graphs with no restriction. Using Theorem
1, we can prove the following theorem. But the proof is omitted in this paper.

(It is found in [5].)

Theorem 1'. Let Gl = (P, A, <] ) and G2 =(Q, B, Ty ) be two graphs with
A = {al, reey, ak} and B ='{b1, seey bm}. Let h = (h, ¢) be a homomorphism of
G1 into G2. Let gybe the polynomial in Z[bl’ sy bm, X] obtained from fGl(al,
s 2y, X) by substituting h(ai) for a, in EG “for i = 1, **+, % Then if h*
1 ,

is uﬁiformly finite-to-one and onto, then r(Gl) = r(Gz)vand sz(bl’ ceey, bm’ X)

divides g(by, ***, b , X) in Z[by, ***, b_, X].
As a‘direct'consequence of‘Theorem 1', we havevthe following resulf.

Corollary 1. Let G, and G2 be two graphs. If there exists a homomorphism

1

of - G, into G, such that the extension h* of h is uniformly finite-to-one and

onto, then not only r(Gl) = r(Gz) but also fGl(X) is divided by fGZ(X).

To provebTheorem,l, we use Lemma 1 and furthermore four lemmas.

Lemma 2. Let G, = (P, A, Cl > and G2 = (Q, B, 2% ) be two strongly

1

connected graphs with A =A{al, T, ak} and B ='{bl, Ty, bm}. Let h : A > B
be a homomorphism of G, into G,. Write fG1 = fGl(al’ *++, a,, X) and sz =

sz(bl’ e, bm’ X). Let g be the polynomial in Z[bl’ LN bm, X] defined by

-7 -
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g(by, **5 b, X) = fel(h(al), ey hlay), X)

R ‘
Then if h” is uniformly finite-to-one and onto, then for any m positive inte-

gers py, "7, pﬁ;'theré exists a real number r such that
g(py, "5 Py T) = sz(Pl’, Tt P r) = 0. -

Proof. Assume that h* : ﬁ(Gl) 4‘H(G2) is'uniformly finite—to—bne:ana
onto. Let Py teey, Py be any m positive intégers. We coﬁétruct two»grasz
Gi and Gé as follows. For each'i =1, *++, %, let j(i) be the number such

that h(ai) =b and let A, = { } where a,. , v =

P a. a, e a,
J(l) ' i,1°- 71,27 ’ 1’pj(i) i,v

' is ob-

1, e, pj(i)’ are new distinct elements for every i. The graph Gl

tained from Gl by replacing each arc a; with the arcs consisting of the elements
of A;. That is, G =(P, A', gi ) where A' = ‘6 A; and ;i : A" > P x P is

1 i=1
defined by

Ci(ai,v) = Cl(ai) v=1, -, Pj(i), i=1, =*+, 2).

For each j =1, ***, m, let B, ={b, ,, ***, b, } where b, , v =1,
] i,1 355 Jsv

sy pj, are new distinct elements for every j. The graph Gé is obtained from

G2 by replacing each arc bj with the arcs bj,l’ Ty bj’pj. That is, Gé =

(Q, B'", Cé ) where B' = lBj and Cé : B' - Q x Q is defined by

7

gy ) =g (=1, ey 3 =1, e, .

Let h' : A" » B' be the mapping defined by

1 = =1, *°°, cn, =1, e ;
h (ai,v) bj(i),v (V PJ(l) 1 ’ s l)

Then clearly, G and G.)

1 o are strongly connected and h' is a homomorphism of

' into G!. Furthermo for a ath b, ++*b, in G!, b, b, is
Gl into 2 u re, fo ny p Jl’vl Js’vs 29 i1 is

a path of G2 and it follows that

BB, b )] = [6H TR, b )
[€CDHT0y | ey 1= 3, )]

-8 -
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* . . . 3 . A T
Therefore, since h” is uniformly finite-to-one and onto, so is (h")*. Hence,

]

by Lemma 1, r(Gi) r(Gé). Let r = r(Gi). Then the characteristic poly-

nomials £.,(X) of M,, and £_,,(X) of M., have r as their common root.
H Gi G} G)
Write A' = {aj, -*-, a;z,} and B' = {b!, *--, bI;l,}. Write fGi = fGi(ai,

+, a' X) and £

o = fGé(b" "‘:'bév’ X). Then since for each arc bj in_Gz,

1
€y

if ;z(bj) = (uj, vj) (gj, vj € Q), then there exist pj arcs going from uj to

vj in Gé, we have

fGZ(pl, St pm’ X) = fGé(ls cee, 1, X).

Also, since for each arc a; in Gl’ if h(ai) bj and gl(ai) = (si, ti) (Si’

ti € P), then there exist pj arcs going from s; to ti in Gi, it follows that

gy *o0s by X = £, o0, 1, X

1
Since £,,(1, *+, 1, X) = £,,(X), fG,(l, ", 1, X) = £, (X) and £, (x) =
1 1 2 2 1
fG,(r) = 0, we have
2
g(Pl’ Tt pm9 r) = sz(pl’ Y pm’ r) = 0. D »

An arc a of a graph G is called a loop of G if the initial and terminal

endpoints of a are the same.

Lemma 3. Let Gl = (P, A, 3] ) and G2 =(Q, B, Zy ) be two strongly con-

nected graphs. Let h : A - B be a homomorphism of G1 into G2. Let v € Q.

Let Gé be a graph obtained from G2 By adding a loop bv(é B) from v to itself.
Let Gi be a graph obtained from Gl by adding a loop a, (E A) from u to itself
for every point u in ¢;l(v). (¢h was defined in the preceding sectiom.)

Let h' be the mapping of A U‘{au‘ u € ¢;1(V)} into B U {bv} defined by

h(a) if a € A
h'(a) =

1]

b if a

. -1
v a with u € ¢h ).

-9 -
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Then h' is a homomorphism of Gi into Gé and if h* is uniformly finite-to-one
and onto, then (h')* is also uniformly finite-to-one and onto.

Proof. Clearly h' is a homomorphism of G! into G!. Any path z in H(Gi)

1 2

i : - .o e { = ce ee
is written as z X1¥1%9Y5° X Yy where Xy H(Gz) (i 1, , ), XX,
xﬂ € n(Gz), and y; € {bv}* for i =1, +++, 2. It is easily seen that

PRI . .
. Hence if h" is uniformly finite-to-one

' -1 -1
[ (@YD @] = [0 ey x)

and onto, then (h")* is also uniformly finite-to-one and onto. 7

Lemma 4. Let G =(P, A, ) with A ='ta1, ey am} be a graph such that
for every u € P, there exists at least one loop going from u to itself.-. Then

(1) det M(G) is an irreducible polynomial in Z[al, cee am] if (and only
if) G is strongly connected, and

(2) fG(al, Ttts oA, X) is aﬁ irreducible polynomial in Z[al, SN am,X]
if (and only if) G is strongly connected.

Proof. We first note that for any homogeneous polynomial f(Xl, SN XE)

in indeterminates X N XQ over an integral domain k such that £(O, XZ’

l’

*y XZ) $# 0, if £(0, X S Xl) is irreducible, then f(Xl, SN Xz) is

2’
irreducible. (Since f(Xl, N Xg) is homogeneous and £(0, X2, cee Xz) 0,

deg £(0, X < Xg) = deg f(Xl, +++, X ). Assume that £(0, XZ’ ey Xz) is

2° 2

irreducible but f(Xl, SRIN Xg) is reducible. Then there exist polynomials 8y

and g, such that f(Xl, RN Xl) = gl(Xl, ey Xg)gz(Xl, TN Xx) and 1 <

deg g; < deg f. Hence £(0, X9, °*°, Xg) = 81(0, Xos 00y Xz)gz(oy Xos °7%

XR)' Since £(O0, X2, ceey XQ) $ 0, gl(O, X2, SRIN XQ) $+ 0. Since f(Xl, e,
Xl) is homogeneous, gl(Xl’ teey, XQ) is homogeneous. (Cf. van der Waerden

[9], § 23.) Hence deg gl(O, X5 *"7s XQ) = deg gl(Xl, Ty, XQ)- Thus 1 <

deg g, (0, Xy, **, X)) < deg £(0, X,, ***, X)). Therefore, £(0, Xp, ***, X))

is reducible, which contradicts the assumption.) Therefore, since fG(al’
s a, 0) = det (—ﬁ(G)), the if part of (2) follows from that of (1).

Moreover, to prove the if part of (1), it suffices to show the following :

- 10 -
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(3) det ﬁ(G) is an irreducible polynomial if G = (P, A, ¢ ? is a graph
such that (i) G is strongly conneéted, (ii) for any u € é, there exists at
least one loop from u to itseif in G, and (iii) any graph obtained froﬁ G
by deleting an arc of G &oés hot satisfy'both (i) and (ii){

Let G = (P, A, ;) be any graph. A path z = a.

1--#a2 with a; EA@E =1,

-i;;'g) is called a éircuit of length g if a, ¥ aj fér any i, j, 1V5,'i:‘< jks

o, and the initial and terminal endpoints of z are the same. A circuit z =
_alf..a2 is said to be elementary if a; and aj have distinct initial endpoints
for any i, j, 1 < i < j < 2. (Each loop is an elementary circuit of length 1.)

. A set E of elementary circuits in G is called a circuit-cover of G if each

point of G is on exactly one circuit in E.
‘Let E; be the set of all circuit covers of G. Write M(G) ='(aij)’ Then
det M(G) is written as

det M(0) = ] e(o) a1 (13350 (3)" " “Pno(n)
7 g

where n = |P|, 0 is a permutation on-{l, «++, n}, and (o) = 1 or -1 if per-
mutation g is even or odd, respectively. For every permutation o such that
alg(l)"fang(n)‘¢ 0, the arcs (indeterminates) aio(i)’ i=1l, *++, n, con—-

stitute all elementary circuits in a circuit-cover of G. Conversely, for

any circuit-cover E of G, the product of all arcs (indetermiqates) that are
on the circuits in E is equal to a term in det M(G) up to the sign. Pre-

cisely, we can write

det M(G) = 2 ot

E € E(G)

where for any circuit cover E € E(G), t. is the monomial zl; E tz where for

E
any elementary circuit z = a;--ra, (aiEE A) in G, tZ is the monomial defined
)g+lal.

by t, = (-1 e . Therefore, we shall prove the following by induc-

tion on the number n

c of the points of G.

- 11 -
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(4)

P = z _ ty is an irreducible polynomial if G is a graph satis-
E € EG)
fying the conditions (i), (ii),and (iii).

If n, = 1, then clearly (4) holds. Let n > 2 and assume that (4) holds
when n, s n-1. Let G = (P, A, z) be a graph with n, =1 satisfying (i), (ii),
and (iii). Since n, > 1 and G is strongly connected, there exists an elementa-

ry circuit z = al;--al of length & > 1 in G where aiE A (=1, L),

Let ugs -;-, uy be the poinﬁs ?n the ;ircuit z. ‘Since G satisfies the condi~
tions (iii)‘aﬁd (i), if we deieté all the arcs a;, cee, a, from G, we obtain
pairwise disconﬁécted L strongly connected‘subgraphs Gi’ i=1, **°, &, of G
such that ug is‘a point in Gi and each point of G is a point of exactly one
of Gi's. Clearly each Gi is a graph satisfying (i), (ii), and (iii). For
i=1, ***, %, let Hi be the subgraph of Gi obtained by deleting thé point ug

from Gi' Then we can write

o+l
p = (—l) a,.**+*a p --.p .
G 1 3 Hl H!L _ 1 o

where if Gi is a graph consisting of the point uy and a loop from ug to itself,
then we set Py = 1. Clearly Pe is a polynomial of degree 1 with respect to
i : . S

a- By the induction hypothesis, is an irreducible polynomial for i = 1,

Pg,
) 1
+ey 4. Fori=1, -++, g, any indeterminate in Py appears only in Pg
i : i .
***a P, Py "D can not divide p **p. . Thus
2 3 Hl H2 Hg Gl | G2
we conclude that Pg is an irreducible polynomial.

Hence any factor of the a
Thus we have proved the if part of the theorem. (It is easy to see that
the only if part of the theorem holds.) O

u .
Lemma 5. Let f and g be two polynomials in Z[al, Ttts oA, X]. +1If £ is

irreducible in Z[ai, Ttth A, X] and if for any m positive integers'pl, R

T See Acknowlegement,
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Py there exists a real number r such that

£y, s Pps ¥) = g(py, vvvy p s T) =0,

then f divides g in Z[al, ey oA, X].

Proof. Assume that f is irreducible in Z[al, s A, X] and assume
that for any m positive integers Pys "% P there exists a real number r
such that f(pl, "tts P r) = g(pl, "tts P r) = 0. Suppose that g is not
divided by f in Z[al, e, oa, X]. Let K be the quotient field of Z[al, cee,
am]. We can consider £(X) = f(al, e, oA, X) and g(X) = g(al, Tty oA, X)
as polynomials in K[X]. Since £(X) is irreducible and g(X) is not divided by
£(X) in Z[al, LRI am][X], f(X) is irreducible and g(X) is not divided by
£f(X) in K[X]. (Cf. van der Waerden [9], §23.) Therefore, there exist s(X)

and t(X) in K[X] such that
f(X)s(X) +g(XtX) =1 (3.1).

Since the coefficients of s(X) and t(X) are rational functions in indeter-
minates a;, *°°, a  over Z, there exists a nonzero polynomial u in Z[al, LRI
a_] such that both us and ut are in Z[a e+, a , X]. Let § = us and t =

m 1 m

ut. Then by equation (3.1) we have

f(al, Tttyoan, X)é(al, Tt oA, X) + g(al, ttts oA, X)t(al,

ttrsans X) = u(al, cee, am). (3.2)

Since u is a nonzero polynomial, there exist m positive integers Pys "t P
such that u(pl, ceey, pm) ¥ 0. (Cf. van der Waerden [9]; §21.) By hypothesis,
there exists a real number r such that f(pl, Tty P r) = g(pl, Ttts P
r) = 0. Substituting (pl, "t P r) for (al, v, oA, X) in the poly-

nomials in equation (3.2), we are lead to a contradiction. Thus the lemma

is proved. []
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Now we are ready to prove Theorem 1.

Proof of Theorem 1. Assume that h* is uniformly finite-to-one and onto.

By Lemma 1, we have r(Gl) = r(Gz).

It follows from Lemma 3 that by adding new loops ai, vy a; to G, and
new loops bl, «+-, b& to G2 if necessary, we can obtain two strongly connected
graphs Gi and Gé and a homomorphism h' of Gi into Gé satisfying the following

conditions, from G G2, and h.

lh
(1) For each point u of G!, there exists at least one loop from u to u.

(2) h'(a) = h(a) for all a € A and h'({a], """, aﬁ}) = {b!

LR ¥
1o s b

©(3) (h")* is uniformly finite-to-one and onto.
£ voe se e L . £ ; v 1 o e 1
Let fGi(al’ , a y ap, X) rand fGé(bl’ R bm, bl’ s bq,

X) be the polynomials which are equal to the characteristic polynomials of

't aj,

ﬁ(Gi) and ﬁ(Gé), respectively. Let g' be the polynomial in Z[bl, ceey, bm’

b!

10 " b&] defined by

1 cee i cee '
g (b1’ ] 2 bm’ bl’ b bq b4 X)

- f ' v ' ' 1 R 1 1
- fGi(h (al)’ s h (a,Q,)’ h (al)’ s h (ap)a X)'

Then, since Gé is a strongly connected graph and condition (1) is satisfied,

it follows from Lemma 4 that f is irreducible in Z[bl, cee, b, bl

Gé 0 1 cee

b', X]. Since (b"* is uniformly finite-to-one and onto, it follows from
Lemma 2 that for any m + q positive integers Pys "TTs Py pi, LR p&, there

exists a real number r such that

g'(pys s P Pis s pé, r)

fGé(pl, T, P PP T pé, r) = 0.

Hence it follows from Lemma 5 that fG‘ divides g' in Z[bl, *tTs b 1’ ey,
2

X]. Obviously,

sz(bl’ sy bm’ X) = fGé(bl’ ser, bm’ 0’ s, 0, X)
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and by condition (2),
glby, ***5 b s X) = g'(by, ***, b, 0, =++, 0, X).

Thus we conclude that %G divides g in Z[bl, «v-, b, X1.00

Example.1. Let G =(P, A, £ ) be a graph. For any non-negative -integer

p, we define. a graph L(P)(G) as follows. L(O)(G)~= G. For p > 1, L(p)(G).=

(H(P)(G)’ H(P"rl)(G)’ C(P) ) = (al-..ap’ az...ap+1) for

al“.ap+1
AP N (G) for p>1.) We call L(P)(G) the path graph of length p of G.

+
e 1P (6) with a, €4 (1 = 1, *++, pt). (Recall that 1P (c) =

Especially, L(l)(G) is called the line graph of G and is demnoted by L(G).

(This is the same as the line digraph of G in Hemminger and Beinke [4] and
the adjoint of G in Berge [l].) Clearly, if G is strongly connected, then

Iggﬁhis strongly connected for all p > 0. Let p be any non-negative integer.

;1P (g (p)

We define mappings h >Aand ¢ : I - P as follows. For any

= 3 and

(pt+1) Ce =
€ 1 (G) with ay €A (d=1, , ptl), h(al a o+l

alcaoa

ptl p+l)

for any x € H(p)(G), ¢(x) is the terminal endpoint of x. Then clearly
h = (h, ¢) is a homomérphism 6f L(P)(G) into G and h* is uniformly finite-

to-one. UClearly if G is strongly connected, then h* is uniformly finite-to-

~

f by substituting
L(P) (g)

one and onto. Let g be the polynomial obtained from.

h(y) -for .y for all indeterminates y E'H(p+l)(G) in fL( Then, whether G

is strongly connected or not, we can show that
g = X°f (3.3)
and hence we have

£ X) = X®f (X) ,
L(p) (©) G

where m = ‘H(p)(G)l - lPl and we assume that f¢ e f¢ = 1 for the graph ¢

with no point. Note that m may be negative. Particularly we have
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P @) = r).

Proof of Equation (3.3). It suffices to show the result for p = 1 be-

S
cause L(p)(G) is isomorphic to LP(G) for any p 2 0 and hence the result for

general p (> 0) is straightforwardly prbved by induction. Thus we assume
that p = 1.

Assume that G is strongly connected. Let P = {u ., ﬁn} and let A =

l’
{al, LI al}. Then h : H(z)(G) > A is a homomorphism of the strongly con—

nected graph L(G) into the strongly connected gréph'G. Since h* is uniformly
finite~to-one and onto, it follows from Theorem 1 that there exists o E'Z[al,

L X] such that

glag, -, a,, X) = alag, ***5 a, f.(a), -, ag, ). (3.4)

Let ﬁ be the square matrix (mij) of order £ in which mi. "aj if the

0 otherwise.

terminal endpoint of a; is the initial endpoint of aj'and mij

We can consider g(X) = g(al, **+, a_, X) as a polynomial in K[X] where K is

o
the quotient'field-of Z[al, cee, aﬁ]. Then g(X) is the characteristic poly=
nomial of M. By the construction of M, if’ai and aj have the same terminal
endpoint, then the i th and j th rows of ﬁ are the same. Therefore, for
each point U of G, if the number of arcs going to U is dk’ then dk rows of
M afe the same. Let m = [AI - lPl. Then it is easily shown that there
exist m linearly independent row vectors V's such that W = 0 where 0 is the
zero vector. Thus O is a characteristic value of M with at least m linearly
independent characteristic vectors corresponding to it. Hence 0 is a root

of g(X) of multiplicity at least m. Thus g(X) is divided by X .

We assume without loss of generality that (*) for each point u of G

t We define LP(G) by 1%6) = ¢ and LP(G) = L(_LPf‘l(cj) ®>0.
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there exists at least one loop going from u to itself. (For assume that a;

is a loop. Let G' be the graph obtained from G by deleting the loop aj.

Let g' be the polynomial in Z[az, e, ag, X] defined for G' in the same

way as g for G. Then it is easily checked that g(O0, @y, s ags X) = Xg'(az,
‘Y al, X) and EG(O, ays T 3y, X) = EG,(az, "tts Ay, X). Hence it follows

that if (3.3) holds in case G satisfies (*), then it also holds in case G

does not satisfy (*¥).) Thus since G is strongly connected, it follows from

Lemma 4 that EG is irreducible in Z[al, +++, a,, X]. Therefore, since g(al,

e
", ag, X) is divided by Xm, so is d(al, ctr, ay, X) in (3.4). Since deg o
= m, we conclude that (3.3) holds.

For the general case where G is not necessarily strongly connected, the
result is straightforwardly proved by induction on the number of the maximal
strongly connected subgraphsfof G. Therefore, the remainder of the proof is
omitted. []

It was mentioned in Hemminger and Beinke [4], p.298 that A.J. Hoffman

had asked whether one can determine fL(G)(X) in terms of fG(X). The question

has been solved by a result in Example 1.

3. The extension of a homomorphism between two strongly connected graphs
Gl and G2 with r(Gl) = r(Gz).
In this section, we prove that if Gl and G2 are strongly connected graphs
such that their adjacency matrices have the same maximal characteristic value,

then for any homomorphism h of G1 into G2,‘h* is onto if and only if h* is

+ Here, '"strongly connected graph" is used in the usual sence, that is,

it includes " strongly connected graph with one point and no arc".
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uniformly finite-to-one, and hence the surjectivity of h* is equivalent to
the nonexistence of two distinct paths which are indistinguishable by h, in Gl'
Let G = (P, A, ¢ ) be a strongly connected graph. Let p be 'a non-negative

integer. We define a mapping 6

C,p : H(L(p)(G)) - igp H(i)(G) as follows. (Cf.

Example 1.) Tf 2z is a path of length O in L(p)(G), then z € H(p)(G). For
this case, we define

9 = zZ.
c,p*
If z is a path of length (> 1) in L(p)(G), then z is of the form

)

7z = (a “ae

17 ) @y 'ap+1) R CTRRR

+p

with a cec, a € A such that a **-a

(&+p) .
(S5
1° 24p 1 %p i “(G). For this case, we

define
=) - PR .
G,p(z) al a5L+p

Clearly, 8 P is one-to-one and onto.
2

Theorem 2. Let G, = (P, A, Z, ) and G, = {(qQ, B, Z, ) be two strongly

connected graphs with r(Gl) =’r(G2). Then for any homomorphism h : A = B

of Gl into GZ’ h* is uniformly finite—~to-one if and only if h* is onto.
Proof. Let h : A > B be a homomorphism of G1 into GZ' Lét p be any

non-negative integer. We define a mapping h(p) : H(p+1)(Gl) -> H(P+1)(G2) by
n® o = 0¥ = e 1P ).

Then h(p) ié a homomorphism of the strongly connected graph L(P)(Gl) into
the strongly connected graph L(p)(Gz). Moreover, we have, for each z €
nw® ),

Doy () = 8 (PG,

1 2

Therefore, since SG p and SG are one—-to-one and onto, h* is uniformly
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finite-to-one [onto] if and only if (h(p))* is uniformly finite-~to-one [onto].
Assume that h* is uniformly finite-to-one tut not onto. Then there

~exists y € 1(G,) with 1g(y) 2 1 such that (h*)_l(y) =¢, Let p = 1lg(y) - 1.

(®)

We consider the homomorphism h of L(p)(Gl) into L(P)(Gz). Since h* is

uniformly,finite—to~one, (h(p?)* is uniformly finite-to—-one. Moreover, y is
an arc of L(p)(Gz) such that (h(p))_l(y) =¢. Let H = h(p)(L(p)(Gl)) (cf.
Section 1 for this notation.). Then H is a strongly comnected subgraph of

L(p)(Gz). We define a mapping (h(p))' : H(p+1)(Gl> - h(p)(H(p+l)(G2)) by
a®) 1 = 1P e & e 1P e)).

Then clearly (h(p))' is a homomorphism of L(P)(Gl) into H. Since (h(p))* is
uniformly finite—to—one,'((h(P))')* is uniformly finite-to-one. Thus, by
Lemma 1, we have

r(L(p)(Gl)) < r(H).

On the other hand, the following result is known (e.g., Nikaido [13]).
(i) For any two distinct non-negative square matrices M1 and M2 of the

same order, if Ml is irreducible and M., - M2 is non~negative, then the maximal

1
characteristic value of M; is greater than that of M,.

“Since h(p)(n(p+l)(ql)) C n(p+l)(G2) - {y}, it follows from (i) that the
maximal characteristic value of M(L(p)(Gz)) is greater than that of M(H).

Hence we have

r@w®(e,)) > rm.
By Example 1 and hypothesis

r(L(p)(Gl)) = r(Gl) = r(G,) = r(L(P)(Gz)).

9)

Therefore, we have

r@® e)) > @,
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. . . . . x .
which is a contradiction. Thus we have proved that if h" is uniformly
finite-to~one, then h* is onto.
To show the converse, we assume that h* is. onto but not uniformly finite-

to-one. We construct two graphs Gi and Gé from G, = (P, A, ) Y and G2 =(Q,

1
B, z,), respectively, as follows. Let A= {ala€ A} and let EV? {b|b € B}

The graph Gi is obtained from Gl by adding a new arc & having the same

initial and terminal endpoints as a for every arc a of Gl' That is, Gi =

(P, A", Ci Y} where A' = AU A and Ci is defined by gi(a) = ;i(a) = ;l(a) (a €

2
where B' = BU B and Cé is defined by Cé(b) = gé(E) = gz(b) (b € B). Clearly,

A). In the same way, G) is obtained from G,. That is, Gé =(Q, B', ;é)
Gi}and Gé are strongly connected and M(Gi) = 2M(Gi) for i = 1, 2 so that
r(Gi) = 2r(Gi) for i = 1, 2. Since, by hypothesis, r(Gl) = r(Gz), Gi and Gé
are two strongly connected graphs with r(Gi) = r(Gé). Define a mapping h'

A' > B' as follows. For each a € A, h'(a) = b and h'(a) = b where b = h(a).

1

1 1
"'dz be any path of length > 1 in Gé with di € B' (i =1,

Then, since h is a homomorphism of G, into G2, h' is a homoﬁorphism of G

. 1
dnto GZ' Let dl

*++5 ). Fori=1, ---, &, let bi be the element Qf B such that bi = di or

b, =d,. Then b,-*+b, is a path in G, and

(@ d )| = (@) Ty

z)l'

Therefore, since h* is onto, (h')* is onto.
Since h* is not uniformly finite-to-one, it follows from Proposition 1

that there exist two distinct paths %y and X, in Gl’which are indistingush-

able by h. Let p = lg(xl) - 1. For i =1, 2, we write X, = ail.'.ai(ﬁ+l)

1 i = « o {1 = X '»'=,"'-<'~ . LA S . .
with aij €EA G =1, , ptl). TFor i 1, 2, let Xy a;jais ai(p+l)’A

Then xi and xé are two distinct paths'in“Gi which are indistinguishable by h'.
Put’Hl ¥’n(P)(Gi), H2'='L(p)(cé),'and,g'= 0P mhen ®

p @ E

“are
2 o

strongly connected graphs .and g is a. homomorphism °f~HlainP9 HsztMpreqver,
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' and x! are distinct arcs of H,. Let H, =(R, E, ¢ ) be the maximal

X1 2 1 1

strongly connected subgraph of Hl having the arc xq but not having the arc

xé. Now we shall prove the following.

(*) Hl exists and for any z Ezﬁ(Hl) -~ H(ﬁl), there exists z € 1 (H

such that g*(z) = g*(z).

1

Let z € H(Hl) - H(ﬁl). Since Hl is strongly connected, there exists a

circuit C in Hl such that the arc'xé is on C and z is a subpath of C. (For

two paths z, and Z55 2y is a subpath of z, if there exists paths w, and w

1 1 2

W T) Let D. =8

such that z, = W ZW, Gi,p(c)' Then D is a path inxGi and xé

appears in D at least once as a subpath of D. Hence we can write D = wlxéw2
: €1 1 = t . s i 1

with Wis Wy (Gl). Let D1 W X W, Then since Xy and X, have the same

*
initial endpoint and the same terminal endpoint and ¢(h') (xi) = (h')*(xé),

. . v 1y* = 1y ¥ + ‘2 3 e
Dl is a path in G1 and (h'") (Dl) (")*(M). Since Xy = 85585, alp and

xé = 521a22"'azp, x! and xé do not intersect, that is, there exist no paths

1
: 1] ] = ) - 1 =
tl’ t2’ and s of length >0 in Gl such that Xq tls and X, st2 or X stl
and xé =t,s. Hence replacing any subpath xé in D by xi does not generate a
new subpath xé in D;. Therefore, by replacing every subpath xé in D by x],

we can obtain a path D in Gi such that xé is not a subpath of D, xi is a

subpath of D, and

MH*@) = G"H*@). -

D has the form D = 31"°d£dl"'ap where ai'e A" (41 =1, -+, 2), by additional

replacements if necessary. (D is of the form D = dl..'dgdl..'dp where dj_e

AT (4 1, *-+,2). If a part of one of the initial and terminal subpaths

]

dl'--dp of D is replaced by a subpath of xi in the above replacements, the

corresponding part of the other subpath dl--~dp of D must be replaced by the
same subpath of xi.) Let E = (GG, p)—l(f)). Then C is a circuit in Hl.
l’

T We assume that uy = yv = y for paths u and v of length 0, i.e. points
u and v, and a path y going from u to v.
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Moreover, C passes through the arc xi but does not pass through the arc x

1
2.

Hence, Hl exists and é is a circuit in ﬁl' Furthermore, we have
%~ -1 ~ . -1 *
g7 (C) = (85, )7 (N*D) = (85, )T ((N)TD) = g*(0).
z’p Z’P

Since z is a subpath of C, there exists a subpath z-of 6 such that g*(z) =
g¥(z). Of course, 7 is a path in ﬁl' Thus we have proved (*).

~ (p+1) A ~ .

Let g : E~> 1 (GZ) be the restriction of g. Then g is a homomorphism

of ﬁl into Hz. Since (h')* is onto, g* = ((h’)(p))* is onto. Therefore, it

follows from (*) that (é)* is onto. Thus it follows from Lemma 1 that
r(Hl) > r(Hz)-

However, Hl is a strongly connected graph and ﬁl is a subgraph of Hl

which has not the arc xé of Hl'

characteristic value of M(Hl) is greater than that of M(ﬁl). Thus we have

Hence it follows from (i) that the maximal

r(ﬁl) < r(d).

From example 3, r(Gi) = r(L(p)(Gi)) = r(Hi) for i = 1, 2. Therefore since

r(Gi) = r(Gé), r(Hl) = r(Hz). Thus we have
r(H,) <r(H).

which is a contradiction. Thus we have proved that if h” is onto, then h*

is uniformly finite-to-one. The proof of the theorem is completed. []

Corollary 2. Let G1 = (P, A, 1 Y and G2 =(Q, B, Z, ) be two strongly

connected graphs with r(Gl) = r(Gz). Let h : A > B be a homomorphism of Gl
into G2. Then h* is onto if and only if no two distinct paths in G1 are
indistinguishable by h.

Proof. This follows from Theorem ? and Proposition 1.[]

We remark that Theorem 2 and Corollary 2 are no longer true if either
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Gl or G2 in tHem is not strongiy connected. ' This is shown by the following

examples.

Define graphs Gl,‘Gzand_G3 as follows. Gl = ({ul, 92}, {ql, a,, 33},
Cl> where z;l(al) = (Ul, ul)’ El(az) = (ul, uz)) al’ld Z;1(3-3) = (u29 uz) H Gz =
({v}, {b}, L, ) where Ez(b) = (v, v) ; Gy = ({Wl, wz}; {cl,‘cz}, Ly ) where
;s(cl) = (Wl’ wl) and c3(c2) = (wl; WZ)‘ Then'G2 is strongly connected but
G1 and G3 are not strongly connected. Clearly r(Gl) = r(Gz) = r(G3). Let

h into G2 defined by hl(al) = hl(az) =

1 1
'hl(a3) = b and ¢1(ul) = ¢l(u2) = v. Let h2 = (hZ’ ¢2) be the homomorphism of

= (hl,'¢1) be the homomorphism of G

Then h; is onto but not

G2 into G3 defined by hz(b) = %_and ¢2(v) = wl.’
uniformly finite-to-one because, for each n > 1, h*(ala an_l—l) = b" for any
y 117273

i with 0 < 1 < n~1 so that I(hi)—l(bn)l > n. Note that a;a, and aja, are

distinct and indistinguishable by hl' Clearly h; is one-to-one but not onto.
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