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Abstract -

For these five or more years a number of applications of matroid
theory have been developed in Japan to various engineering systems
problems, and several novel concepts and techniques in matroid theory
itself have also been introduced. The -present paper will summarize

those results from the author's own unifying viewpoint,
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Introduction

Matroid thebry hé&fbeen till‘some tén Years ago;;or may still be, regarded’
as one of those branches of combinatorial mathematicé which are the remotést from
practical applications. Indeed, it had actually been so. Since H. Whitney's ini-
tiation of the theory [49], it had been studied from purely theoretical standpoints,
and the few trials that had beenAdone for applications were, in fact, merely_to
rewrite in terms of matroids ——- 6r, at best, torextend only conceﬁtually ——c SOME
of knownifacts which had been, or could have been, obtained by means of graphs or
linear algebra, and that in a less legible fashion [3], [33], [46].

However, there do exist several problems of systems-engineering character that
can be recognized; formulated and/or solved oply by the help of matroid theory, or,
at least, are much easier to treat and understand by means of matroids than without
matroids. Many Euch examples have been‘developed for these few years, for the most
part by Japanese researchers.

From the mathematical point ofbview, the most useful part of matroid theory
is that part which deals with the problems concerning the minimum-weight maximum-
cardinality intersection of independent sets from two different matroids (or poly-
matroids) and which J. Edmonds and D. R. Fulkerson began to intensively investigate
about ten yearsago [9], [10]. In applying that part of the theory to practical
problems, we had to éubstantially generalize and refine the theory itself in ordér
to get more systematic results. Thus, we have been led to a concept which is the
(polyh)matroidal generalization and refinement .of the Mprincipal partition” origi-
nally ihtroduced with respect to graphs.

For expository books and papers on the mathematics of matroids and on its
connection with combinatorial optimization problems, see [3], [31], [&u4], [L45],

[48] and [50].
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1. Mathematical Tools

(e

The conceptsqandktheorems which are of fundamental importance for our exam- v
" ples of'applecation are as lelows.

k'19'Submodular functions, polymatroids and matroi§5'[9], [48], [50]: ——— Let
E be a finite set. A set function p: 2E + R (reél numbers) is said to be sub-

modular if.

(p2) p(X U X) + p(Xn ¥)E p(X) +p(Y) for any X, ¥ < E. S (1.1)

If, furthermore, p is nonnegative and nondecreasing:

113%

(e0) p(x) 0 for any X € E, : . (1&2)

(p1) p(X) 2 p(Y) for any X, Y ¢ E such that X 2 Y, (1.3)

and satisfies p(@g) = 0, then (E, p) is called a polymatroid on E with p as the

rank function.

-The nagative of a submodutar function is-a supermodular function; and a func-
tion which is at the same time submodular and supermodular is called a modular

function. A function x:E + R . may be regarded as a modular function by defining
x(x) = EeeX x(e) for every X € E. R {1.h4)
The cardinality IXI of a subset X of E determines a modular function such that

[{x}] = 1 for every x ¢ E.

If the rank function p of a polymatroid (E, p) is integer-valued and satisfies
(p0") p(x) 2 x| for any X c E, (1.5)

then the polymatroid is called a matroid.
For a polymatroid (E, p), a modular function x is said to be an independent

vertor if

x(X) £ p(x) for every X < E, (1.6)
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and an independent veétor x such that x(E) is the largest poséible, i.e. that
x(E) = p(E), is called a base. If a polymatroid is a matroid and if an independ-
ent vector x is integer-valued, then, by virtue of the conditions (1.5), (1.6),

x is 0-1 valued and is the indicator function of a subset of E, so that integef—
valued independent véétors‘of a matroid are identified with those subsets of E

which are called independent sets of the matroid. Directly, an independent set

of a matroid (E, p) is defined as a subset I of E such that
|T] = o(1), v Lo ()

and a base is an independent set with the greatest cardinality. The family T

. of all independent sets of a . matroid satisfies the following system of axioms:

(I0) @ € I;;
(1) if T el and J<I then Jel;
(I2) if I,.3 e 1 and |I]| < |J| then there is

an element x € J = I such that T ° {e} ¢ 1.
Likewise, the family B of all bases of a matroid satisfies the system of axioms:

(Bo) B# ¢ I,
(B1) no element of B is a proper subset of another;
there is

(B2) for any B., B, € Band any x € B, - B

12 72 1 2°
a y e B1 - B2 such that

(Bl - =Y (¥} € B, (B2 - {yHY {x} € B.

A subset of E of a matroid (E, pb, which is not independent, is a dependent

set, and a minimal (with respect to the set-inclusion) dependent set is called

a circuit.' The family € of all circuits of a matroid satisfies the system of

axioms:
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(co) ¢ ¢ C
(C1) no element of C is a proper subset of another;

_(02) if Cl, 02 ¢ C, Cl # Cé and x € Cl n 02, then

there is a C, € C such that C, ¢ C

U .
3 c, - {x}.

3 1

The closure cl(X) of a subset X of E of a matroid is defined as the largest
superset of X such that p(cl(X)) = p(X). The function cl: ZE > 2E is well-=

defined and satisfies the system of axioms:

(e10) X c el(X) for every X c E;
(e11) if X c cl(Y) (X, Y € E) then cl(X) c cl(Y);

U

(c12) if x e cl(Z ~ {y}) - c1(2) (Z ¢ E)

then 7y e cl(Z U ix}) - e1(z).

If T el and x € ¢1(I) - I, then there is a unique circuit in I v {x} which

_is expressed as =
c=cx|1) ={y | (Y {x})- 1y} eI} (1.8)

For a matroid M = (E, p), there is another matroid M¥ =.(E, p*) on the same
set such that every base of the former is the complement of a base of the latter,
and vice versa. The latter M¥ is called the dual of the former M. Obviously,

M is the dual of M¥. The rank functions of the dual pair of matroids are con-

nected with each other by the relation:
|X| - p*(X) = o(E) - o(E - X). (1.9)
The reduction of a matroid M = (E, p) to a subset?U of E is the matroid
M|U = (U, oly)s (1.10)
where pIU is the restriction of p to 2U. Sometimes, we senote M|Uby M - (E - U),

and say that M|U is obtained from M by deleting (or reducing) subset E - U. The

- -



124

femily I|; of independent sets of M|U is simply the subfamily If; = { I|lrel,

< U} of the family I of independent sets of M. The contraction of a matroid

M= (E, p) to a subset U of E is the matroid
Zhe rank function Py of M x U 1is expressed as

oy(X) =p(x " (E- V) - p(E-1U) for XcU. (1.12)

n

ometimes, we denote M x U by M # (E - U), and say that M x U is obtained
from M by contracfing subset E - U. A matroid obtained from M by a sequence of
operations of reduction and contraction is called a minor of M.

For a family F (< 2E) of subsets of E and a map ¢: E > E', the family ¢(F)

OoT subsets of E' is defined by
$(F) ={ ¢ (X) | X e F}. (1.13)

Then, for a matroid M = (E, p) with the family I of independent sets and a map
¢: E > E', there is a matroid M = (E', p'), called the image of M under ¢ and
uniquely determined from M and ¢, such that M'" has ¢(I) as the femily of independ-

ent sets. The rank function p' of M' is expressed as

1]

0 (X) mm{éhdun +|Xx-Y] | YcX} for XcE (1.14)

For two matroids M =.(El, )

1 ) and M ='(El, p2)_ with the families 11, 12 of

1 2

independent sets, respectively, their union M = (El uE,, p) is defined as the
matroid whose family I of independent sets is expressed as

I={1 uI, | I, el

: ' 1.15)
1> 12,6 12A}. | (

The rank function p of the union is determined from ey and N by the equation:
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o(X) = min {p (¥Y) + [x - Y| | Y X}
=max {p, (Y) +p,(X-¥) | YcX} for XcE. (1.16)
The concepts of dual, reduction, contraction, image and union are naturally

genéraliiés‘to polymatroids.k

2% A variant ofvthe Jordan-Holder theorem for lattices?..———~ Although the
Jordan—Hslder'theorem'is not stated in ordinary -textbooks on algebra in the form.
in which we shall make use of it in the folldwing, the fact itself will be. evi-
dent for those who are skilled in the art [22].

iet‘E be a finite set and L be a family of subsets of E which is closed under-
the operations of taking union and intersection: if X, Y e L then X u Y ¢ L
and XnYe L' . (L is thus a distributive lattice.) Then, L has both the mini-

mm E = nXeL X and the maximm E - E' = UXeL X . Every maximal chain E =

c 2. fR - T . €. ‘ ; e Ch,
XQ ; L X g F Xh_l = Xh =E-E (Xl‘e L) bpas not only the same length,

but the partition of E into blocks:

h .
E=r v Ui (X, - X J)] VE (1.17)
is independent bf the choice of the chain. The family of blocks in the middle

term of the right-hand side of (1.17) will be denoted by F:

E=E u [l ;W u E. | i (1.18)

A partial order € can be introduced in F by defining Wy z W2 (w., W, € F) if

and only if W, € X (e L) whenever W, c X (e L) . With respect to this partial

2 1

order, a monotone dissection of F is defined as a partition of F into two blocks:

+ -+ - o
F=F uF (F nF =¢g) such that there are no two elements Wl e F' and

W2 € F© which satisfy W2 z Wl . Then, for every monotone dissection of F into

-6 ~
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+ - - . .
F and F, X=E u g F W is an element of F, and, conversely, every element

of L is expressed in this form, uniqﬁely.
In the above sense, either L or F represents essentially the same structure
of a family of subsets of E, but, in general, the latter représentation is far

simpler and more suitable for practical manipulation than the former.

3° Principal partition: —-—— The origin of the concept of prinqipal partition,
which we' are now intensively making use of in the structural analysis of various
practical engineerinétsystems, may be traced back to the decomposition theory [S],
(6], tT] for bipartite graphsiby Canadian mathematicians A. L. Dulmage and N. S.
Mendelsohn, and the term "priﬁcipal,partition" was first used by G. Kishi and
Y. Kajitani [28] for a decomposition of a single graph into three parts. These -
ideas have been extended and refined in a number of directions, and have been
given a formulation from the uwnifying viewpoint by M. Iri [21]. The formalism-
adopted in the present paper follows that in [21] with detailed results worked
out by M. Nekamura in his master's thesis [34a].

If we are given a submodular functidn p: 2E -+ R together with a modular
function w: 2E -+ R which has positive value‘except for w(¢> = 0 (in most cases,
w is the cardinality function), then we may consider the problem of finding the

subsets X of E which minimize

PO o) - w(X)  (XeE), (1.19)
_whére X is a real parameter running from -« té +¥. If Xl is a solution to the prob-
lem with paraﬁeter kl and X2 is a solution to the problem with parameter Xe, where

Al pd Ae 5> then simple calculation will yield the inequality:
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PA (xl U x2) + P, (xl nX.)

1 2 2

xl) . ‘ (1.20)

1A

Pkl(Xl) + .PKQ<X2) - (A - ) (X,

rA

) 5 . -
Since PAl(Xl) : Pli(X1UX2)’ PA2(X2) < sz(xiqxz) andl 03 () xz)w(x2 Xl),

we should have

le(xl) = le(xlﬂxz)’ PXZ(XQ) = PXQ(XlnXZ)’ and (Al-xg)w(xg-xl) = 0,
' o " (1.21)

i.e. Xl u X2 should be a solution to the probleﬁ with parameter ll, and

Xi n X2 a solution to the problem with parameter Az, and, if A, > AQ , then

1

1 Therefore, if we denote the family of all the

w(x2 - Xl) =_o or X,cX
subsets of E which are solutions to the problem with parameter A by L(A), the

L{)A) is closed under +the union and intersection operations, and, furthermore, .
\ L={, LO) o (1.22)

is also closed under those operations. It is not difficult to see from these
properties of the minimizing solutions of (1.19) that the partially ordered sets

F(A) associated with L(A) and F associated with L are related to one another as
F = UA F()), v (1.23)

that if Al > A, then, for any Wl € F(Xl) and any W, € F(AZ) , we have

2 2

wl g w2 , and that

E = Ux UW€F(A) W. | (1.2h)

What is most important is the fact that, since everything is finite, there are
only a finite number of values of A for which F()A) is nonempty. We shall call

those values the critical values. Thus, the unions in (1.22), (1.23) and (1.24)
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are essentially taken over a finite set .A of critical values of A.
The partition (1.24) of E with a partial order among its blocks is the prin-

cipal partition with respect to p (and w).

If we take the edge set of a. graph for E, the rank of the'subgraph,(=partial
graph) generaﬁed by a subset X of édges for p(X), and [X|/2 for w(X), then we
shall have N. Tomizawa's refinement [41] (what. is -essentially.the $amé.isifdund'
also. in 'H. Narayanan's'[34b]) jof Kishi and Kajitani's partition.of.a graph [28].

- The most general and unified treatment of the principal parttioh willbbe
for the structure which consists of a bipartite graph G =V(U,AZV) (U'and.V being
the left vertex set and the righf, and A being the edge set) and- two polymatroids

Mi = (U, pl) ‘and vM2 = (V, p2) on its two vertex sets. We shall denote this
structure by (pl|G|p2) =:(pllU,vA, Vjpz) in the following.

We consider the covers (X, Y) of G, i.e. those pairs of subsets X € U and
Y€ V -of vertices which cover all the edges: A c X x Y. The family of all the

covers is, as is well known, closed under the operations of union: (X, Yl) u

(XQ’ YQ) = (Xl U X2

. Yl n Y2) and of intersection: (Xl, Yl) n (XQ’ Y2) = (Xi n XQ,

Y. uY

1 2). Among covers, those for which

PACK, X) = (34 3) py(X) + (1 = A) p,(¥) (1.25)

takes the minimun value play an important role, where A is a parameter running

from -1 to 1. We shall call those covers the minimum—rahk covers (or, simply;

)

minimum.covers). If (Xl’ Yl) is a minimum cover with parameter 115 and (X, Y2

a minimum cover with parameter A then it is a staightforward calculation to.

2,

derive the inequality:

+
P, (Xl n xg, Yl U 12) Py (xl U Xz’ Yl n Y2)

1 2
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< : Y
b le (Xi: Yl) + sz (Xé’ 2)

(1 (A +2,)/2) (o (X) )40, (X )=p (X UKy ) =) (X 0X5))
=(A;=2,) /25 (p (X )=p, (X X, )40, (X VX)) -0, (X))
=(1+ (A +2,)/2) (o (¥ )40 (Y5 )=p (¥, 0T )=p (Y 0Y,))

= (A =2,)/2+ (0, (¥)=p, (£ 78, 140 (¥, 0T, )-p,, (¥, )

1

< le (Xi’7¥1)’+”PA2 (Xy, ¥p)

—(Al—xz)/eﬁ{(pl(xl);pl(xlnxz))+(pl(XlUX2)—pl(X2)) |

+(p2(Y2)—92(YlnY2))f(pg(YluYe)—pz(Yl))}.

(1.26)
By an argument similar to:the foregoing, we can conclude that, if xl Z A? s k
(XlnXQ, Y1UY2) is a minimum cover with parameter Al and (X1UX2, Ylan) is a
minimum cover with parameter Az, and that, if Al>A2
3
< <
Xi._ c%éxlnXQ), XlUX2 = c%ﬂxz),
(1.27)
< < .
Y2zé c%§¥lnY2), YlUY2 c c%éYl)

Thus, we have a distributive lattice L(X) of the family of all the minimum-rank
covers, for each value of A, and hence a partially ordered set F(A) (each of
whose element is a pair (S, T) of a subset S of U and a subset T of V). The union

ova(X)'s for all A's also forms a distributive lattice, and the associated par-

tially ordered set F may be expressed as UAF(A). This time, however, F(A)'s for

different A's are not in general disjoint, but, as before, there are only a finite
number of critical values of A.

As special cases of the problem of this bipartite structure, we have various °

- 10 -



130

Troblems already studied to some extent. For example, the Dulmage-Mendelsohn
dacomposition of a bipartite graph [6] corresponds to the case where both Ml and

¥, are free matroids (i.e. pl(X) = |X| eand OQ(Y) = |¥|]) an@ A = 0. Tomizawa's

partition of a matroid [41] corresponds to the case where U=V =E, A = AE
(the diagonal set of E x E), M = (U, py) = (E, p) and M, = M *,

For the algorithmic approach to the principal partition, the dual problem is
important; as is the case for many other problems of mathematical-programming
character. The problem dual to that of finding the minimum covers of (pl]U, A,

v]p2) is to find a flow &: A + R which
maximizes ZaeA_g(a) (1.28)

subject to the conditions:

£(a) 2 0 for every a € A, (1.29)
Lacsx £(a) (1¥X7'bi(x)' ~ for every X c U,  (1.30)
zaeﬁY E(a) £ (1-A) p2(Y) for every Y ¢ V, (1.31)

where 8X (or 8Y) means a set of edges incident to the vertices of X (or Y). We
2y consider a more general problem of finding a £ which, if thé solution of the

2bove problem is not unique, minimizes
Locp W(a)E(a) | (1.32)

with respect to a given weight function w: A +‘R.
Ir Ml and M2 are free matroids and X = 0, then we have the maximum matching
problem (or the assignment problem in the weighted case) on a bipartite graph.

If‘Ml and M2 are matroids and A = 0, we have the independent matching (or assign-

=ent) problem [26].. The well-known matroid intersection problem (see, e.g., [30]

and  [48]) of finding, for given two matroids M o= (E, pl) and M, = (E, p2)

-1 -
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on the same set E, a subset of maximumlcardinality which is independent both in

Mi and in M_ is simply the case where U=V =E, A= AE’ and A = 0.

2

If pl and 92 are nonnegative modular functions, the problem is no other than

the Hitchcock-type transportation problem.
A number of algorithms are available for solving the‘problem of this kind,

If py @s well as p, is an integral multiple of the rank function of a matroid, we

2
can make use of the algorithm proposed in [26], and, for the genafal case, S.
Fujishige's algorithm [13] works. ;t;should be noted that the concept of "auxe
iliar& graph" is very powerful to develop computationally efficient algorithm for
this kind of poblems [20], [26], [42]. The determination of the critical values
of the parameter A requires a trick, due originally to Tomizawa [b1], which.ié
suggested in [21].

In general, the solution of the entire dual problem is decomposed into sepa~—
rate solutions of the subprobiems“(aiilUi,'Ai; Vilﬁei)’ where”(Ui;'Vi) is an
element of F, Ai =An (Ui X Vi), M, = (Ui, 5ii) is the polymatroid’obtained

from Ml = (U, pl) .by deleting all the U~blocks which are lower in the partial

order than Ui and contracting all the other U-blocks except for Uiﬁitself, and
M, = (Vi’ p2i) is the polymatroid obtained from M, = (v, p2) by deleting all
the V-blocks which are upper in the partial order than Vi and contracting all the

other B-blocks except for Vi itself. Furthermore, if (Ui’ Vi) belongs to F(XA),

then

i

li(Ui) : 521(vi) = (1 -2A) : (1 +2). (1.13)

2. Examples of Problems for Which Matroids and Polymatroids are Useful

- 12 -
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The following problems are examples to which the concepts of (poly-)matroids,
especially those connected ﬁith the principal partition, are applied effectively.
They will show how powerful the technique of principal partition is ;for a wide
lvariety of systems problems appearing in engineering science and how clearly the
relationship among seemingly different problems is re&ealed=in the light of
matoids. Moreover; it is expected that a number of novel appiiéations of practi-

cal use and importance will be found in the near future.

2.1, Spgnningﬁarborescences

The problem of finding a minimum-weight spanning tree on a graph (whose edges
are given real weights) is well known and quifeta few efficienf solution algorithms
have ﬁeen proposed [11], [29], [37], [52]. fﬁe problem is a special case of that
of finding a minimum-weight base of a matroid whqse elements are given weights |
[hf}, and the simplest-minded algorithm, which J. Edmonds called the "greedy
algorithm", affords the solution.

In contrast with thié, the directed version of the problem, i.e. the problém
of finding a4minimum~weight arborescence, with the root prescribed or not, on a
given (directed) graph is mﬁch harder. (An arborescence with root v is 'a spanning.
tree such that, for every vertex u other than v, the path from v to u which con-
sists of edges of the tree contains all the edges on it iﬁ the positive direction.)
In weétern countries, Edmonds' paper [8] and its improvement by R. M. Karp [2T]
are usually referred to in this context, but it can hardly be said that the probm’
lem was ‘treated simply and elegantly there. (It should be notéd that, in Japan,-
R. Mandbe and S. Kotani [32] published a fairly simple method for solving it in
1973, and that the paper [3a] published in 1965 by Chinese mathematicians treated
the problem most elegantly and gave a simplest method of solution.)

If the problem is viewed in the light of matroids, it!will readily be seen

- 13 -
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that any algorithm for the minimum-weight independent assignment . problem or the
weighted matroid intersection problem can slove it. In fact, a subset X of edges
of graph G = (U, E) (with vertex. set U and edge set E) is an arborescence if and

~only if it is a base of the circuit matroid of the graph M. = (E, pl) (where p

1

1
is the function which assigns a subset of edges the rank of the subgraph they

form), and at the same time, it is independent in the matroid M

, = (E, pg) where

Py is the function assigning a subset of edges the number of vertices at which

they end. (If a vertex u is prescribed as the root, it is not counted by ppo)

5 satisfies the axioms (p0) ~ (p2}

(It is not difficult to see that p, as well as p
in 1° of §1.) Therefore, if a minimum-weight maximum-cardinality common independ-

ent set of Ml and M2 forms a spanning tree on G, then it is a required arborescence,

and, otherwise, there is no spannig arborescence on G.

.:Thg matroidal -algorithms- applied to- this intersection problem are as simple
as those algorithms devised specially for this problem without resorting to
matroids.

What will result if we apply the principal-partition technique to this prob--
lem? It has recently been investigated to some extent by Nakamura and Iri [3kc].
To mention some of their results, a spanning arborescence;exists if and only if
2ll the critical values of the parameter A is nonnegative; those parts of the graph
yhich correspond'to the blocks of F(A)'s with negative A are responsible for the
nonexistence of the spanning arborescence where the magnitude of A indicates how
bad the condition is. When G has a spanning arborescence, the principal partition
is a refinement of the decomposition of G into strongly connected components.

The sigleton blocks of F(0) with rank 1 are those edges which are contained in
every spanning arborescence, whereas the singleton blocks with rank O are never

used for forming a spanning arborescence.

~ 1k -
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2.2, Principal partition of a bipartite graph without matroids

This is obviously the extension of the Dulmage-Mendelsohn decomposition of
a bipartite graph (U, A, V), and has the obvious application to the.structural
analysis of a large sparse systeﬁ of linear and nonlinear equations, where U is
the set of equations, V the set of variables, and A denotes the occurrences of
variables in equations. The principal partition classifies the equations and the
variables according to the degree of indeterminacy; i.e.; the underdeterminaéy
takes place in the blocks of F(X)'s with positive A, the magnitude of A indicating
the degree of underdeterminacy, whereas the overdeterminacy takes place in the
blocks of F(A)'s with negative A, the magnitude of A indicating the degree of
overdeterminacy. Furthermore, if there is only one critical value of A which is
equal to zero, then the system is "structurally" well posed, and the partial order
among the blocks of F(0) affords us the information according to which we may
reduce the solution of the entire system to a series of solutions of subsystems.

Besides the obvious application such as the above, we have a curious appli-
cation. We consider the field data on the usage of a language by some group of
people: they consist, for example, of the set of symbols (words), the set of
objects (or collections of objects), ﬁnd the denotation of objects by symblols,
i.e. the informationfabout which symbols denote which {collections of) objects.
We interpret the set of symblols as the vertex set U, the set of (collections of)
objects as the vertex set V, and the relation of denotation‘aé the edge set A, and
we prineipally partition the bipartite graph (U, A, V). Then, the.set U as well
as V is automatically partitioned into blocks among which a partial otder is deter-
mined. This mathematical decomposition is shown to have many desirable properties
which the linguists require the method of extracting the "concepts" from the
observationél data of language users, or of categorizing words in a hierarchical

structure, to have. Therefore, this technique, if combined with some auxiliary

~

-~ 15 -
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means of preprocessing the data and postprocessing the results, will be of use for

automatic extraction of concepts and for automatic construction of a thesaurus [40].

2.3. Minimum fundamental eguations for a linear system

The analysis of a (linear or nonlinear) physical system such as an electric
network:and an elastic structure:usually begins‘with setting up a fundamental sys—
tem of equations for the system. There are two kinds of physical variables
associated with a system, one called "intensive variables" and the other "extensive
variables". In an electric network, intensive variables are "currents",;and exten-
sive variables are "voltages". In an elastic structure, the former are "forces",
‘M"moments (bending and/or tbrsional)", etc., and the latter are "displacements", _
"elongations”, "deflections", "bendings", "torsions", etc. These variables are
subject to two kinds of constraints, which together determine --- usually uniquely
-—-— the values of the variables. The constraints of the first kind are topological
or geometrical, and are linear equations to be satisfied by intensive variables
alone (Kirchhoff's current'law, equilibrium conditions for forces and moments)
and those to be satisfied{by extensive variables alone (Kirchhoff's voltage law,
compatibility conditions for deformations). These equétions are determined by
the purely topologicai/geometrical structure of the system, and the set of con-
straints among intensive variables and that among extensive variébles are
"contragredient" to each other. The constraints of the other kind represent the
physical properties of the elements constituting the system, and are ordinarily
called the "constitutive equations”". They have nothing to do with the topological
/geometrical structure of the system, but depend only on the physical properties
ofwthe elements. The system is linear or nonlinear according as its constitutive
equations are linear or nonlinear.

The fundamental equations of the intensive-variable type (such as the loop
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or mesh equations for an electric network) are set up as follows. To begin with,
a minimal set of intensive variables is chosen such that all the intensive varia-
bles may be expressed as their linear combinations by means of the topological/
geometrical constraints among the intensive variables. Then, the constitutive
equations are used to express all the extensive variables as functions‘of the
chosen intensive bariables. Finally, substitution in the topological/geometrical
constraints among the extensive variables yields e system of equations with the
chosen set of intensive variables as the unknowns. It is noteworthy that-the size
of the system of equations of this type, which is, of course, equal to the number
of chosen intensive variables, is determined by the topological/geometrical struc-
ture of the system alone, and does not depend on the choice of unknowns. In the
case of an electric network, the size is equal to the "nullity" of the graph repre-
senting the topological structure of the circuit diagram of the network, énd in
the case of an elastic structure, it is sometimes called the degree of "statical
indeterminacy" of the structure. Similar statements obtain for the fundamental
equations of the extensive-variable type (such as the nodal equations or the cut-
set équations for an electric network). The size of th¢ system of equations of

" this latter type does not depend on the choicé of the variables either, and it is
equal, e.g. in the case of an electric network, to the "rank" of the underlying
graph.

There are fundamental equations of the third type, i.e. the so-called
"hybrid" or "mixed" equations, where some of the intensive variables and some of
the extensive variables are chosen as the unknowns of the equations. pnknowns
are chosen in such a way that, for each element (or each degree of freedom of
elements) of the system, either the intensive or the extensive variable associated
with it méy be expressed as a linear combination of the chosen variables. Unlike

fundamental equations of the "pure" type, the size of the hybrid system of
yp
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equations, or the number of unknowns, does depend on the choice of unknowns.
Thus, there arises the problem of how to find the minimum-size system of fundamen-
tal equations of hybrid type.

To be speéific,;let us con§ider an electric network. One current variable
and one voltage variable are associated with each edge of the underlying graph
G = (U;-E). >The‘ciréuit matroié M= (E, p) 1is defined oﬁ.tge'edge éet EAS;jé
as in §2.1. qu an arbitrary dissection (El’ E2) of E (El 0 E2 = Q; El U E2 =
E), if the extensive variables, voltages, across the edges of a base of M‘E

1

are chosen as unknowns, then the voltages across all the edges of El

are expressed
as linear combinations of the chosen voltages. If the intensive variables, cur-
rents, in the edges of a base of (MXEQ)* are chosen as unknowns, then.the

currents in all the edges of E, are expressed as linear combinations of the chosen

2

currents. Thus, we have a hybrid system of equations with

elg ) ek @

unknowns and as many equations.

Here arises the question: What dissection (E Eg) makes (2.1) smallest, and

l)
how can we get it? Obviously, the question is answered by finding a subset El of
E which is a solution of the following equation:

ZQ(El) - |E11 =min { 20(X) - |X| | X<c<E}, (2.2)

since it can be shown without difficulty from the definitions of reduction, con-

traction and dual that

plg () = 0(®),
1
, (2.3)
DEZ*(EQ) = D(El) - [Ell + (|E| - 0(E)),
and since |E| - p(E) is constant. As was already noted in 3° of §1, the problem
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of finding a subset E. minimizing (2.2) is equivalent to finding a minimum cover

1

of (p|E, A, E[p*).

Hiétorically, the minimum-fundamental-equation problém was solved for the
electrical networks by means of graphical technigues by G. Kishi and Y. Kajitani
[28] and T. Ohtsuki et al. [35], and for the more general systems Ey means of
linear algebra combined with some techniques from combinatories by M. Iri- [17]

——— almost simultaneously. However, at that time, they did not note the reiation
to matroids, and\their methods were considerably complicated. As has'been demon-
strated, a little knowledge about matroids will enable us to understand the essence
of the problem and the principal partition will afford practically efficient
algorithms for choosing unknowns. In fact, the elements of L(0), and only those,

associated with (p|E, L E|p*) are the solutions of (2.2).

‘2.4, Topoldgical ¢onditions for the existence of the unique solution in an elec-

tric.network

Iq the analysi; of‘an electric network with mutual couplings among its
branches (=edges), the problem of the following kind arises. For the sake of
simpliéity, we shall consider a linear electric network whose circuit diagram is
represented by the graph G = (U, E) and whose branch characteristics are given
in terms of self- .and mutual admittances. The fundamental system of equaﬁions
of thé voltage-variable type, then, has the coefficient matrix of the from:

DYD® | (2.4)
where D is the. fundamental cutset matrix of G (with columns corresponding to
edges) and the (x, A)-entry yKA of Y is the admittance from branch (=edge)
XA tobranch «k . Here it is noted that the matrix D (as well as its transpose

DT) is determined from the topological (i.e. graphical) structure of the network
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without ambiguity, whereas the numerical wvalues of ny's are observed or mea-—
sured physical quantities contaminated with various kinds of'noises. Therefore,
it will be admitted to assume that the "nonvanishing" valués of yKl's satisfy
no algebraic equation with integer; coefficients, i.e. that the "nonvanishing"
ygl's are "general (or generic)” over the ring or field to which the entries of
the matrix D belong. The network has the unique solution if and only if
iet(DYDT) # 0. Under the above assumption, this condition is equivalent to the
following condition:
There are two sets I and J (< E) of edges such that
(i) the subdeterminant of D with all the rows and those columns which
correspond to I does not vanish,
(ii) the subdeterminant of D with all the rows (i.e. all the columns of
DT ) and those columns which correspond to J does not vanish,
and
>(iii) the subdeterminant of Y with the rows corresponding to I and the
columns corresponding to J does not vanish.
Since the matroid M = (E, p) (where p(X) (X ¢ E) represents the rank of the
submatrix of- D consisting of the columns corresponding to X and of all the
rows) coincides with the circuit matroid of G, the conditions (i) and (ii) are
eguivalent further to
(1) I 1is a spanning tree.on G,
(ii') J is a spanning tree on G,
end (iii) to
(iii') there is a one—to—oﬁe correspondénce between I and J such that
yKA # 0 if x(eI) 1is in correspondence with A(ed).

It is ready to formulate the problem now under consideration in the form of

finding a maximum~cardinality independent matching on the bipartite structure
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(pIE, A, Elp) with the two "vertex" sets both being identical to the edge set E
of the graph and the "edge" set A representing the existen;e of nonvénishing .
self- or mutual admittance between the edges (corresponding to a left and a right
vertex) of E, and the same circuit matroid of G attached to the left and the
right ;;rtex:set E. "If the maximumfpardinality'independent matching has as many
elements as the rank of G, then det(DYDT) # 0, and otherwise det(DYDT) = 0.

The above formalism is essentially due to Tomizawa and Iri [25], [Lk2]. T.
Ozawa could derive a purely graphical method for solving the probleﬁ [36] with
some observations.on the structufe which is‘self—evidentvfrom the‘standpoint of
principal partition. His method made use of the artificially introduced4concept5»
of volfage graph and current graph and did not give clear insight in the connec¢-
tion with other related problems. A. Reeski of‘Hungary [38], [38a] (see also the
. references cited there) and B. Petersen of Denmark'[36é]‘have‘investigated similar
problems from a similar matroidal standpoint and have'obtgine@nsimi;arirgsults
ﬁhdef éémeﬁhat more general circumstances.

|

If the principal partition is applied to this probiem, it can be seen where-
from the inconsistenc# comes and how large the bver/underdeterminacyvis at such
and such places when det DYDY = 0, and when det DYDT # 0, the decomposition of
the enfirefsyétem into subsystems is given in terms of the blocks of F(0) and
the partial order among them [34b]. Thus, viewed from our standpoint, the analy-
sis of this kind of problem proceeds in quite the same way as that whiéhyve

explained in §2.2.

2.5. Order of complexity of a linear electric network

We shall use.the same terminology and notation as in §2.h. In the theory of
linear time-invariant lumped—constant electric networks, it is well known that

the number of independent eigenmodes (with nonzero frequency) of the dynamical
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performance of a network (which is called the order of complexity of the network)

is equal to the difference between the maximum Pmax and the minimum pm. of”

the exponents to the time—differentiationloperator in the expansion of

P P
det (DYD') = y mex cp( gt ) (2.5)
P"Ppin

where the admittances yKA are regatded as integro-differential operators with

respect to the time +t which are one of the forms c—%g =c ( Zt )l s
o a -
e =c (—EE—QO and cfdt = c ( gt ) 1. o1 3det(DYDT) # 0 (see the previous

subsection), there is at least one nonvanishing cp. A nonvaniehing term in the
expansion corresponds to a maximum-cardinality independent matching on the bipar-
tite structure (p|E, A, E[p) in §2.4,and the exponent to the differentiation
operator of the term is equal to the sum of the exponents to fhe differentiation
operators of the admlttances represented by the edges of that matchlng.

"Thus, the order—of—complex1ty problem is evidently reduced to the 1ndependent
assignment problem on the blp&rtlte graph where the weight of an edge is put equal
to (the negative of)ythe exponent to the differentiationvoperator of the admit-
tance the edge represents. The solution algorithm is ready.

In the light of matroids, the formulation and solution of the order-of-
complexity problem was immediate [25], [43], but, "without matroids" it had long
remained to be a difficult unsolved problem for electric network theorists.

Needless to  say that, in applying the principal partition, only F(0) will
appear, and that the entire problem is decomposed into the subproblems correspon-
ing to the blocks of F(0).

Recently, Petersen proposed a systematic method for finding not only the
order of complexity butfalso for seeing which of the coefficients cp's (in the

denominator det (DYDT) as well as in the numerator which is a certain
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T
subdeterminant of DYD") of a transfer function do not vanish [36b].

2.6. Existence of a hybrid immittance matrix of a general linear n-port

Y; Oono once posed the following problem [35a], which is one of the most fun-
Adamentél problems in elecfric network theory. in general, a linear electrical
n-port is defined as a device with n "ports", with each of which one voltage vari-
able1 u and one current variable iK are associated (k =1, * , n). The
characteristic'of an n-port is described by an n x 2n matrix [P[Q] of rank n,
which is the coefficient matrix of the system of homogermsous linear equations to

be satisfied by port-voltages uK's and port-currents ir‘s :

~

n K n K. _ - .‘;5 .
=1 Pu u * XK=1 Qi =0 (a=1, : n). (2.6)

The system of equations (2.6) has many equivalent expressions. Bspecially,
if we can choose a subset K of {1, **- , n} such that (2.6) may be rewritten in

the equivalent form:

i = ). + i < .
= ha Yo mt L b b (keK),
' (2.7)

= * + . i .

B =Lk B ™t bk Za (kéK) 5

then we say that the n-port has the hybrid immittance matrix:
[Y H] (2.8)
G Z

For the existence of a hybrid immittance matrix, it is evidently necessary and
sufficient that it is possible to choose a set of n linearly independent columns
of [P|Q] such that no pair of columns, one from the P-part and the other from the
Q-part, with the same index «k may be chosen. Once we lock at the problem with
tﬁe matroid intersection problem in mind, we readily see:that it suffices to con-
sider the maximum-cardinality intersection problem between the first matroid

Ml = (E, pl) on the column set E of the matrix [P|Q] where pi(X)\(X < E)
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is the number of linearly independent columns among X and the second matroid
M2 = (E, Qé) on the same set E where pe(X) (X < E) is the number of different
k—-indices among X. Thus, we have an efficient algorithmic solution to Oono's
problem. Furthermore, the principal-partition techniqueuwill reveal a fine struc-
tural;pfoperties fothe,g-po¥t."1n fact, the gppearance‘ofAiF(A)‘s with A
different from zero indicates the gkistenéé;of singular ports, such as those which
electrical engineers call "mullators" and "norators", and F(0Q) affords useful
information about how to enumerate all the hybrid immittance matrices.

This kind of formulation of Oono's problems is originally p?opqséd by Iri
. and Tém%zawa [25]. Recski treated a similar problem in a more general setting of

"terminal solvability" [38a].

2.7. Controllability/observability of a linear dynamical system with combinatorial

constraints [23]

A discrete-time linear dynamical system in R. Kalman's sense is defined by

a system of difference equations of the following type:

x(t+1) = A x(t) + B u(t)

. (t=031323“'): | . (2-9)

y(t) ¢ x(t) + D u(t)

where k(t) is the n-dimensional state vector, wu(t) +the r-dimensional control

vector, and y(t) the p-dimensional observation vector, respectively, at time t,
and A, B, C and D are constant matrices of appropriate sizes.
It is the famousitheorem due to Kalman that
the system is controllable, i.e. it can be brought to any state starting
from an.arbitrarily given state x(0) by choosing an appropriate sequence
of controls wu(0), w(l),---, if and only if the rank of the wide matrix .

n-1

[B, AB, A°B, --- , A"71B] (2.10)
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is equal to n,

and
the system is observabie, i.e. the initial state x(O) .(and, hehce, all
the subsequent'staées x(1), x(2), -++) can be identified based on the
sequence of observations ¥(0), y(1), ... (together with the information
about the control sequence wu(0), w(l), +-+), if and only if the rank of

the tall matrix

2 ' (2.11)

is equal to n.
This theorem relies substantially upon the assumption that no restriction is
imposed upon the way of controlling or observing the system. However, in practi-
éal-éiréumstances,%the way ofvcbﬁtrolling and/or observiné'it wouldAﬁe subject to
various restrictions. The typical smong them will be:
(i) every control terminal cannot be used more than a prescribed number of
times, i.e. ui(t) may be different from zero at most a certain pre-
* scribed number of times for every 1 ;
(ii) at every time, at most a prescribed number of control terminals may be
used, i.e. at most alprescribed number of ui(t)fs may be different
from zero for every t 3
(i') every observation terminal cannot be used more than a prescribed number
‘of times, i.e. at most a prescribed number of yj(t)'sy fo£ every j
may be used in the estimator of the initial state;
(ii') at every time, at most a prescribed number of observation terminals

may be used, i.e. at most a prescribed number of yj(t)'s for every

N



145

t may be used in the estimator of the initial state.
In the case of controllability problem, if we set E = {(t, i)li=l, see , TS
t =0,1, 2, +++}, make element (t, i) of E correspond to the i-th column of

A%B  in the (infinitely) wide matrix

[B, AB, AaB, eee] : (2.12)
and consider the matroid (E, p) with the rank function p which, for any subset
X of E, givés the number of linearly independent columns among X, then Kalman's
theorem may be restated that:%he system is controllable if and only if the rank
.of the entire matroid is equal to n and that a base of the matroid can be chosen
from the subset {(t, i)] i=1, e¢ee, r; t=0, 1, 2, ¢++, n-1}, The combinatorial
constraints such as (i) and (ii) define a family K (E_QE) of subsets of E such
that each element of K corresponds to an usable set-ofrpairg of control terminal
and time. In entirely the samebmanner that we prove Kalman's theorem, we can
prov¢~§pat the system is controllable'under the combinatorial constraints if and
only if there is an element in K n. I whose cardinaiity is equal to n, where ifv
is the family of independent sets of M = (E, pj. If the family K satisfies
the axioms (I0)~(I2) in 1° of §1 ——- this is indeed the case for consraints of
.types (), (i'), (ii) and (ii') --—, then another matfoid M' = (E, p') can be
defined on E, so that the controllability problem of the system is redﬁced fo the
maximum—cardinality‘intersection problem of two matroids.

The matroids here concerned, however, are apparently defined on a countably
infinite set E. This might seem to invalidate the solution algorithm for finite
matroids. Fortunately, it can actually be proved, forva iarge class of constraints
inc;uding all tﬂe above examples,'that, if K n I has an element of cardinality
n at all, then thére is such one in K n I ﬁ {(t, i)|i=l, eve, Ty t=0,1, oo,

n-1 (or 2n - 1)}, so that the pfoblem is reduced to the intersection .problem of

two "finite" matroids.

- 26 -



146

2.8. Information theory [14], [15], [16], [16a]

The most fundamental concept in C. Shannon's information theory is the
entropies of information sources, in terms of which the amount of "information"
emanafing ffom the sources can be measured quantitative;y. If‘E is a set of a
certain finite number of information sources, the entropy funetion h is defined
as a mapping h: 2E + R, h(X) being the entropy of a subset X of the sources.
It is well recognized that h satisfies the conditions of

(i) nbnnegativity: 0 = n(x) for any X (< E),

A

(ii) monotonicity: 0 2 h(X) 2 h(Y) for any X and Y
such that X ¢ Y c E
and

(iii) submodularity: h(X u ¥) + h(X n Y) S h(X) + h(Y)

for any X and Y (< E).

 These three conditions are the same as the axioms which charaéterize the rank
'functién.of a polymatroid (see 1° of §1).‘

Aéé, it might be expected that a fairly iarge part of the Shannon-type theory
of information could be nicely rewritten in the language.of matroids and
polymatroids. In fact, S. Fujishige pointed out this relationship between the
Shannon theory and polymatroids, and worked out a number of examples along these
lines [14]. It will be interesting to investigate which part of traditional
information theory depends only upon the polymatroidal structure of entropy func-
tions and which part depends essentially upon the specific form ——-— Z p log p &
T.-S. Han [15], [16], [16a] investigated in the same‘vein several ﬁroblems such
as, that of encodipg correlated information sources for multiple channels [h], {39]
and of multiuser channels [34], [51].

When an information~theoretical problem is formulated in terms of polymatroids,

N
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the principal partition will enable us to recognize new concepts and new structure
in communication systems. For example, Fujishige‘[lh] shcwéd that the prihcipal
partitién classifies a set of correlated information sources according to the mag-
nitudé of conditional entropy (per ;ource) of the sources of a class with respect
to those of lower classes (lower in the partial order defined among the biocks of
the partition), and gave, based on Edmonds' "greedy algorithm", a systematic method
of encoding correlated information sources to be tfansmitted through separate

channels. T.-S. Han [16a] treated this latter problem in more detail.

2,9. Scene analysis

Quite recently, K. Sugihara is applying the concept of submodular function,
as well as the technique of principal partition associated with it, to a kind of
so-called scene analysis. His problem is related to the degrees of over- and
underdeterminacy oan configuratiop on tpg plage which is supposed to be the pro-
,jécfion‘of a polyhedral complex (hidden lines being exlicitly shown in some cases
and not in others). The reconstructability of the polyhedral complex from its
projection is also a problem. These problems have been shown to be tractable
combinatorially by the help of subﬁodular functions defined in connection with the
incidence relations among points, lines and faces of the projection [L0Oa].

Similar techniques will apply to the analysis of the statical indeterminacy
and the structural instability.of elastic structﬁres and link ﬁxechanismss and to

some problems in descriptive geometry.

2.10. Dual networks and inverse networks

This is an example not directly related to principal partition, but one for
showing that reflecting upon fundamental concepts in some field of engineering

science from the matroidal point of view will lead us to deeper understanding.
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Reformulating and generalizing the fundamental concepts in electric network theory
such as dual network, inverse network, adjoint network and reciprocal network, Iri
and Recski recently pointed out that there are two "different" kinds of voltage-
curreﬁt symmetry [225]. Usually, the duvuality in electric network theory is con-
nected with the operation of interchanging the role of voltages and that of
currents. This coincides with the mathematical duality in vector spaces., when

we describe the performance of linear electric networks by linear equations, if
——— and only if -—- we deal with Kirchhoff's laws and/orAreéiprocal networks.

In other Vords, the interchange of voltages and currents does nqt in general
coincide with the mathematical duality. If we call the networks connected with
each other by the former operation "inverse networks" and those connected with
each other by the latter "dual networks", then we can define the "adjoint network"
as the-inverse of the dual under a very general condition, i.e. even for networks

coritaining singular elements such as nullators and norators. _By so doing, the

mutual relations among the concepts mentioned in the above are made clear.
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