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Graph Theorezical & Computational Prcblems 1n Structures
& Rearrancemeni Reacticns oI Poliveyclichvdrocarbons
Gakushuin Univ. T.Kan, ¥.Tanaka, H.Miura,

Gunma Univ. T.Iizuka
0.Introduction
(l) The standpoint of our study
THe standpoint of our study is to abstract mathematical and/or
computational problems from physical and/or chemical phenomena
and/or problems, that is, to find some new concepts, theories
and/or algorithms, and to solve the problems in guestion from
the obtained view-point, or to give some predictive information
to physisists and chemists.
~(2) The aim of this paper
We shall introduce our graph theoretical works and pointout its
computational or algorithmic aspects and essential problems in
them.
(3) The problems in question
Extensive works on synthesis and rearrangement .reaction of poly-

1)

cyclichydrocarbons have been doney ' but little knowledge seems

to have been obtained about the structures of isomers. In fact,
the structures of isomers of tricyclic hydrocérbon CloHl6 have
never been completely known until 1974. The composition of tri-
cyclic hydrocarbon is generally expressed by CnHon-4, and ClOHl6

is called adamantane. H.W.Whitlock et al%)

studied rearrangement
reactions among some isomers of C10H16 in 1968, but it is defec-
tive, because they failed to find all the isomers. A rearrange-
ment reaction is a reaction between two isomers, that is, the
qomposition is invariant under the reaction. The rearrangement

reaction has been watched with interest as a new method of syn-

theses, since P.von Scheyerl)succeeded in svnthesizing adamantane.
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However, it is well known that it is very difficult to synthesize
polycyclichydrocarbons., because from the experimental point of
view the structuregs of isomers are hardly known even in case that

the number of cycles contained in an isomer is small(3,4o0xr5).

3) )

In fact, Sasaki group’and Hosoya group4 studied some structures of

chain, monocyclic and bicyclichydrocarbons... A.T.Balahanszstudied

the structures of isomers of C HZp (p§5), but it seems that it is

6)

2p
difficult to apply his method in case p>»5. J.Lederberg studied a
system for computer construction, enumeration and notation of
organic molecules as #ree structures aﬁd graphs, but he did not
completely classify the structures of isomers of hydrocarbon which
has a given number k of cycles and a given ﬁumber n of carbon atoms.

Schleyer's>groupl)

is studying diamantane rearrangement reactions,
which has the structures combining two structures of adamantane.
Futhermore, McKerve;-is_studying;triamantaneprearrangement;reaction,
which has the more complicated structures combining three structures
of adamantane.

However,these researchers are groping about in the dark, since they
have not an algorithm finding all the structures of complicated
molecules under some specified conditions.

On the other hand, the notation system for expressing polycyclic-
hydrocarbons is becomming necessary, as such researches as mentioned
above are increasing. For the present notation methods (CAS,Dyson,..;)

fail to express complicated structures of polycyclichydrocarbons,

namely more than one notations are given to a structure.and the game

notation ‘is given to different structures.
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(4) Graph Theoretical Problems

Considering the present status mentioned above, we think that it

is significant to solve the following problems:

(a) to study algorithms finding the structures of isomers under
some specified conditions such as a given number n of carbon
atomg = and a given number k of cycles,

(b) to abstract a graph theoretical concept from the chemical
rearrangement reaction and to give some useful information
about rearrangement paths to working chemists,

(c) to study notation or representation methods expressing the
structures of polycyclichiyd#ocarboos:.

We have adopted (a) as the first object, since it is the most

fundamental problem and the essential or graph theoretical problem

on (¢) is automatically solved, if (a) is solved. Thus we shall
describe our study about (a) and (b) in this paper.

Hereafter we shall deal with polycyclichydtoecarbons:s which have

neather multiple bonds nor side chains, because 'we think that this

case is subtential and the excluded cases are solved by operating

some additional processes.

l.Structures of k-cyclichydtocarbons:-
¥e are concerned about finding all -the structures of isomers. of k-cyclic
hydrocarbons which have a given number n of carbon atoms, where"k—
cyclic”means that the number of -independent cycles in the isomer is
equal to k. Our general principle is

(a) to find all the graphs or pseudographs which have neither .degree 1

nor:degree 2vertices, we shall. call such graphs or pseudographs

as "“frames" (see-Fig.l), and

3
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(b) to obtain all the structures of isomers by assigning degree 2
vertices to each edge of these graphs or pseudographs.
In fact, (a) is essentially a difficﬁlt graph theoretical problem,
and if (a) is solved, (b) can be solved by using some computer
method. In regard to (b), the efficiency of algorithm becomes a

matter of great concern.

Fig. 1.
—> —>
adamantane graph frame

)

This consists.of

l-1.Method I

(1) to classify frames having n vertices by using (d3,d,), where
d3 and d4 are respectively the numbers of vertices of degree 3
and 4 ,
(2) to assign vertices of degree 2 to each edge of every obtained
frame by using soﬁe inequality. |
Now this method is outlined for tricyclichydrocarbons. Let G be a
graph which has n vertices and m edges. We call G as a (n,m) graph.
Remember the well known formula k=m-n+1, ‘ where‘k is the number
of independent cycles in a (n,m) graph G. Since we deal with tri-
cyclichydrocarbons, we put k=3. Thus we obtain m=n+2.,c<*°-" [1]
Let d; be the number of vertices of degree i »in G. Because we are
concerned about hydrocarbcns, iiis equal to or less than 4. Then
the _degree sequence of_Gvism(dli dy, dj, dy)-. Therefore we obtain

the following egquations:
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1°3;+2-dp+3°d3+4-dg=2m  ...... [2]
and
dy +dyp +dg3 +dg=n ...... [31 .
From [1] and excluding side chains, that is, d; = 0, we can drive the
equations,
dy + 2-dg =4  ...... [4]
and
dp +d3 +dg=n  ...... [5]1
Thus, for a given n we obtain the solutions (d;,d2,d3,d4) which satisfj

both [4] and [5] (see Table 1.).

Table 1.
d; d, dj dg Then we introduce 8 , the number of self-
0 n-4 4 0 cycles in a frame, where a“self-cycle”
0 n-3 2 1 means - a cycle which has only one vertex
0 n-2 0 2 of degree 3 or 4. Thus the three classes

(d1,dp,d3,d4) in Table 1. are classified by 6 into 2,4 and 4 minor
classes respectively (see the 6 column in Table 2.). Moreover we
introduce ¥ , the total number of vertices of degree 3 and/or 4
which belong to independent cycles in a frame. Then the 5th and 10th

classes are divided by I into two minor classes respectively (see

the I column in Table 2.). Thus we finally obtaine 12 frames as the
solutions of {4] and [5] (see Table 2.).

Next we assign degree 2 vertices to each edge of these frames, namely
a class of (n, n+2) éraphs (see [1l]) is constituted by assigning degree

' 2 vertices to each frame. In order to derive all the- strucfurés in

N S—
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each class, we construct an index which expresses a manner of assigning
vertices of degree 2. Consider the lst frame in Table 2. as an example.
We assign labels x;, X5, x3 and x4 to each edge, and for convenience,

by X3, X3, X3 and x4 we also express the numbers of vertices on each

Table 2.

Hydrocarbon Graph oy (c‘»t4 d.) e = Class No.

CaHng — (M,n92)— 0 — (2, 0)— 2 —4

\

(1,2 3.3

0o —6

1o

12

@@g§%é@&§%@§

Process for finding classes. g9

. —
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edge. We impose the conditions (see Fig.2.) Fig. 2.
X2
X] = X4 and X9 = X3 .eee.n [6] ' '
X1 X4
in order to avoid duplication by symmetry, and
X3

Xq4 = 2 and xp =1 eeeese [71 '

since we exclude multiple bonds. Because the total number of vertices

is equal to n and the frame in question is a solution ( 0,n-2,0,2 ) in
Table 1. , we obtain

Xp + X2 +xX3+X% =n-2...... [8]

By finding all the nonnegative integral solutions (x3,x3,%X3,%y4) for
the equations [6], [7] and [8], we can drive all the structures of
isomers which belong to the class characterized by (d3,d4,6 , I )=

(0,2,2,4). We call a solution (xl,xz,x3,x4) as the "index" of the

corresponding graph.

In a smilar way we can derive all the structures of isomers which
belong to the élass characterized by (d3,d4, 6, £ )=(4,0,0,9), and

we show all the skeletons and indices in Table 3. , where a "&kéletbon"
means a geometrical structure constructed by carbon atoms in a mole-

cule.

1-2 Method

This method is formulated by the expression

c(k) = B(k)+B(k-l)*B(1)+B(k—2)*B(l)*B(lf+ ..... +B(1)*B(1)....*B(1) ...[9],
where C(k) is the .set of k-cyclic frames and B(k) is the set of k-cyclic‘
pseudoblocks. A "pseudoblock" is a frame which has no cut edge. And *

means the connection operation by a cut point or a cut edge (see Fig 3).
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* O — ]

(&0

B 2 3 ? 4 5 6 t 7 '

600000 510000 500100 420000 411000 - 410100 410010
8 9 ? 10 11 12 13 14

410001 400200 330000 321000 320100 320010 320001
15* ? 16 ’ 17% 18 F 19 ? 20 21+

311100 311010 310200 3IOIiO 310101 300300 222000
22% 123 2u» 25 26* 27 28+

221100 221010 220200 220110 220101 220020 211200
29*% 30% 31 30 '

N * shows the isomers discussed
in 2).
211110 211011 210201 111121 32* corresponds to Adamantane.
Fig, 3.

by a cut point

by a cut edge
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Namely, B(i)*B(j) is the set of all the frames which are generated by
performing the operation* between each element of B(i) and each one of
B(j). From the expression [9], it is clear that it is only necessary
for obtaining C(k) to construct B(k), if B(l), B(2),..... , B(k-1) are
known. Now we show C(2) and C(3) in Fig 4 and Fig 5 respectively by

using the expression [9]

Fig, 4.
c(2) B(1).* B(1) B(2)
Fig.5.
C(3) U B(1)*B(1)*B(L) B(2)*B (1) B(3)

000 OO0 GO | &
SO E0" DO @
GO0 G20 aD
- oR0 &
N

H : These frames are excluded in Table 2., since they contain

vertices of more than 4 degree.

—_—
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1.3 Algorithms and Results
(1) Algorithm by Method I-.,
This algorithm was impleménted for our early computer'MELCOM 1101
and toward the end of 1973, first in the world, we obtained all
the structures of isomers of 3-cyclichydrocarboms for n=10,11,
wheré n is the number of carbon atoms. In facﬁ, by:this algorithm -
we can compute isomérs for a given arbitrary n if necessary.
'Howeve;, this méthod can not be extended to more than 3=cyclic-
hydrocarbons.
(2) Algorithm by Method II
This algorithm was implemented for dur computer MELCOM 7500 in
1975 and we obtaine#all the structures of isomers of k-cyclic-
hydrocafbons for k=4,5,6. In fact, by this algorithm we can compute
isomers for a given.arbitrary k.
(3) Algorithﬁ by Method III .
Method III is the latest, powerful and interesting method, but.we
don't deséribe it here, since the paper becomes. too long. This
algorithm was implemented for our present computer COSMO 700 in
1978, and we chequed all the previous results. Moreoﬁer, by using
this algorithm we are investigating various cyclic structures
without chemical restrictions.
2. Rearrangement Reactionsq)
2.1 Graph Theoretical Formulation
(1) Transmutation

Remember the chemical phenomena:

| —10—
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an element t of T,

] a
\ —
KY)
c c
protoadamahtane adamantane

this is a chémical rearrangement between isomers. Such rearrangements
between isomers of 3-cyclichydrocarbons have béen‘studied by
Whitlock and Schleyer, since 1968. However, because it seems that
they haven't an algorithm finding all the isomers of k-cyclic—
hydrocarbons for even k=3, their studies have some defects. Now we
formulate graph theoretically the rearrangement reaction as follows:
a transmutation T of a graph G is T={t,GE+tG=(G—{a,b])+{c,d})},
when t is an element ofiatransmuration'T of G. ‘

T is a restridted tranéhutationsifLééc;

T is'éhl;h;trénsmutation,if'T-is;restficted and dis(b,d)=n+1.

A 1,2-transmutation corresponds to-a chemical 1,2-shift.:

For example:

b
—
&

protoadamantane adamantane 9

_—11
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and

the 1,2-transmutation T for protoadamantahe )

| . 2
! T BE 4
— TG = @ ’@"
b )
t,G 4G ‘

GT' T={tn,tz,“'j

(2) Transmutation Paths
For given two graphs, a source GS aﬁd a target Gt’ a sequence
(GO,Gl,;.:,GP) is a l,n-transmutation path from Gg te Gt;

if G =Gs'Gp=Gt and g§i=Gi+l for i=0,1,...,p-1l, where tiis'an

0
element of a l,n—transﬁutation;
It is very important in‘chemistry to find a transmutation path,
because it gives a prediction of an rearrangement path for a
chemist.

2.2 Algorithms and Results

(1) Mono-source Propagation Algorithm (MSPA)

T is successively‘operated to a source Gg until TPGs contains a

target G Thus a sequence (Gs,tiGg, tztiGs,..., tptp_l,,;ths=Gt)

£
is a transmutation path. We obtained all the 1,2~transmutation
paths between the isomers of adamantane (see Fig. 6.), we chequed
the results by Whitlock and Schleyer,‘and could find their defects.
(3) Di-source Propagation Algorithm (DSPA) 7
T is successively operated to both G5 and Gi until TiGgWTjGt=¢;
Thus a sequence (Gs'ti Ggroees titi_l,..;ths=t3t%_l,...tiGt,

""tiGt’Gt) is a transmutaﬁion path. We could find some 1,2-

transmutation paths between the isomers of diamantane (see Fig.7).
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Comparing the number of graphs in each step of MSPA with that of
DSPA, 1197 graphs in the case of MSPA and 118 graphs in the case
of DSPA are generated to find all the transmutation paths between
diamantane and No.6. The latter is one-té&nth of the former!
Furthermore, by SPA (Selective Propagation Algorithm)which doesn't be
described here, we ob£ained a transmutation path for triamantane,
perhaps first in the world. We informed this path as a prediction
to Hamilton and\Mckerve§7who are chemically studing triamantane
rearrangements., .
3. Computational Aspects

(1) Efficiency
Efficiency is most important for algorithms. When devising an
algorithm, we should consider a method by which computationalﬁ
quantity n! (the fact@ynal of n) is reduced as Small as possible,
for example n® (the s th power of n), where s is small natural
number. |

(2) Identification problem .

" This is to decide whether two graphs are isomorphic or.not. This
problem is concerﬁed about all our algorithms. The speed of an
algorithm depends on an adopted identification method.

(3) Symmetry
Efficiency of an algorithm can be improved by using symmetry of
ba graph. So it is very important to find symmetry of a graph.
(4) Internal Forms
It is necessary for improving efficiency of an algorithm to devise
a suitable internal form of a graph.
finally ~» we think, it is most essential to study a characterization

method’ :of " vertices in a given graph for above mentioned problems.

_— 13—
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