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Let E =IR2d, d € N .denote an even dimensional real
vector spaceand ¢ a symplectic (bilinear, antisymmetric,
non-degenerate) form on E. We introduce the antisymmetric

affine function
¢ (a,b,c) = ala,c) + o(c,b) + a(b,a) a,b,c € E

and normalize Haar-measure on E suchvthat a'uhit cube (with
respect to an ortogonal structure compatible with o, for
details see [1], Section 2) has measure (2w)‘d. The twisted

product of functions on E is defined by -

(fog)(v) = fff(v')g(v")ei¢(v’v"v")dv'dv" , Ve E
EE '

The twisted product leaves the Frechet space S(E) of C°-

‘functions rapidly decreasing at infinity invariant and satisfies

fog = gof , lof = £ , [(fog)(v)dv = [f(V)g(v)av
E E

The twisted product can be regarded as a deformation of the
usual pointwise product of functions in the following sense. Let

for A 62R+ the dilation operator RA be given by
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1 .
(R, £)(v) = £(A"%y) , Ve

23]

and define

-1
\ g)

_ -1
foxg = R)\(R)\ foR
We call °y dilated twisted multiplication and note that
°4 = ° for X = 1. Dilated twisted multiplication enjoys. for
all positive values of A similar properties as twisted multi-
plication. For A tending to 0, it becomes close to pointwise

multiplicatioﬁ. More precisely, for f,ge¢S(E) we have

fo,g = f-g + 3-2-*— {f,g} + T, , re Ry

where {-,-} denotes the Poisson bracket and A-?FA tends to O
in the topology of uniform convergence of all derivatives as
A tends to 0. An important difference between twisted multipli-
cation and pointwise multiplication is that the former is con—.
tinuous in the L2?-topology while the latter is not.

The Schwartz space S(E), when equipped with twisted multi-
plication as product and complex conjugation as involutibn, is
a topological involutive algebra which we shall denote by 24. Let

A € S'(E) Dbe a tempered distribution which is positive and

faithful in the following sense
A (EoE) > o VEe 24, E % o

AWe define a positive definite inner product on 2L by
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(€ln), = A(gon) £, e U

and denote the (-]-)

e completion of Z by H

e

Proposition A4 equipped with the inner product (-|-)A
as given above 1s a generalized Hilbert algebra in the sense

of [2].

The left representation lA of 24 on HA generates the left

von Neumann algebra %A(Zl ).

Theorem Let A€ S'"(E) be positive and faithful, then

(1) %iA(ZA) is a type I factor with normalized trace T given by
T(2,(8)) = 270 [ g(v)av ve e A
E

(ii) The Hilbert Schmidt operators in ﬁ A(Zl) are exactly

the operators of the form QA(E) with &€ L2(E,dv).

d
(111) | fegll, < 272 [I£] llg |l vr,g e 2

In classical mechanics each real function he 24 1s con-
sidered to be an observable. The corresponding gquantum observable

(obtained by quantization) is the left multiplication operator

JLA(h)C— fnpA(Z() given by

Q,A(h)n = hon ne 24
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We note that ngh) is bounded and selfadjoint. Unfortunately,
the class of C - function on E rapidly decreasing as infinity
is much too small to exhaust the claSsical dbsérvables. We |
shall therefore extend the representation ZA to a class of
real functions on E more relevant to physics. For h be-
longing to such a class, we do no longer expect ZA(h) to be
a bounded operator. But it should, as a minimum fequirement,
be selfadjoint oﬁ HA and affiliated with #;A(ZA). We propose
two different ways of attacking this problem.

Since £ A(ZX) is semiinnite, there exists a unique
selfadjoint operator H on HA’ affiliatéd with %QA(Z,() such that

Ng) = t(e™2,(8)) ¥ge XU

We have not yet specified the positive faithful tempered

distribution A . If heL?(E), we set
- _ n
Exp®(~h) = 1 + § —-—T(nl) h°"
n=1 )

where h°" = ho - ++oh (n-factors). The formula

A(E) = Pf: Exp® (-h) (v) E(v)dv Ee U

defines a positive faithful distribution. With this choice

of A , we obtailn
HE = hot Ve e U

that 1s H = 2,(h). We now drop the condition that h e L2(E)

-4 -
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but maintain that Exp® (-h) is to beidefined'as'év(positiVe
faithful) tempered distribution. The representation %A (with
A = Exp°(-h)) can now be extended to h simply setting
gﬂ(h)'= H. This procedure is very general but its feasibility
do depend of a calculation (of Exp®°(-h)) potentially difficult
to carry out. It is therefore of interest to give criteria on
h which ensure that Exp® (<h) is a (positive faithful) tempered
distribution. Our second approach to the extension problem will
provide us with one such criterion.' |

We set Alg) = | &(v)dv, £e¢2 and denote 2A(§) and #3A(ZA)
by 2,(&) and %iz(ZF) respectively. The symplectic Fourier

transformation F 1s defined by

(F)(v) = £(v) = [e20CV¥") pevnygyr . v
B .

Theorem Let h Dbe a real tempered distfibutidﬂ‘éatisfying
v io(v,v') =~ a2
éé E(v) g(v') e (v,v') h(y-v')dvdav' 2 x || &], Ve U

for some constant A¢ IR, then
(1) The sesquilinear form h(nog) defined on A is symmetric
and bounded from below with bound M. The formclosure

t with domain D(t) admits a representation
t(g,n) = (Kg|n), ¥EeD(K) ¥neD(t)

where K 1s a selfadjoint operator on L2(E). The domain

D(K) 1is a core for t.
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(i1) X is affiliated with gz(ZK) and bounded from below with

bound A.

When he L?(E), we obtain K = f£,(h). We have thus constructed
an extention of &, from L?(E) onto real tempered distri-
butions satisfying the condition of the theorem. Incidentally,

such distributions can be exponéntiated and
_ »d -K ) 0
Expo(-h)(g) = 2 1(e” "22(8)) , £ e

defines a positive faithful tempered distribution. The first

‘mentioned procedure for quantization is hence avaible too.
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