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ON A {1,2}-FACTOR OF A GRAPH

by

Jin Akiyama*
Hiroshi Era**

Abstract.

A criterioh for the existence in a graph of a spanning regular
subgraph of degree 1 was found by Tutte [ 4 ], [ 2, Theorem 9.4 ]. We now
give an analogous criterion for the existence in a graph of a spanning

subgraph whose point degrees are 1 or 2.

1. DEFINITIONS AND NOTATION

A factor of a graph G is a spanning subgraph of G which is not totally
discomnected. An n-factor is regular of degree n. We define a new factor
of a graph called a {1,2}—factor of a graph, which is strongly related to
a spnning linear forest of a graph.

Let G be a graph and H be a subgraph of G. A'subgraph H is called

a‘{1,2}-subgraph of Gif 1 ¢ dégHv < 2 for every point v of H. Then H is
called a {1,2}-factor of G if H is a factor of G.  In other words,

a {1,2}—factor of G is a special kind of ajsbanning linear forest of G
having no isolated points. Every graph has, of course, a spanning linear
forests, but not necessarily {1,2}-factor. We illustrate two graphs

having no {1,2}-factors in Figure 1.
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Figure 1. Two graphs having no {1,2}-factors.

Throughout this sections we denote by S0 (G) a set of isolated points of
G. A {1,2}-subgraph M of G is called maximal if the inequality |[V(M)|>|V(M")|
holds for any {1,2}-subgraph M' of G (M standing for maximal).

Let v, w be points of G and M be a maximal {1,2}-subgraph of G. Then a

vw-path P = [v = Vor Vs 0T Vg = w] in G is called a vw-alternating path
with respect to M if the lines of P alternately lie in M, saying more
precisely, Vo Vo ,q £ M and Vors1Vokey € Mfor k=0, 1, ---, {2/2}-1.

In Figure 2, we illustrate a maximal {1,2}-subgraph M by the lines with slash

and a vw-alternating path P with respect to M by the bold lines.

Figure 2 A maximal {1,2}-subgraph M and a vw-alternating path

with respect to M.



2. CHARACTERIZATION

The following theorem gives a characterization for graphs possessing
a {1,2}-facter. In general, this test for a {1,2}-factor is quite
inconvenient to apply.

THEOREM 1 A graph G has a {1,2}-factor if and only if the following
inequality holds:
1Sy(G - S) < 2|S| for any point subset S of G.

NECESSITY OF THEOREM  Suppose that G has a {1,2}-factor F. ~ Denote by

Fl’ Fz,..., Fr’ the components of F. Let S be any point subset of G and

v, = {vlv e So(G - 8) and v e V(E;) 1.

T
Then U V; =8, (G-8S), and Vi(\ V. =@, 1# 7.

i=1 J . .
From the fact that every component Fi is either a path or a cycle, the
following inequality follows at once:
| 2ISOAVED | 2 1V, i=1,2,...,r1.
Thus we obtain the inequality:

T T
2|s] =z 2ISOVE)| 2 £ V] = [5,(G - 9)].

i=1 Tyt
We require three lemmas in order to prove the sufficiency of the

theorem.

LEMMA 1 Let M be a maximal {1,2}-subgraph of G, u=u,) be a point of

G-Mand P = [u=u0, u ,uzm] be an alternating path. Then

120
degM(UZi-l) =2 and degM(UZi) =1,1=1,2,...,%.

PROOF. Suppose that degM (uZi_l) = 1 for some i.

Denote by M' the subgraph of G obtained from M by deleting lines u2j-1u2j’

j=1,..., 1 and adding lines quu2j+1’ j=0,..., 1-1 instead. Figure 3

illustrates a path p = [u=u ulZ] in.M and M' when i = 4,

LRRLEE R
respectively.
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Figure 3 A step in the proof of Lemma 1

Then the following relations are easily verified:

deg M (uj) = deg M (uj) for j = 1,..., 2i-2.

and

deg M (uo) =1, deg M (uZi_l) = 2.
Furthermore, ' '

deg M(v) = deg M (v) for every point v of M other than points
u., i =0,1,...2i-1. Thus we see that M' is also a {1,2}-subgraph of G,

contradicting the maximality of M since |[V(M')| > |[V(M)].
In a quite similar way, we obtain that

degM(QZi) =1 for i=1,2,.... : 0

We denote by A(u) (or AM(u)) the set of all points v of G such that
there existys" a‘uv—alternating path with respect to a maximal {1,2}-subgraph M.

Note that A(ule= V(M).

LEMVA 2 Let u be a point of G - Mand P = [u=u0, u ..,uk] be an

17+
alternating path. If a point w is adjacent to one of Uos of G, then w is a
point of A(u) and its degree in M is 2:
that is,

we A(uw) and degM(w) = 2.

PROOEF. Suppose that w ¢ A(u) or "w € A(u) and degM(w) = 1",

‘f{



then we could have another {1,2}-subgraph M' of order greater than v |
in a quite»similar method applied in the proof of the previous lemma. This

contradicts the maximality of M. (1

LEMMA 3  Let u be a point og G - M and v be a point in A(u), then every

component of M containing v is isomorphic to. the path PS'

PROOF. Let v be a point in A(u) and P =i[u = Ugs Ups w00y Wy = v] be an
uv-alternating path. We divide the proof into two cases depending on the
parity of k.

CASE 1. k: odd

It follows immediately from Lemma 1 that degM(v) =2, since v = Vi and
k is odd. We now suppose that the component of M contéining v is not iso-

morphic to P Then M would contain either a path P, = wl;‘v, wz,‘w3 or

3
a triangle C3 =W, V, Wy, Wi Again applying the same method as in the
proof of Lemma 1 we could construct a bigger {1,2}-subgraph of G than.M,u
contradicting the maximality of M.

CASE 2. k: even

Considering the fact that the line u ;u € M and tha k - 1 is of course

odd, the theorem follows at once from Case 1. 0

We are now ready to give the sufficiency of Theorem 1 by using the

previous three lemmas.

SUFFICIENCY OF THEOREM

Suppose that G does not have a {1,2}—factof. Let M be a maximal {1,2}-
subgraph, u be a point of G - Mand S be a set defined by:
S=1{v]|veA, degy, (V) = 2}.

Noting that degM(v') = 1 for any point v' of A(u) - S, we see that the length
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of every uv'-alternating path is even by Lemma 1. Thus every point w
adjacent to v' belongs to S by Lemma 2, which implies that the removal of all
the points in S from G results in v' isolated, that is, degG_Sv' = 0.
Furthermore it follows at once from the definition of A(u) that degG_S(u) =
0. Hence the following relation holds:

SO(G -S)DAM) - S) | {ul.
On the other hand, since every component of M containing v e‘A(u) is isomor-
phic to the path P; by Lemma 3, we obtain |

2|S| = |A(w) - S].
Therefore the following inequality holds:

1596 - $) 2 2Is] + 1,

completing the proof. [I

COROLLARY 1. Every regular graph has a {1,2}-factor.
PROCEF. Let G be r-regular and S be any point subset of G. Consider
the following two numbers D1 and DZ:

D, = V%SO degev = 1|8,

D, = VESS(G-S) deg.v = r!SO(G—S)I.

v

Then the inequality D1 D2 holds, since every point of SO(G - S) is adjacent
to only points of S in G. Thus we obtain
2|s| > |s] 2 |SO(G - S)| for any point subset S of G.

The proof is completed by Theorem 1. {J

This result follows at once from Tutte's Theorem [5].



3. {1,2}-FACTORIZATION

If G is the sum of {1,2}-factors, their union is called an {1,2}-
factorization and G itself is {1,2}-factorable. Using this termihology,
it has proved in [0 ] that evéry cubic graph is {1,2}-factorable.

A criterion for the decomposability of a graph into 2-factors was

obtained by Petersen [3]..

THEOREM A A graph is 2-factorable if and only if it is regular of even

degree.

By applying this, we obtain the following result:

THEOREM 2. Every regular graph is {1,2}-factorab1e.
PROOF. Let G be r-regular. If r is even, then G is 2-factorable by

Theorem A and thus trivially {1,2}-factorable.

We thus assume r odd. By Corollary 1, we see that G has a {1,2}-factor
F. By G' we denote the graph obtained by deleting all lines of F from G.
Note that the degree of every point in G' is either r - 1 or r - 2. By add-
ing a set I‘of new pbints and applying the method in the proof of Theorem1l.2
in [1], G' can be embeded intc some (r - 1)-regular graph G'" as an induced
subgraph. Applying Theorem A again, G'" can be decomposed into (r - 1)/2 2-
factors, Fi’ i=1,---, (r-1)/2. Removing a set I of points from G", every
Fi rusults in a {1,2}-factor of G, since the deficiency e(v) = r - deg v of
each point v of G is at most one. Thus, these {1,2}-factors Pi’ i=1,--,

(r-1)/2 , together with F constitutes a {1,2}-factorization of G. 0

Theorem 2 has the following corollary, which was independently proved

by Tutte [5].

COROLLARY 2. Every r-regular graph G has a {k,k+1}-factor for every k,

1<kzsr.



PROOF. The corollary is trivial when r is even, since G is 2-factorable
by Theorem A. Thus we assume r odd. Then G can be decomposed into {r/2}
{1,2}-factors'P1, Fz,‘-—*; F{r/Z} by Theorem 2. Note here thet for-any’
point v of G there exists exactly one {1,2}—factor'Fj such that the degree
of v in Fj is one. Deleting all lines of Fi, -*-,'Fi from!G, we obtain an
fr -2i, r - 2i + 1}-factor of G, for any i, 1 < i < [r/2]. The proof is

thus - completed. O
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