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A FEW PROPERTIES OF CLIQUE GRAPHS
Science University of Tokyo

Iwao Sato

ABSTRACT

We present solutions of several graph equations about the
clique graphs, the line graphs, the middle graphs and the total
graphs. Specially, the equation (C(L(G))=G generalizes the

results of F. Escalante, S. T. Hedetniemi and P. J. Slater.

1. Introduction
We state the definitions and the notations required here.
The definitions and the notations not presented here, may be
found in Harary [4].
Let G be a simple graph. A clique of G is a maximal
complete subgraph of G. Let K(G) be the set of all cliques of
G. The clique graph C(G) of G is defined as having the elements

of K(G) as vertices and two vertices Cl, C., being adjacent in

2

C(G) if and only if the cliques Cl, C, have a nonempty intersec-

2
tion in G. Moreover, we define Cn(G) by C(CH—J(G)) (n>2).

For example, in Fig. 1, the subgraphs(C ¢, and 03 are the

1° 2
cliques of G. The clique graph C(G) and the graph CZ(G) are

also depicted in Fig.l.

CL&) )

Fig.l

Next we define three special graphs of G. The line graph
L(G) of G is the graph with vertex set E(G) and two vertices
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of L(G) are adjacentnif and;only if they are adjacenf edges of
G. The middle graph #(G) of G ‘is the graph with vertex set
V(GJUE(G) and two vertices of M(G) are adjacent if and only if
1) they are adjacent edges of G or 2) one is a vertex of G and
another is an edge of G incident with it. . The total graph T(G)
of G is the graph w1th vertex set V(G)UE(G) and two vertices of
T(G) are adjacent if and only 1f 1) they'are adjacent vertlces
or edges of G or 2) one is a vertex and another 1s an edge of G
incident w1th it. Moreover.we deflne " (G) u" (G) and T (G) by'
L(Ln_l(G)), M(Mn-J(G)) and’T(Tn (G)) (n>2) respectlvely.

For example, the line graph, the middle graph and the total
graph of the graph G of Fig.l are depicted in Fig.2.

Fig.2

F. Escalante [2] gives the following result on the cligue
graphs having no triangles: ‘

Proposition 1

A graph having no triangles satisfies the equation 02(G)=G
if and only if every vertex of G is of degree at least two.

For example, in Fig.3, the graph G, satisfies the equation

1
C (G )= G but the graph 02 does not. In fact it holds that

C(G)G-{uV(G)ldeguz}

I EOR e

e S CEd C(&) ) CCG'J_\ ¢ ‘Er:.) ’

2

'Fig.3
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For this ‘relation, S. T. Hedetnimi and P. J. Slater [5] obtain
the following result :

Proposition 2

If G is a connected graph containing no triangles and at
.. 2
least three vertices, then it holds that C7(G)=C(L(G))=G—{ueV(G)
|deg u=1}.

Thereupon, we can pose a problem which graphs satisfy the
equation.C(L(G))=G., We answer to this question in the next
section. Moreover, by replacing L(G) of:.the equation C(L(G))=G
by the middle graph ¥X(G) or by the total graph T(G), we have the
analogous equations and find the solutions to the equations:

C(M(G))=G, C(T(G))=G.

2, The solutions of C(L(G))=G, €(M(G))=G and C(T(G))=G.
Theorem 1
The graphs G satisfying the equation C(L(G))=G are the only
graphs which satisfies following three conditions:
(L) The degree of every vertex of G is at least two.
(2) Every pair of two triangles of G is edge-disjoint.
(3) Every triangle of G has exactly one vertex of degree two.
Proof.({=) Suppose that G is a graph satisfying the three
conditions. If G has not any triangle, then the equation
C(L(G))=G becomes 02(G)=G, since in this case C(G)ZL(G).
Accordingly, C(L(G))=G holds if and only if every vertéx of G
is of degree at least two by Proposition 1. We may consider
in the case when ¢ contains triangles. Construct the line graph
L(G) of G, then there corresponds to every triangle Tj(j=1,...,r)
and to every vertex vk(k=1,...,s) except for verticeS'uj
(§j=1,...,r) of degree two on the triangle L(Tj)=T3 and

L(K
, p(uk)

are cliques of L(G), and L(G) has no cliques other than these.

)=K (p(v)=deg,.v), respectively. All T> and X

I,p{v p(v

Now we define a mapping ¢ of V(G) onto V(C(L(G))) as follows:

¢(uj)=T5(j=1,...,P), if uj is a vertex of degree two on Tj'
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= =1,¢..,8), i i .
¢(vk) Kp(vk)(k s s), if v, is a vertex other than "
(i=1,...,7). P+s=[V(G)|.

The mapping ¢ has properties (a), (B) and (Y). -

() The mapping ¢ is a bijection of V(G) onto V(C(L(G))).

(B) uj and vk are adjacent ( vk is a vertex of triangle T.

) i <=> T <=> )
other than vertex uJ of degree two ) in @ TJﬂKp(vk)%¢ ¢(MJ)
and ¢(vk) are adjacent in C(L(G)).

(Y) Let both v, vj(k,j=2.,,,.s) be not vertices of degree

n

two of triangle, then vk, vj are adjacent in G <=> Kp(vk)

Kp(v.)
#¢ in L(G) <=>¢(vk) and ¢(vj) are adjacent in C(L(G)). J
From (o), (B) and (Y), we know that ¢ is an isomorphism of G onto
C(L(G)). Therefore, the graph G satisfying three conditions‘(l),
(2) and (3f satisfies the equation C(L(G))=G.

(=>) Let G satisfy the equation C(L(G))=G and condition (2)
except for (1) or(3). If all vertices of a triangle of G have
degree greater than two, then we have C(L(G))=GDK4(Fig.4). This

contradicts to (2). Hence, at most two vertices of every triangle

are of degree greater than two.

Fig.4

Then a clique XK of L(G) is one of the following cases:

(1) X=L(K )=K where either v(v€V(G)) is on a tri-

1,p(v) plv)?
angle and p(v)28, or v is on no triangle and p(v)=2.

(2) K=L(Tj) (§=1,...,7), where {Tl""’Tr} is a set of tri-
angles of G.
Now we consider the following mapping ¢ from V(C(L(G))) to V(G):

IfK:L(Kl,p(v))zKp(v)’ then Y (K)=v.
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If K=L(Tj) (§=1,...,7), then Y(K)=v, where vis a vertex of
degree two of a triangle Tj'
It is clear that Y is an injection. Thus the number of cliques
of L(G) is at most [V(G)I. Consequently, if either G has a vertex
of degree one, or two1vertices of a triangle of G are of degree
two, then we obtain an inequality |V(C(L(G)))|>|V(G)|. This
contradicts the assumption C(L(G))=G.

Next, let G do not satisfy the condition (2) and contain an

induced subgraph K4—m which consists of two triangles having one

vertex in common.

Fig.5
If G satisfies the equation C(L(G))=G, then there is a subgraph

H of G such that in its line graph L(H), complete subgraphs K(l),

K(2) of L(H) have a vertex in common with each of three complete
subgraphs K(J) other than itself, respectively and complete sub-

graphs K(S), x(4)

K(J), x(2)

of L(H) have a vertex in common with each of
» respectively (Fig.5). According to Krausz's Theorem
(Harary[4], Th.8.4), there may be such a graph.

But there ocgurs two triangles <{Ul,v2,vs}>, <{vz,v4,05}>
in L(H) which have one vertex v] in common. .Since these are
complete subgraphs of L(H), together with K(ﬂ)(i=1,2,3,4), C(L(H))

contains a subgraph K4, but is not isomorphic to X —x. Thus @

4
must contain a subgraph K4. Since C(L(G))=G and G contains a

subgraph K4, G must contain C(L(K4)) (Fig.6) .
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A

K, L(K,

Fig.6
However, C(L(K4))contains K4, and so G contains 2K4. Similarly,
C(L(G))=G contains 2C(L(K4))=4K4.

becomes an infinite graph, but this is a contradiction. Hence,

Continuing this process, G

G does not satisfy the equation C(L(G))=G. [/

For example, the graph H of Fig. 7 satisfies the conditions

of Theorem 1 and the equation C(L(H))=H.

BN KN,

H LIH) CCLH))

Fig.7
Theorem 2

The graphs G satisfying the equation C(M(G))=G are the onlf
graphs which contain no triangles.

Proof, Let G+ be the graph obtained by adding to G new p
vertices v; (Z=1,...,p) and new p edges {vi,vz}, where p=|V(G)|
and V(G)={vl,...,vp}. Then L(G+) is isomorphic to M(G) ([3],Th.1l).
Hence, the equation C(M(G))=G considered may be rewritten as

ccreet))=ac.
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G’ . . : L{G*)(heavy lines).

(The broken lines are
Alines adde}d to G.

(Fig.8)
(1) Let G contain no{triangleé. Drawihg the line graph
L(G+) of G%, since G contains no‘triangies, in this case ééch‘
clique of L(G+) is the line graph of thé subgraph induced by éome
vertex v . of G and its neighborhood in G+,:Where the neighborhqod
of a vertex v of G is a set of‘alljvertices‘beiﬂg adjacent with:v
v in G+, Thus the number "of ciiﬁues ova(G+) is eQual‘to IV(G)[;
Each vertex of L(G+)‘belongs to at most\two‘éliqﬁeé h ‘
([4]1,Th.8.4). The vertex is unicligual if it is ih exactlyroneH‘
clique (as vertices wi’wj etc, ip Fig.?j,lyéécotg}ng £o [4],Th.8,3,
G+ is obtained by acting L_Z to L(G+). In this case, by neglecting
unicliqual vertices, L_Z becomes the operation.C, and then G is
obtéined. ‘,_ ""‘ v ‘
(2) Suppose that G contains tri_ahgleéf All three vertices
Vs vj, Uy of a iriangle <{vi,vj,vk}> of G have degrée of af
least three in G . Therefore L(G ) has more cliques than G by at

least one clique. Hence we have the inequality |V(G)|<

|V(C(L(G)))| i.e. C(M(G))=C(L(CT)I#G. 1/

Theorem 3 ) ; » 7 .
The graphs G satifying the,equation C(T(G)):G are only
totally disconnected graphs. S

Proof, If G is a totally disconnected graph, then it is clear
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that C(T(G))=G. Therefore let G be a nontrivial connected graph,
and examine the cliques of its total graph T(G).
For convenience sake, we denote by ej={vj1,vj2}(j=1,...,n=JE(G)])
the vertex of T(G) correspondipg to edge ej of G. Let
{vl,...,vm}(m=|V(G){) be the set of all vertices with the degree
not less than two. Now we consider the following cliques of T(G):

K(i)=<{e. seees@ le.2v.(t=1,...,p(v,))}U{v_ }>

I1 Tow,) It " ¢ ¢

(i=1y00o,m)

Lj=<{ej,vj1,vj2}>(e={vj1,vj2}; J=1,...,n).
All cligques listed above are distinct to each other.

Next, for each vertex v (i=1,...,]V(G)]) of G, correspond to
a clique of T(G):

If p(vi)=1, then vi corresponds to L.%)where ejz{vi’vk}'(#)

If p(vi);Z, then v; corresponds to K (i=1y00e,ym).
It is clear that the total number of cliques in (#) is equal to
IV(G)|. Let G contain a triangle T=<{vi’vj’”k}>' Then a subgraph
M=<{{vi,vj},{?j,vk},{vk,vi}}> of T(G) is a clique of T(G) and
different from every cliue in (#). That is, we have |V(G)|[<
|V(c(T(G)))|. Hence G must be a star K],s
not less than two, then we have C(T(Kl,s))=K1+s; if s is equal to
one, then we have C(T(Kl,l))zKl' Thus it is clear that C(T(G))#G.

(s21). But, if s is

From the above; it follows that therevdoes not exist any non-

trivial connected graph which satisfies given equation. //

2.The solutions of C(L™(G))=G, C(M*(G))=G and C(T"(G))=G (n22).

In this section, we replace L with Ln(nzZJ etc, and present
the solutions of the equations C(Ln(G))=G, cM*(G))=G ana
c(T(G))=G (n>2).

At first we consider the solutions of the equation C(Ln(G))=
G (n>2). |

Lemma 4.1.

If a graph G has a triangle as a subgraph, then the Qraph
C(Ln(G)) is not isomorphic to G (n22).

Proof. Suppose that there is a graph G with triangles

satisfying the equation C(L"(G))=G (n>22). Let G be connected.
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If ¢ is a triangle, then it holds that C(Ln(G))=K1(ni1) i.e.
C(Ln(G))%G(n;Z). Suppose that G has a triangle as a properly sub-
graph. Then there is a vertex v being adjacent to one vertex of
this triangle. That is, G has the graph G] of Fig.9 as a sub-
graph. In the case of n=2, G has the graph K4 as a subgraph since
C(L2(G1))=K4(see Fig.9).

v : p T
/ AN

: / ! =0
. //
| \ \j Y
G L(&)) 1.2(4,) - C(LHE)
Fig.9

In the case;bf n=3, ¢ has the graph K, since the graph C(LS(GZ))

‘ ' 4
(see Fig.10). v ‘

has the graph‘K4

& @

L3(6) O cl3E)

Fig.10

The line graph LS(GZ) has the graph T (see Fig.l1ll). Then it holds
. oy ‘ » _
that the graph C(L (Gl)) has the graph C(L(T)). 1In the case of

n=4, G has the graph K, since the graph C(L4(Gz)) has the graph

4

T L(T)

ccLem))

Fig.1l1l
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In the case of n=5, since L4(G J2L(T)2T, the graph C(L5(Gz)) has
the graph C(L(T)),i.e. Ké as a subgraph That is; G- has the
graph K4. Similarly to the case of n=5, in the case Of'nzﬁ, G
‘has the graph K

nzZ.

as a subgraph. Hence G has K 'for any case of

4 4

Next we shall show that G is an infinire graph and obtain a
contradiction.
Case 1 n=2.
e ThHe graph C(L (K ) has the graph 2K ..(see Flg 12). sSince
G has the graph 2K G C(L (G)) has the graph C(L (2K J)sile.
4K ,. In general, G has the graph 2 K

4 4
an infinite graph. This is a contradiction to that G is finite.

for any- nzl. Hence G is

74
RETSX

KZ\, ) ‘l " . S:L:(K4)

C(L(Ks)

fig.lZ
Case 2 ﬁ;3. , o

Sef S=L(K.)., Then L(S) has K (see Fig.12), so that the line
graph L? (K )= Lg(S) has the line graph L(K )J=S. That is; the graph
C(L (K )) has the graph c(S) i.e. ZK (see Fig.6). Since the graph
‘ L (K ) has the graph L(S), the graph C(L (K )) has the graph i
C(L(S)),l e. 2K4 (see Figl2). vMoreover, since L (K )?L (S)’L(K )
=S, the graph C(L (K )) has the graph C(S) i.e. 4(see Fig.6).
Similarly to the case of 7n=5, in the case of n>6, the graph
C(Ln(K')J has the graph 2K4
C(L (K )) as a subgraph, G has 2K
graph‘2 K

4
being 'a contradiction. //

as a subgraph. Since G has the graph
4‘for.any n>8. Hence G has the
for any n. Therefore (G is an infinite graph, this

We‘must note that if H is a subgraph of a graph G, then
the graph c(r™(n)) is a subgraph of the graph C(Ln(G))(nEZL

10
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Lemma 4.2

Let n be two or more. Then, if a graph & has no triangles
and there is a vertex of G such that deg 024, then the graph
¢(z”*(G)) is not isomorphic to G.

Proof. Let G be a graph which satisfies the condition of
Lemma and the equation C(L"(G))=G (n>22). Then G has the star
]{1’g as an induced subgraph. In the case of n=2, the graéh,'
C(L (K1,4))=C(L(K4)) has the complete graph K4
That is, G has K4. This is a contradiction. ~In the.case of
n>8, since n-121, the graph C(Ln(K]v4))=C(Ln—1(K4)) has the
complete graph K4 as a subgraph by 1he similar argument to the

as a subgraph.,

proof of Lemma 4.1. But this is a‘contradiction, //

Lemma 4.3
Let n be two or more. Then, if a graph & has no triangles
énd there is a vertex of G such that deg w=3, and the degree of
each vertex of G is two'or three, then the graph C(Ln(G)) is not
isomorphic to G. ‘b
Proof. Let G be a connected graph which satisfies the condi-
tion of Lemma and the equation c(t™eG))=a (n22). Then G contains

one of the graphs in Fig.l3 as a subgraph.

Fig.13

Case 1. G has the graph Hl'

Then the graph C(LZ(HJ)) is a triangle. Hence G has a tri-
angle. Similarly to the proof of Lemma 4.1, it follows that &
has a triangle for any #n>2. This is a contradiction; |

Case 2. G has the graph HZ' ;
Similarly to Case 1, we obtain a contradiction. //

11
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Lemma 4.4

Let n be twé or more. Then, if every vertex of a graph G
having no triangles has the degree three or less and some vertex
of G has the degree one, then the graph C(Ln(G)) is not isomorphic
to G.

Proof, Let G be a connected graph which satisfies the condi-
tion of Lemma and the equation C(Ln(G)):G (nzZ). Then G is one
of the following graphs:

1) a path.

2) a graph containing a cycle of length four or more as a

properly subgraph.

3) a tree distinct to a path.

1) G=P (m21).

It holds that

" (Pm-n—l (m>n+1)
c(L (ijlzﬁ K] (m=n+1)
k L@ (m<n+1)

where & denotes the empty graph. Hence C(Ln(Pm)) is not iéomorphic
to P_. '

m . .

2) G contains a cycle Cm(m§4) as a properly subgraph.

G has one of the graphs in Fig.1l4.

Fig.1l4

Similarly to the proof of Lemma 4.1, it follows that G has a tri-
angle for any niZ. This is a contradiction.

3) G is a tree but not path.
then we

Then G has the star K If G is the star X

1,3° 1,3’
have C(Ln(KJ 3))=KZ#KJ S(nzZ). Accordingly, we suppose that G
3 3
has Kl 3 as a properly subgraph.
3

Case 1. n;S.

12
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G has the graph T] in Fig. 15,

Fig.1l5

Similarly to the proof of Lemma 4.1, it follows that G has a tri-

angle.

Case 2. n=2.

Since the graph C(Lg(TZ)) is a triangle, cannot contain
T2. Therefore G is isomorphic to the graphs in Fig.1l6.

vzl

w r w

Gl a&,

(mis The 1en3ﬂ\ of vwr- Paﬁ'ﬂ ) Fig. 16

But, since C(L2(G1))=Pm and C(LZ(G2))=Pm, c(z%(¢)) is not iso-

+2
morphic to G. //

By these lemma and noting that C(Ln(Cm))=Cm(mi4)/ we obtain
the following theorem.
Theorem 4. ‘
The graphs G satisfying the equation C(Ln(G))=G(n;2) are only

regular graphs of degree two not including triangles.

Moreover we have the following theorem.

Theorem 5.

- The graphs G satisfying the equation C(Mn(G))=G(nz2) are only
totally disconnected graphs.

13
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Proof, Similar to the proof of theorem 4. //

Theorem 6.
The graphs G satisfying the equation C(Tn(G)):G(niZ)are only
totally disconnected graphs.
Proof, Let G be a connected (p,q)-graph. Since C(Tn(KJ))=
KJ, we suppose that G#KI. Moreover we set
V(G)={v1,...,vr,wl,...,wp_r} deg vizl(i=1,...,r),
deg wj§2(j=1,...,p—r),
E(G)={ez,...,eq}.
Now we define the mapping ¢ : V(G)—>V(C(T(G))) as follows:
¢(vi)#<{vi,ej_,vi }>T(G) ej.z{vi’vi i=1,...,7),
¢(w.)=<{w.,w.$,..?,w 1% z _
J J° T(G) N(wj)—{wj seeea g :
1 p(wj)
(d=1y...,0~7).

J }
D(wj)

Then ¢ is an injection from V(G) into V(C(T(G))). Hence it holds
that |V(G)|<|V(C(T(G)))|. Repeating this process, we have
IV(G)|=p;p+q=]V(T(G))lgIV(C(Tg(G)))I. Generally, it holds that
|V(G)|;|V(C(Tn(G)))] for any n22. Hence c(r(a)) is not
isomorphic to G. // :

4, The solutions of 02(Lm(G))=G, Cg(Mm(G))=G and CZ(Tn(G))=G

(m>8, n21).

At first, we prove the proposition required to reseach the
solutions of C?Ln(G))=G and CZ(Mn(G))=G (n>2).

Proposition 3.

~ Let G be a connected simple graph and v a vertex of G.
Then CZ(L(G—U)) is a subgraph of CZ(L(G)). ,

Proof. Since L(G-v) is an induced subgraph of L(G), C(L(G—v))
is a subgraph of C(L(G)) by Escalante[2].  Hence there is a unique
cligque KieK(L (G)) corresponding to each cligue K;eK{L(G—v})
(i=1,2,...,m=|K(L(G-v))]|).

Now we shall that KgnK3;¢(i#j;i,j=z,...,m)=>KinKj=¢._ If so,
then C(L(G-v)) is an induced subgraph of C(L(G)). Therefore
QZ(L(de)) is a subgraph of CZ(L(G)) by Escalante[21.

14
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We-divide three cases. ‘

Case 1. Both K; and Kg are the line graphs of a triangle
in G-v.

Then, since K. —K' and KJ K it holds that K, nK =¢.

Case 2. K; is the line graph of a trlangle T in G-v and KJ
is the line graph of a subgraph induced by the closed nelghbpr—
hood of a vertex w in G-v. '

Since dg_U(V(T)Jw)ilr we have dG(V(T),w)zl, where dG(V(T),w)

= min d,.(v,w) etc. Hence we have KinKj=¢'

VeV (T) .
Case 3. Both K; and Kg are the line graphs of a subgraph

G

induced by the closed neighborhood of a vertex in G-v.
K;, Kg are constructed by vertices w,z in G-V respectively.
i > > i.e. . =0,
Since dG—v(w’z)=2’ we have dG(w,z)=2, i.e Kian ) //

Cor.1
Let G be a simple graph and H a subgraph of G. Then the
graph CZ(Ln(H)) is a subgraph of the graph CZ(Ln(G))(nzZ).
Cor. 2

Let G be a simple graph and H a subgraph of G. Then the
Cg(Mn(H)) is a subgraph of the-graph 02(Mn(G))(n;2}.

Proof. By M(G)=L(G+) (Hamada and Yoshimura [3]) and Cor.1l.
//

By Cor.l and Cor.2, we can perform the same argument as the
proof of Lemma 4.1. Before we state theorem 7, we prove a few
lemmas.

Lemma 7.1

Let G be a graph containing no triangles and satisfying the
condition 2568(G)<A(G)<3. Then G is isomorphic to CZ(LZ(G)).

Proof. We put the vertex set V(G) and the edge set E(G) of
G as follows:

V(G)={v ..., wl,...,wp_r},
deg v . 5, degGwJ=2(1 Iyeeesr;d=1,...,p-r;p=|V(G)]),
E(G)= {e sesey } (q=|E(G)]|).
Then we can cla551fy the cllques of L (G) to the following two

types:

15
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KizL(<{ei1’ei2’8i3}>L(G)) (v, €V(G), ejiavi, 1=1,...,07;
=1,2,3),
Mk=L(<{eke€E(L(G))|ek and e are adjacent in L(G)}>),
(ekEE(G);k=l,...,q). ,
Therefore we can classify the cliques of C(L (G)) to the following
two types:

% =< . . Rl . . L= e on ;
K. {M’b M M ,Kﬂ} C(Lz(G“, where ei-sv?/(a 1, ST

1 2 ‘s 2 J
J=1,2,3) and Mi ,Kiék(L (G)).
J
Mj=<{Mjl’Mj2}>C(L2(G)) , where ejéawi(g=1,...,p—r;1=1,2)
and M. .M. €x(1°(¢)).
J1 Iy

Here any two cligues of these cliques are distinct and the set

of these cliques coincides with the set of all cliques of
ciréea)).

Now we construct the mapping ¢ = V(G)—>V(02(L2(G))) as
follows:

¢(vi)=ii (i=1,...,7),

¢(wj)=Mj (j=1,...,p-7).
Then ¢ is a bijection. Thereupon we shall show that ¢ preserves
the adjacency between the vertices of CZ(Lg(G)).

(1) v, and wj are adiacent in G(i=1,...,P57=1y¢..p-1),

<=> K N3 {{e,,e,3) in 17(G), where K =L(<{ey,e,,e;}>),

<=> KianaMk' 9 s

<=> ¢(vi) and ¢(wj) are adjacent in C(L°(G)).

(2) vil and Uig are adjacent in G(11,12=1,...,r),

<=> Kiani;Mi where e;{vi],uiz}em@),
<=> ¢(v. ) and ¢(v. )Jare adjacent in 02(L2(G)).

z, z,
(3) wj] and wjg are adjacent in G(jz,j2=l,...,p—r),
<=> Mj;qﬂj;BMj where ej={wj1,wj2}éE(G),
<=> ¢(wj ) and ¢(wj ) are adjacent in 02(L2(G)).

1 2
Here ¢ is an isomorphism between G and 02(L2(G)). //

Lemma 7.2.

Let G be a graph containing no triangles and satisfying the

1lé
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2 2 A
condition §(G)=1 and A(G)<3. Then G is not isomorphic to C(L7(G)).
Proof. Similarly to the proof of Lemma 7.1, we obtain the
2,.2
result that |V(02(L2(G))) Hence we have C° (L (G))#G. //

Theorem 7:

Let & be a connected graph. Then G satisfies the equation
CZ(Ln(G))=G(nz2) if and only if 7n=2 and G has no triangles and
satisfies the condition 258(G)<A(G)<3.

Proof. By Lemma 7.1,7.2 and the similar argument to the

proof of theorem 4. //

For example, the graph G of Fig.l7 satisfies the condition
of theorem 7 and the equation 02(L2(G))=G.

& B (T

L&) L&)

c (L (g))

E(L(q)

Fig.l7

Theorem 8.

Let G be a connected graph. Then G satisfies the equation
2, M . .
C (M7 (G))=G(nz22) if and only if n=2 and G is a path or a cycle.
Proof. Similar to the proof of theorem 7. //

For example, Fig.18 shows that C (J (P ) )= P and 02(M2(C4))

17
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U4

%

C(M*(PL))

M(Cy

C(M(Cy) | C’(M(C4)

T

only

[1]

(2]

[3]

[4]

(5]

Fig.18

heorem 9.

2
The graphs G satisfying the equation C (Tn(G))=G(nzl) are
totally disconnected graphs.
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