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On the Decomposition of a Directed Graph with respect

- to Arborescences and Related Problems

Masataka Nakamura and Masao Iri

Department of Mathematical Englneerlng and Instrumentatlon Phy31cs

Faculty of Englneerlng, Unlver51ty of Tokyo

As is well known, an arborescence {or, more precisely, & spanning arbo-
rescence) oh a diredted graph isxc0nside}ed‘as a maximum cormon indebendent.sef
of the diréuit matroid of ‘the granh and a ﬁartition matroid. In this paver we
apﬂl“ the theo*y ‘and the techniques which Have been established for matroid
and polymatr01d intersections in [11, [31, [&] to this case. The main results .
are‘as follows: (i) We introdﬁce the concept of"degreé‘of non-existence' of
an arborescence which shows why and to what extent it is impoésible to find an
arborescence. (ii) In the case where there is an arborescence, we define a
decomposition of the edge set into a partially ordered set so as to clarify the
contributicn of each edge to the reachability from the 'root' of the arbores-
cences to the other vertices.

The relaiion of these results to the Hamiltonian-path oproblem, which is
gctually a three-matroid intersection problem, is also investigated to get
a number of necessary conditions for the existence of a Hamiltonian path as
well as a procedure of reducing théroriginal Hamiltonian-path problem to smaller

ones.

l. Preliminaries

In this section we shall outline the theory of principal partition (11, [3],

[4]. Let P, and P, denote two polymatroids on a finite set E with rank functions

1 2
ul and u2, respectively.

The following equality is well-known: for each X e [-1, 1],
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min { (1= Nu(A) + (1 +A)u(E-2) | AcE]}

= max { [u] | ue (1 -1A)Pl'and ue (1 + A)P2 Yoo o (1.1)

The collection of subsets which atiain the minimum in -the left-hand side of
(1.1), to be denoted by C(1), constitutes a distributive lattice (i.e., it'is,
closed under union and‘interSectioh), hence. it uniquely defines a partition.
of the,underlyiﬁg set: l

E = E vl-U FJuvE - - (1.2)
FeF(A) ' ’

w1th a partial order on F(A) where F(X) is the’ collectlon of dlfference sets
of a max1ma1 chaln in C(A) and EA and EA are the minimum and the comolement
in E of the meximum of C(A), respectlvely The collection of maximum common
1ndependent vectors of the palr ((l-A)P (l+>\)P ) is decomposed into a direct
sum correspondlng to (1.2).
Let C1i = U cm). C_,, also turns out to be a distributive lattice,

S E L 7 - _ o o
' ~and determines 'a partition of the underlying set:

E= || F | 0 (1.3)
FeF : : | : DR

with a partial order on F We can prove that the partition (1.3) is a re-

all®
finement of (1.2) for each A € [-1, 1], and that the partially ordered set asso-

ciated with the latter partition is homomorphic to that with the former. . Further-

_ more,

F o= F(A). - Rt
il -13951 (1) (1w

A simple argument shows that there exists a finite set A ¢ [-1, 1] such that

FO, | | (1.5)
Fan1 AEA

if A, A' € A and A # A", then E, = E}, and E = E,. (1.6)

where (1.5) is a disjoint union up to the "singular" blocks which are singletons
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and whose principal pair of minors (see below) are of null rank,

In terms of the A, (1.3) can be rewritten as

E = [y F1 (1.7)
AeA TFeF(A) .

which we shall call the principal partition of E with respect to (Pi’ P2) and
the elements of A the eritical values of (P, P,).

A "standard pair" of minors (Pl[F], P2[F]) of (Pl’ Pé) can be associated
with each F ¢ F(X) (X € A) as follows, Let F =|{JF' for F < F', F = F' (F'
+ : , B . .
€ Fall)’ and F = I} ¥ for ' < F,-F z Ff (F" ¢ Fall)’ whe?e < is the partial

order on Fall’ and-then delete F~ and contract F' from P

1° “The resulting minor
is the direct sum of a polymatroid on F, denoted by Pl[F]’ and polymatroids on
the blocks incomparable with F. ?Q[F] is obtained from 32 with tﬁe operation
of deletion repléced by contraction and vice versa. For this @air,

(1 - M)r(p[F]) = (1 + Nx(p,[F]) . - (1.8)
holds (r(P) being the rank of the polymatroid P), and the pair ((1 - A)Pl[F],'
'(1 + X)Pz[F]) has a common basis vector. The pair (Pl[F], P2[F1) is called the
principal pair of minors on F e F(}).

The following lemma is easily deduced from fhe basic results of the theory.

of the principal partition.

Lemma 1.1. Let A be the maximum of the critical values of (Pl, P2), and
q 2 0. Then there exists a common independent vector of (Pl, qP2) which is

a basis veétor of Pl iff

> __ﬂ L (1.9)

For details of the theory of the principal partition, we refer to [1], [2],

[3], [4], and for matroid intersection problems and algorithms, to (51, [61, [T1.
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3. Arborescences on a directed graph

Let G = (V; E) be a directed graph with a vertex set V and an edge set E.
Throughout this‘paper; we assuﬁe G to be'connected.fqr the sake of simplieity.
Let 8 v denote the set of eﬁges whose terminal vertex is v, and 8+v the set of
edges with v as the initial vertex. A subset T of E is called an spaming avbo-
rescence or, simply, an aiﬂborescence’ if T is a tree on G (as an undirected graph )
and if |T n é;vl < 1 for every v € V. An inverse arborescence is defined with
’thé.condition |T o 6+v[-s 1 instead of [T n 8§ v| < 1, “WeVSﬁall‘slightly gener—
alize the definitions. TFor a posifive infeger ky, a k-arbgrescence is a tfee T
(c E) with |T n &7v| < k for every v € V. A k-inverse arborescence is similarly
 defined. If T is an arborescence, there is a unique vertex v with [T n 6-vl = 0,

which is called the root of T.

Theo;em 2.1. A necessary and sufficient condition for an arborescence with its
root v € V to exist in G is that all the other vertices of G are reachable
from v through directed paths.

.(Proof) The verification is a routine work. [

Theorem 2.1 indicates that a variant of shortest-path algorithm affords an
efficient way for finding an arborescence.

Now let us define an arborescence in‘terms‘of matroids. G, as an undirected
graph, determines the circuit_matroid on E, which we denote by G. For a positive
integer k, the collection of subsets A of>E such that IA n d_vl < k for every v
€ V satisfies the axioms of independent sets of a matroid, so that it defines s
matroid which we denote by'P;¢ We simply write P~ for Pi. P; and P' are defined

+ - 3
in a similar way with 6 instead of § , Clearly, an arborescence is nothing but

a common independent set of (G, P~) which is a base of G, and a k-arborescence
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is a common independent set of (G, P;) which is a base of G. Thus, we can apply
the theory of the principal partition to arboresecnces. Suppose that the princi-
palApartifion of E with respect to (G, P7) is

S T PO X 1)

E= 4
FeF(X)

Aeh™
Theorem 2.2, Let Amax be the maximum value in A~ . Then arnecessary;énd éuffi-
cient condition for a k-arboreéceﬁce to exist in G'is that
o 1 +“Xmax" . ) . o L
k

D m——
R T
© max

(2.2)

(Proof) . Lemma 1.1 implies that (G, kP~ ) has a common independent vector which
.+:is a basis wvector of G iff (2.2) holds. Although kP~ is not equal to.P;;
: the collection of common independent vectors of (G, kP-) coincides with that

of (G, P;). 0

A directed_graph does hot necessarily'ccntaiﬁ an arborescence, ‘HQWGVEFQ'
i£~is,clear that a»k-arbérescenéemdbeshexist if k is. large énough.“The méximum
Amax of the critical values of A~, which dgtermines the minimum of -k for.which
a k-afborescence,exists, can be éonsidered as . the 'degree.of non—existenée‘fof:
qrboiesqences in‘G in the case vhere the;e is no,arbqrescence in G{_‘

The partition (2.1) possesses the folloﬁing,interésting proper£y. As is”
easily seen, » »

k 2 rank of G / rank of P~ = (|V] - 1) / |[{v e V: 67v = g} (2.3)
is a necessary condition for tﬁe existence of a k-arborescence, but not a suffi-
cient condition in general. However, for the subgraphs (more exactly, subcon-
tractions) corresponding to the principal pair of minors on tﬁe blocks of the
partition (2.1), (2.3) is a sufficient condition as well. This is readily proved
from basic properties of the principal pairs of minors.

Moreover, (2.1) is closely related to the decomposition of the graph into
strongly connected components., Let V= | Vi be the decomposition of the vertéx

iel
set V of G into strongly connected components,

-5 <
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Theorem 2. 3. In the case vhere G has an arborescence, the partition (2.1) is
a refinement of the partition E = |J GiVi where 6-Vi'= U & v for v e V..
. S iel _
(Proof) Let u, and u, denote the rank functions of G and P™, respectively.

From the assumption of the existence of an arborescence,

mn{ﬁﬂA)+ugEéA)|AwdE}=|Vl-1.

+ ‘ o ey
Suppose I < I satisfies the condition: there is no pair (i, j), with i € It

and j € I = I+, such that V, < Vi where = is the natural partial order -amerig

J
the strongly connected components, i.e., Vj - Vi implies that the vertices of
Vi are reachable from those of V,. Then, we have

, 3
w (U, 8 v,) +uC U L8v,)=]v]-1,
et 1 2 jer-1t  J

as is readily shown fron the definition of the rank functions. Hence,
- + ‘ ‘ ' w
U + vai ] I satisfies the above condition } is a subcollection of { A ¢ E
iel : o B
| ul(A)»+ u2(E --A) = minimum }, and the assertion of the theorem directly

follows, [J

The implication of the partition (2.1) is further investigated. In.the
following, we assume that G contains a vertex s of null indegree, ‘and that all
the other vertices are reachable from s. (It is easy to fransform the problem
with a specified root into this form.) From Theorem 2.1, there is an arbores-
cence in G, and every arborescence of G has the unique root :s. Since in this
case an‘arborescence is a common base of (G, P—), zero is the only critical
value of (G, P°), so that (2.1) is reduced to

E= | F. (2.4)
FeF(0)

The elements of E can be classified into three parts EO(G, P, El(G, P7)

and EE(G’ P7) as follows:
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EO(G, P)={eckE {e} e F(0), the rank of the principal pair
of minors on {e} =0 },

‘El(G, P°)={e cE | {e} € F(0), the rank of the principal pair
of minors on {e} =11},

E2(G, P)={ecE| ecTF for some F ¢ F(0) such that |F| 2 2 }.‘

Then, we have

Theorem 2.4,
<A> e eZzy6, P7) (A.1)

<> No arborescence on G contains e (A.2)

<> There is no elementary directed path in G starting from s

and containing e, v ' (4.3)
<B> ec¢ El(G, P) (B.1)
<> Every arborescence on G contains e (B.2)

' <= The deletion of e from G makes some vertices unreachable

from s. , : ’ (B.3)

<C> eekElG, P) o : | (c.1)
<<= Some of the arborescences on G contain e and some do not.(C.2)_
(Proof) (A.1) <> (A.2), (B.1) <> (B.2) and (C.1) <= (C.2) follow from the

basic results of the theory of the principal partition. (See [(4].) It is

easy to show that an arbitrary elementary directed path starting from s can
be augmented to an arborescence in G, so that (A.2) <> (A.3). The proof of

(B.2) <= (B.3) is straightforward from Theorem 2,1, [

In other words, the edges belonging to EO(G, P”) are of no use at all for
the reachability from s, whereas the edges belonging to El(G, P”) are indispen-
sable. The edges belonging to E2(G, P”) can be considered as the replaceable

edges, and the relation of replacement is also decided by (2.h4).

-7 -
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3. Related Problems

In this section we consider problems related to the Hamiltonian-path prob-
lem. Let G be a directed graph with a vertex s of null indegree and a vertex %
of null outdegree. A quiltonian path in G is a directed path ffom s to t which
runs through each of ﬁhe vertices of G exactly once. In terms of G, P~ and pt
(which are defined in the same way as in the previous section), a Hamiltonian
path is nothing but a common base of G, P~ and P+, so that the following condi-
tions should be satisfied for the existence of a Hamiltonian path.

(N1) * G and P~ have a common base, i.e., G has an arborescence,

(N2) G énd P* have a common base, i.e., G has an inverse arborescence,

(N3) P” and P’ have a common base. |

Each of these conditions can easily be checked by a matroid intersection algo-
rithm., If one of them is violated, it is directly concluded that there is no
Hamiltonian path in G. If they are all satisfied, construct the three principal
partitions of E corresponding to the three pairs (G, P7), (G, P*) and (P, P+),
and deternine the sets E (G, P7), E, (5, P*) and B, (P, P*) (1=0,1,2). (This

0
- + — +
= El(G, P7) v El(G, P)u El(P s P). IfG has

can also be done by an efficient algorithm. See [4].) Put E, = EO(G, P) v

+ o +
AEO(G, P)u EO(P , P'), and E;

a Hamiltonian path, it must contain all the elements of E1 and none of EO. Hence,
X =
(L) E, N El ¢

should be satisfied. If (NL) does not hold, there is no Hamiltonian path. If

(N4) is satisfied, the original Hamiltonian-path problem can be reduced to a

smaller one as follows. Let El = |J [ 6(87e) vy s¥(a%e) ], where 3 e (resp.,
eeEl

+ -

3 e) is the terminal (resp., initial) vertex of e. The edges of E, - E, are

contained in no Hamiltonian path (even if one exists). Consider the graph G'

obtained from G by deleting the edges of Ey v (El - El) and contracting the edges
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of E Then, it will be obvious that

1
Theorem 3.1. A subset T of the edges of G is a Hamiltonian path in G iff T > El

1 is a Hamiltonian path in G'. [

and T - E
If G' is strictly "smaller" than G, we can apply the above procedure to G'.
By repeating this procedure, we can sometimes reduce the original problem to a-
considerable extent. Horever, it may also happen that G' equals to G, i.e., we
have no substantial reduction. In fact, we can expect no powerful procedure

which is "elways" effective, since the Hamiltonian-path problem is known to be

NP-complete.

4, Examples

Example 1. The graph Gl shown in Fig.l does not contain an arborescence. The

partition (2.1) for G, is

E = U [ . U F ]s
2e{3/7,1/T7,0,- 1/3}  FeF(A)
e
|
! 2 17
6 =3
5 1 { (= 7)
3 1k 17 { 19 Vs
| <13
i - 22
2 5 5 13 (e L——————;— ______________
L 7 12 20 : N 12
i 8 9 (=
8y N , 10
10 |
<::i;::> oSS .
Gl ! l 3
| 6 (r» =0)
|
I

Fig; 1
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where

n

F(3/7) = { {13; 1k, 15; 16; 17, 18, 19; 20} },
F(1/7)
F(o) = {'{3,«h;<5,;6} b,

F(-1/3) = { {1, 2} 1.

'{'{7;,8,*9; 10; 11, 12} };

il

L1+3/7_5
1 *T-3/7° 2

k> 3). And {1, 3, 6, T, 8, 10, 12, 15, 16, 17, 19, 20} is an example of a

From Theorem 2.2, a k-arborescence exists on G, iff k (i.e.,

3-arborescence on'Gl. Fig. 2 shows the subgraphs each corresponding to the

principal pair of minors on a block of the partition (2.1).

Exampie 2. The graph G, of Fig. 3 has an arborescence, and the partition (2.4)

is

for G2

E—-

= F
‘ FeF(0)

where
Flo) = { {1,2,3,4}, {5,6,7,8}, {9}, {10}, {11}, {12}, {13,1%,15,16} }.
Fig. 4 shows the principal pairs on the blocks and the partial order among them.

The classification of the edges is as follows;

EO(G, P)=1{9,111},
El(G, P7) = { 10, 12 },
EZ(G, P7) = {1,2,3,4,5,6,7,8,13,14,15,16 }.

In Fig. 4, the broken lines indicate the partition of the édges corresponding to

the decomposition of the graph into strongly connected components.

Example 3, Let us consider the Hamiltonian-path problem on the graph G3 of Fig.

5. As is easily seen, Cg satisfies (1), (N2) and (N3). Fig. T shows the parti-
- + I

tions (2.1) with respect to (G, P7), (G, P') and (P, P') of G3, and we have

EO(G, P7)=1{221,

£, (6, PY) = { 10, 14 },

5,(P7, P) = (1,3, % 7,11, 14, 15, 18, 22, 30 J,

- 10 -
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5 8 13
1 - .
s £y 9 2 v1 ¥ n¥lwe 15
2 6 10 1k
Gp
Fig., 3
s 2 13 28 t
A N\ A2g
1 by D he
b 14 20
v 22 A23
64 |8 Ya
9 15 2l
1 (12 16 25 26
10 Y/- Y 2
17 .
G
3 .
Fig. 5

-
|1
/

Fig. 4

19 29

23

27

Fig. 6

- 11 -
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{211,

(8,161,

+
El(G, P)

.’-
El(G, P)
E (P, p*y ={2, 5,6, 8, 13, 21 }.
Since

E,nE; = {1,3,%,7,10,11,14,15,18,22,30} n {2,5,6,8,13,16,21}>= g,

(NL4) is also satisfied. Deletion of the edges of EO U (El - El) and contraction

of those of El from G, will give the graph of Fig. 6, which does not posses a.

3

Hamiltonian path; in fact, it eontains even no arborescence. Hence, from Theorem

4,1, it is seen that there is no Hamiltonian path in G3.

' | > > - O ; . . 3 . d .
Example L4, Next the Hamiltonian path problem on.the graph G, of Fig. 8 is examine
As for the graph Gh’ we have

Ey

B

{2, 3,9, 13, 20, 23 },

{1, 6, 11, 15, 22 }.

By deleting the edges of EO and contracting the edges of E, from Gh’ we obtain

1
the graph of Fig. 9, to which the reduction procedure is again applicable. As

for this graph, we have

'
EO

El' ={ 4 5,8, 12, 17, 19 }.

{7, 16,211},

Finally, the original Hamiltonian-path problem on Gh is reduced to the trivial
problem on the graph of Fig, 10, Hence, from Theorem 3.1, a subset T of the edges
of Gh is a Hamiltonian path in Gh iff T = El u El' = {1,4,5,6,8,11,12,15,17,19,22},
i.e., {1,4,5,6,8,11,12,15,17,19,22} is the unique Hamiltonian path in G),.

- 12 -
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