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NEW APPLICATIONS OF THE PRINCIPAL PARTITION OF GRAPHS
TO ELECTRICAL NETWORK ANALYSIS

Takao Ozawa

Department of Electrical Engineering, Kyoto University

I. INTRODUCTION

The principal partition of a graph was defined by Kishi and
(1)

Kajitani. It was introduced in order to prove the validity

of an algorithm for finding a pair of trees* in a graph which
have as few edges as possible in common. Its first application
to electrical network analysis was found a few months after its
birth by Kishi and Kajitani themselves and a group of Nippon

(2)

Electric Company. The application is concerned with the

minimum number of equations for the mixed analysis of electrical
networks. This minimum number is called the topological degree
of freedom of a network. The concept of the principal partition

(3) (4)

was found in the decomposition of a matrix by Iri. He

related it to the decomposition by Dulmage and Mendelsohn. It
was also extended to that of a matroid in a more detailed form

by Tomizawa(s) (6)

and independently by Narayanan.
In 1972 the author was trying to derive a set of state equa-

tions for an electrical networs by a graphical method. At that

time he found some examples to which the method did not work:

* A tree means a spanning tree.
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Actually there can exist no state equations for the eXamples.(7)
The reason for the non-existence is the lack of common trees of
the current graph and the voltage graph. The existence of a
common tree turns out to be a necessary condition for the exis-

(8) (9)

tence of a unique solution of network equations. In
connection with the existence of a common tree of 2-graphs the
author introduced the principal partition of 2-graphs{current
and voltage graphs). A more detailed discussion of the principal
partition will be found elsewhere in this issue.(lo)
The new applications of the principal paftition discussed
here‘are those which can be related to the solvability problem
mentioned above. The results obtainedvconcerning the principal
partition of 2-graphs are applicable to the ﬁetwork problems
defined here. The problem themselves are of Menger type. The
partition of graphs defined in connection with Menger's theorem

(11)

in matroids is shown to have a one-to-one correspondence

with the principal partition of 2-graphs.

II. DIAGNOSIS AND SEQUENTIOAL ANALYSIS OF ELECTRICAL NETWORKS

The linear active network to be considered here is represented
by 2-graphs, that is, the current graph Gi and the voltage graph

G, - The current|[voltagel* graph represents the relations among

the currents|[voltages] in the network. Kirchhoff's current law
(KCL) [Kirchhoff's voltage law(KVL)] is applied to Gi[Gv] to get
network equations. Gi[Gv] is derived from the network as fol-

lows. First G is the graph obtained from the network by replac-

* A dual sentence is obtained by replacing the words just before

\

[ 1 with those in [ 1.
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ing elements with edges. Then Gi[Gv]'is obtained from G by
contracting[deleting] the edges corresponding to dependent
voltage[current] sources and norators, and deleting[contracting]
the edges corresponding to voltage[current] sensors and nulla-
tors. An eéedge in Gi and an edge in Gv which correspond to an
element in the network, are considered to be the same edge. A
voltage[current] sensor and a dependent current[voltage] source
always form a pair, and an edge corresponding to only one of
them is left in Gi or G . The edge repfesents the pairi Thus
Gi and GV have a common edge set, which is denoted by E.

It is assumed that there is no special relation among the
element values. Therefore the resultsvobtained here are of a
topological nature. Moreover it is assumed that Gi and GV have
at least one common tree and the network has a unique solution.
~ For any graph G, its edge set E and a subset ES of E, we
denote by G-ES[GxES] the graph obtained from G by deleting
[contracting] the edges of E-Es. The rank of G is denoted by

r(G), and the nullity, by n(G). For any set A, |A] denotes the

cardinality of A. denotes the union of edge—disjoint sets.

(12)

Diagnosability of linear active networks It may happen in

an electrical network thatrthe resistances, capacitances and/or
inductances, etc.(called element values) change in a lapse of
time or by some other reasons, or there are stray'elements whose
element values are unknown. The diagnosis of a network is to
detect such faults by determining currents and/or voltages of

desired elements from the measured currents and voltages of

certain other elements. E is partitioned into sets E + Ek and
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E_. E_ is further partitioned into E s Ej end’Eéf

set of edges whose currents and voltages are both measurable,
E.: set of edges whose currents only are measuraﬁle, |
E _: set of edges whose voltages only are measurable,

Em=E ®E.®E_ .

b ") e
: set of edges whose element values are known,
E,* set of edges whose element values ere unknown,
Fi: set of edges whose currents are reguired to determine,
Fv: set of edges whose voltages are required to determinef ,
If the current[voltage]l of an edge is measured and its element
value is known, then its voltage[current] can be determined. |
Therefore such an edge is included in Eb, even if only its
current [voltage] is actually measurable. As for an independent
source, its voltage[current] cannot be determined from its‘
current [voltage] only. Therefore, if its current[voltage] only
can be measured or known, it is included in Ej[Ee], and if
neither current nor voltage is measurable or known, it is in-
cluded in Eu'
The network is said to be diagnosable if the required cur-
rents of the edges in Fi and the voltages of the edges in FV
can be all determined from the measured currents and/or voltages
of the edges in Em. If the current and voltage of an edge ean
[cannot] be determined from the measurements, it is called a
determinate[indeterminate] edge. |

(13)

Sequential Network Analysis A sequential method of network

(14)

analysis was defined by Moad. The unknown currents and

voltages in the network are sequentially related to properly
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chosen independent variable by use of KCL or KVL. At the

end of this sequential process, a set of simultaneous equations
called constraint equation, are obtained. These equations are
then solved to determine independent variables. 'The detail of
the sequential process is given by Algorithm 1 below. ' It is a
modified version of Moad's method. For the simplicity of
description, the treatment of independent sources is omitted.

Ej: set of edges corresponding to independent current sources,
Ee: set of edges corresponding to independent voltage sources,
= E~-E.-E .

P ] e

E
G, = G,-(E ®E_)XE_, G_= G_-(E_®E_)xE_.
ipT™ i e p'TpP vp~ v e p'Tp

The edges associated with the independent variables are
called independent edges.
ALGORITHM 1 (Sequential process)
Step 0. EB+¢(¢: null set)
Step 1. Choose, as the initial set of independent edges, a set
of edges, denoted by Ebi? which contains neither cutset

in G, nor tieset in G . E <E

P P B "bi®

St 2. If E_=E top.
ep BT p! stop

Step 3. If an edge, e{ in Ep—E forms a cutset in Gip with some

B

edges in E then add e to E and go to Step 2.

Bl
Step 4. If an edge, e, in EP—E

BI
forms a tieset in va with some

B

edges in E then add e to EB' and go to Step 2.

BI
Step 5. Choose, .as an additional independent edge, an edge, e,

i -E_.
in Ep 8 Add e to EB,

If an edge is added to EB'

in Ep-—EB which forms a cutset[tieset] in Gip[va] with some of

and go to Step 3.

it is said to be covered. An edge
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of the edges in E_, is called a current[voltage] dependent edge.

B
Edge e in Step 3 is a current dependent edge. It may also be
voltage dependent. If so, e is called a constraint edge. Edge
e in Step 4 is a voltage dependent edge. If an edge is either
current dependent or voltage dependent, but not both, then it
is called a single-dependent edge.

The'current[voltage] of a current[voltagel dependent edge can
be given, by applying KCL[KVL] to the cutset[tieset], in terms

of the currents[voltages] of edges in E The current and the

8"
voltage of an edge are related by Ohm's law. Now at the begin-~

ning of the sequential process, E_=E Then if a current or

B "bi-

voltage dependent edge is added to E its current and voltage

g
‘can be given in terms of the independent variables. This can be
repeated as Algorithm 1 proceeds, and all the currents and the
voltages in the network can be given in terms of the independent
variables. The current and the voltage of a constraint edge

can be related independently to the independent variables. Then
Ohm's law for the edge gives a constraint equation which must

be satisfied by the independent variables. Although omitted

in Algorithm 1, the independent sources can be handled in a
similar way to the independent edges. The source currents and/
or voltages appear in the constraint equations, which are

solved to determine the independent variables.

Eb: set of all the independenf edges

Ek: set of all the single-dependent edges

Eu: set of all the constraint edges.
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IIT. PRINCIPAL PARTITION OF '2-GRAPHS

The follow1ng 2—g;aphs, Gik and Gvk’ are formed from Gi and
G, respectively.
(1)
(2)

lk” (E OF $E )XEk p‘(EuG)Ek)XEk
k_G X(E @EJ@E ) - Ek VPX(Eu@Ek)'Ek

The principal partition of Gik and GVk results in a partition-

into three sets, E

of Ek 1 E2 and EO: El and'E2 are the minimum
sets which give '
6b5 - min {r(G k-ES)—r(GikxEs)} o (3)
E CE
k
Su— - min {r(G. k'ES)—r(GVkXES)} (4)
E cE
, k
respectively. 65 and 6u are called deficiencies.
EOE Ek-El—E2 o

We can define a pair of trees, Tik and Tvk as follows.

Tik'Tvk: Tik is a tree of Gik and TVk is a tree of GVk such

that Tik and Tvk have as many edges as possible in

common. (T., and T vk are called maximally-common trees.)

ik
Tik[Tvk]:cotree of Tik[ ] in le[ k].
Then El and E2 can be characterized as follows.
Proposition 1. El is the minimum edge set which satisfies
(i) (TiknTvk)gEl,(ll) TiknEl is a forest of G, kXEl,(lll) TvknEl

is a forest of Gvk'El'

Proposition 2. E2 is the minimum edge set which satisfies

(i) (TvknTik)gEz,(ll) TvknE2 is a forest of GVkXEZ,(lll) TiknE2

is a forest of Gik-Ez.

Actually a pair of trees Tk and T x and the partition of Ep

into El, E2 and EO can be obtained at the same time by an
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(8) (9) E, can be further partitioned into subsets

and a partial ordering can be given to

algorithm.
Eol’ Eozl"‘l Eonl
them. If the second subscripts of the subsets are given in

1 . 1 1 = *
accordance with the partial ordering, then‘EleEOleE02$..®Em_El

1 = * . 1 .
for proper m gives 6b' and EZQEnQEn_lQ..$Em+1_E2. gives Gu’

that is,
r(GVk-El*) —r(GikxEl*) = (Sb ; (5)
- * -— * = . :
r(Gik E2) r(GkaEz) 6u. (6)
Now
k,Z  min {r(GVp-Et)—r(Giprt)} (7)
E, cE,cE .
b7t " p
Kk = min {r(G. -E.)-r(G_xE,)} (8)
E cE,cE ip °t vp t
u= "t~ p

are called the electrical connectivities or the nonseparabil-

ities. The relation between k, and Sb'can be obtained by

b
noting that Et= ESGBEb and that
Kp= Enu;g {r (va-Eb) +r (va-EthS) -r (Giprb) -r (Giprt-Es) 1
s—k
= r(va-Eb)—r(Giprb)+ min {r(GVk~ES)—r(GikxES)}. (9)
: E cE
s—k
Then we have ’
Kp= Pp~ Gb (10)
where !
pr r(GVp'Eb)—r(Giprb). (11)
Dually we have
Ku= Pu” 6u (12)
where
puE r(Gip-Eu)—r(GVprb). (13)

If we denote the minimum edge sets giving Ky, and Ka by EC and

8
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EW respectively, then we have

E_= E, ®F, , (14)
E = E OF,. (15)
Ec* EEbG)El* and E‘; EEu®E2* are edge sets giving Ky and Kua
respectively.
Let
Gio= GixX(E®E ) -E,
G, o= Gvk-(Eerl)xEo. .
Then GiO and GVO have a common tree, which is denoted by TO.
n
T,= ? Tom (16)
m=1
where T is a common tree of G, and G :
Om i0m vOm
GiOmE GiOx(EolGEoze...@Eom)-EOm
Cyom™ Cvo™ (Eg1®F (28 - -OFqp) XEqy -

The decomposition of GiO and GVO into Gi and GVOm(m=l,2,..n)

Om

is called the fine decomposition. An elementary common-tree

transformation is possible within Gi and GV only, that is,

Om Om

no common tree can be obtained from T0 by exchanging an edge

in EOm with that in EOZ(Z#m).

IV. SOLUTION TO THE DIAGNOSIS PROBLEM

From the definition of El and E2,

8= —r(Gvk-El)+r(GikxEl)=r(GikxEl)+n(Gvk-El)—|El| (17)

8,= —r(Gik-E2)+r(GvkxE2)=|E2!—r(Gik-Ez)—n(Gvksz). . (18)
Now r(GikxEl)+n(Gvk-El) is the number of equations obtained
by use of KCL and KVL for the unkown variables associated with

E;- |E;| is the number of unknown variables. Thus 65 is the
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number of excess equations to determine the unknown variables

associated with the edges of E Dually 6u is the number of

1°
equations which are short of to determine the unknown variables

associated with the edges of E2. Even if 6b>0, the equations

for El must be consistent, since we have assumed that the
original network has a unique solution. Only a part of the
equations for El need be solved. On the other hand, if 6u>0,

then the unknown variables associated with the edges of E, can

2
not be determined.

The current[voltage] of an edge in Eu or Ee[Eu or Ej] must be
determined, if possible, by use of KCL[KVL] only, since Ohm's
law cannot be used for it. It must be a bridge[self-loop] in
Gi~(Eu$Ee®E2)[GVX(EuQEjeEZ)].

E set of bridges in G, . (E_®E_©E,) :
i u e 2

iq °
Evd : set of self-loops in va(Eu$Ej®E2)

For an edge in Eid[Evd] there is a cutset in Gi[tleset in Gv]

which consists of the edge and those in EbeEjQEerl[EbGEe$EO®

El]' and the current[voltage] of the edge can be determined by
KCL[KRVL] applied to the cutset[tieset]. Thus we have:

Theorem 1. The network is diagnosable if and only if

1

Fig EerleEid (19)
and
Fvg EOGBEl(BEVd . (20)

Example 1. An Example is given in Fig.l. From Gi and G, shown

in pi i i i

Fig.1l(a), Gip and va in Fig.l(b) are derived. Gik and GVk
are shown in Fig.l(c). From the principal partition of Gik and
Gvk’ we get El={4}, E2={ll} and E0={5,8,9,10}. E, is further

10
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6 6
12, 0 7, 1 12/ |14 4 1
13 1
N G T 13 6 s 2
14 11 5 3 11 10 3
9 9
G, G,

(a)

12 10 2 1
13 8 4
14 11 5 3
9
G. ‘ G
ip vp

(b)

Fig.l. Example 1. (a) G, and G_. Eb={l,2,3}, E.={7},
Ee={6}, Eb={4,5,8,9,10,ll} and Eu={l2,l3,l4}.

(b) G. and G__.

ip vp

11
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(c)

Gi0

12
13

14

Fig.l. Exampl
(d) Gi
edges

| W

5 10 8 SOS

| 5 9 : 5
6, . |

(d) (e)

12 14

H 11 7

(£)

e l(contlnued) (c) Gik and Gvk'

0 and GVO' (e) partial ordering of the
in EO' (£) Gi-(Eu@Eeﬂ)Ez) and GVX(EuGBEjQEz')

12
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partitioned into E01={9}, E02={5}, E03={8} and E04={10}, and a
partial ordering can be given to them as shown in Fig.lf{e).
From Fig.l(f) we get Eid={6,12} and Evd={7,l4}. Thusrif we
are given F. and Fv, we can determine the diagnosability of
the network. The partial ordering of Fig.l(e) also shows the
order to determine the currents and voltageé in the network
from the measured currents and voltages: The voltage of edge 9
is first determined from those of edges 2 and 3, and then

its current is obtained by use of Ohm's law. Next the current
of edge 5 or 8 can be determined by use of KCL, and then the

voltage, and so on.

V. TOPOLOGICAL PROPERTIES OF THE SEQUENTIOAL ANALYSIS

For a single-dependent edge obtained in the<sequential
process, either KCL or KVL equatién is used to relate its
current or voltage to the independent variables. Thus the
number of unknown variables associated with the edges in
Ek is equal to the number of equations for them. (Ohm's law
is used to relate the current and the voltage of an edge, and
thus only one of the current and the voltage is considered to
be the unknown variable associated with the edge.) Thus we
have the following theorem from egs.(17) and (18).

Theorem 2. For the principal partition of Gik and GVk deriyed

from the sequential process,

6b=0, 6u=0, El=¢, E2=¢ and E)=E - | (21)
Now let
esl,esz,..,esn(n=|Ekl): single-dependent edges covered in this

13
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order in the sequential process,

sl {esl}' EsmE Esm—l‘B

E {esm} (m=2,3,..,n) (Esn=Ek);

Then each of Esm(m=l,2,..,n) gives 6b=0, and thus {esm}

(m=1,2,..,n) must be the subsets of E., defined with respect to

0

the principal partition of Gik and Gvk(which are now equal to
GiO and GVO respectively). The order of esm(m=l,2,..,n) is

in accordance with the partial ordering of the subsets of E,

{(The order of esm(m=l,2,..,n) may not be unique, since more

than one edge may become current or voltage dependent to EB'

and then an edge can be arbitrarily chosen next to’cdver.).

Theorem 2 {continued) Each of the subsets E E

o1’ Bo27 7 Eon

consists of exactly one edge, and n=|Ek

=

of E . They can

0

be set as E (m=1,2,..,n). Each of Esm(m=l,2,..,n) gives

Om esm}

6b=0. A necessary and sufficient condition for this to hold

is that there exists exactly one common tree of Gik and Gvk'

Next E, [E..] contains neither cutset in G, [G__] nor tieset
b"u ip “vp

in G__[G,. 1. Thus we have the following theorem.
vp - 1p

Theorem 3.

op,=lEyl, o =lE, PPy (22)
K= Ku=|Eb|, (23)
and each of Etms EsmeEb(m=l,2,..,n) gives Ky .

Example 2. An example is given in Fig.2. The edges of Gi and
Gv in Fig.2(a) are numbered according to the seguential proc-
ess. E.={j} and E ={e}. We get G, _and G as shown in Fig.2

3 {3} o {e} g ip vp g

(b), and then Gy and GVk , in Fig.2(c). The partial ordering

k

of edges is given in Fig.2(d). It can be easily seen that

14



12 10 42 1 12 9 3 1
9 10 7
N\ 7 4 o PRE
11 8 6 3 11 8 N\J 4
5 6
G G
1 . v
(a)
12 9 3 1
10 7 2
11 8 WL
6
G
ip vp

(b)

(c) ' (d)

Fig.2. Example 2. (a) G, and G_. Ej={j}, Ee={e}.

(b) Gip and va.(c) Gik and,GV (d) partial

k*

ordering of the edges in E)=E, -

15
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there éxists éxaétly one common tree of Gik and Gvk; It is

indicated by the fhick lines in Fig.2({c). It‘consists of the
curreht dependént edges, and its cotree, of voltage dependenti
edges. Tge édgés of thé common tree and those of EueEe[Eb$Ee]
form a tree of Gi[GV]. kThese trees of Gi and GV aré called a

linkage pair of trees.
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