Quantum Mechanics In Phase Space

Frank HANSEN

Københavns Universitet, Danmark and RIMS, Kyoto University, Japan

Let $E=\mathbb{R}^{2d}$, $d\in\mathbb{N}$ denote an even dimensional real vector space and σ a symplectic (bilinear, antisymmetric, non-degenerate) form on E. We introduce the antisymmetric affine function

$$\phi(a,b,c) = \sigma(a,c) + \sigma(c,b) + \sigma(b,a)$$
 $a,b,c \in E$

and normalize Haar-measure on E such that a unit cube (with respect to an ortogonal structure compatible with σ , for details see [1], Section 2) has measure $(2\pi)^{-d}$. The twisted product of functions on E is defined by

$$(f \circ g)(v) = \iint_{EE} f(v')g(v'')e^{i\phi(v,v',v'')}dv'dv'' , v \in E$$

The twisted product leaves the Frechet space S(E) of C^{∞} functions rapidly decreasing at infinity invariant and satisfies

$$\overline{f \circ g} = \overline{g} \circ \overline{f}$$
, $1 \circ f = f$, $\int_{E} (f \circ g)(v) dv = \int_{E} f(v)g(v) dv$

The twisted product can be regarded as a deformation of the usual pointwise product of functions in the following sense. Let for $\lambda \in \mathbb{R}_+$ the dilation operator R_λ be given by

$$(R_{\lambda}f)(v) = f(\lambda^{-\frac{1}{2}}v)$$
, $v \in E$

and define

$$f \circ_{\lambda} g = R_{\lambda} (R_{\lambda}^{-1} f \circ R_{\lambda}^{-1} g)$$

We call \circ_{λ} dilated twisted multiplication and note that $\circ_{\lambda} = \circ$ for $\lambda = 1$. Dilated twisted multiplication enjoys for all positive values of λ similar properties as twisted multiplication. For λ tending to 0, it becomes close to pointwise multiplication. More precisely, for f,geS(E) we have

$$f \circ_{\lambda} g = f \cdot g + \frac{i\lambda}{2} \{f, g\} + \Gamma_{\lambda}$$
, $\lambda \in \mathbb{R}_{+}$

where $\{\cdot,\cdot\}$ denotes the Poisson bracket and $\lambda \cdot \Gamma_{\lambda}$ tends to 0 in the topology of uniform convergence of all derivatives as λ tends to 0. An important difference between twisted multiplication and pointwise multiplication is that the former is continuous in the L²-topology while the latter is not.

The Schwartz space S(E), when equipped with twisted multiplication as product and complex conjugation as involution, is a topological involutive algebra which we shall denote by $\mathcal U$. Let $\Lambda \in S'(E)$ be a tempered distribution which is positive and faithful in the following sense

$$\Lambda(\overline{\xi}\circ\xi) > \circ \qquad \forall \xi \in \mathcal{U}, \quad \xi \neq \circ$$

We define a positive definite inner product on 21 by

$$(\xi | \eta)_{\Lambda} = \Lambda(\overline{\xi} \circ \eta)$$
 $\xi, \eta \in \mathcal{U}$

and denote the $(\cdot \mid \cdot)_{\Lambda}$ - completion of \mathcal{U} by \mathcal{H}_{Λ} .

<u>Proposition</u> 2λ equipped with the inner product $(\cdot | \cdot)_{\Lambda}$ as given above is a generalized Hilbert algebra in the sense of [2].

The left representation ℓ_Λ of ${\mathcal U}$ on ${\mathcal H}_\Lambda$ generates the left von Neumann algebra $\mathcal K_\Lambda({\mathcal U}).$

Theorem Let $\Lambda \in S'(E)$ be positive and faithful, then (i) $\mathcal{H}_{\Lambda}(\mathcal{U})$ is a type I factor with normalized trace τ given by

$$\tau(\ell_{\Lambda}(\xi)) = 2^{-d} \int_{E} \xi(v) dv \qquad \forall \xi \in \mathcal{U}$$

(ii) The Hilbert Schmidt operators in $\mathcal{L}_{\Lambda}(\mathcal{U})$ are exactly the operators of the form $\ell_{\Lambda}(\xi)$ with $\xi \in L^2(E, dv)$.

(iii)
$$\| f \circ g \|_{2} \le 2^{-\frac{d}{2}} \| f \|_{2} \| g \|_{2}$$
 \forall f, g \in \mathcal{2}\empty \tag{1}

In classical mechanics each real function he $\mathcal U$ is considered to be an observable. The corresponding quantum observable (obtained by quantization) is the left multiplication operator $\ell_{\Lambda}(h)\in\mathscr{G}_{\Lambda}(\mathcal U)$ given by

$$\ell_{\Lambda}(h)\eta = h \circ \eta$$
 $\eta \in \mathcal{Z}$

We note that $\ell_{\Lambda}(h)$ is bounded and selfadjoint. Unfortunately, the class of \mathcal{C}^{∞} - function on E rapidly decreasing as infinity is much too small to exhaust the classical observables. We shall therefore extend the representation ℓ_{Λ} to a class of real functions on E more relevant to physics. For h belonging to such a class, we do no longer expect $\ell_{\Lambda}(h)$ to be a bounded operator. But it should, as a minimum requirement, be selfadjoint on \mathcal{H}_{Λ} and affiliated with $\mathcal{L}_{\Lambda}(2\ell)$. We propose two different ways of attacking this problem.

Since $\mathcal{H}_{\Lambda}(\mathcal{U})$ is semi-finite, there exists a unique selfadjoint operator H on \mathcal{H}_{Λ} affiliated with $\mathcal{H}_{\Lambda}(\mathcal{U})$ such that

$$\Lambda(\xi) = \tau(e^{-H} \ell_{\Lambda}(\xi)) \qquad \qquad \forall \xi \in 2\mathcal{L}$$

We have not yet specified the positive faithful tempered distribution Λ . If $h \in L^2(E)$, we set

$$\operatorname{Exp}^{\circ}(-h) = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} h^{\circ n}$$

where $h^{\circ n} = h_0 \cdot \cdot \cdot \cdot \circ h$ (n-factors). The formula

$$\Lambda(\xi) = \int_{E} \operatorname{Exp}(-h)(v) \, \xi(v) \, dv \qquad \qquad \xi \in \mathcal{U}$$

defines a positive faithful distribution. With this choice of $\boldsymbol{\Lambda}$, we obtain

$$H\xi = ho \xi$$
 $\forall \xi \in \mathcal{U}$

that is H = $\ell_{\Lambda}(h)$. We now drop the condition that $h \in L^{2}(E)$

but maintain that $\operatorname{Exp}^{\circ}(-h)$ is to be defined as a (positive faithful) tempered distribution. The representation ℓ_{Λ} (with $\Lambda = \operatorname{Exp}^{\circ}(-h)$) can now be extended to h simply setting $\ell_{\Lambda}(h) = H$. This procedure is very general but its feasibility do depend of a calculation (of $\operatorname{Exp}^{\circ}(-h)$) potentially difficult to carry out. It is therefore of interest to give criteria on h which ensure that $\operatorname{Exp}^{\circ}(-h)$ is a (positive faithful) tempered distribution. Our second approach to the extension problem will provide us with one such criterion.

We set $\Lambda(\xi)=\int\limits_{E}\xi(v)\mathrm{d}v$, $\xi\in\mathcal{U}$ and denote $\ell_{\Lambda}(\xi)$ and $\mathcal{L}_{\Lambda}(\mathcal{U})$ by $\ell_{2}(\xi)$ and $\mathcal{L}_{2}(\mathcal{U})$ respectively. The symplectic Fourier transformation F is defined by

$$(Ff)(v) = \tilde{f}(v) = \int_{E} e^{i\sigma(v,v')} f(v')dv', \quad \forall e \in E$$

Theorem Let h be a real tempered distribution satisfying

$$\iint_{EE} \overline{\xi(v)} \ \xi(v') \ e^{i\sigma(v,v')} \ \widetilde{h}(v-v') dv dv' \ge \lambda \ ||\xi||_2^2 \quad \forall \xi \in \mathcal{U}$$

for some constant $\lambda \in \mathbb{R}$, then

(i) The sesquilinear form $h(\eta \circ \overline{\xi})$ defined on $\mathcal U$ is symmetric and bounded from below with bound λ . The formclosure t with domain D(t) admits a representation

$$t(\xi,\eta) = (K\xi|\eta)_2$$
 $\forall \xi \in D(K) \forall \eta \in D(t)$

where K is a selfadjoint operator on $L^2(E)$. The domain D(K) is a core for t.

(ii) K is affiliated with $\mathcal{S}_2(\mathcal{U})$ and bounded from below with bound λ .

When $h \in L^2(E)$, we obtain $K = \ell_2(h)$. We have thus constructed an extention of ℓ_2 from $L^2(E)$ onto real tempered distributions satisfying the condition of the theorem. Incidentally, such distributions can be exponentiated and

$$\operatorname{Exp} \circ (-h)(\xi) = 2^{d} \tau (e^{-K} \ell_{2}(\xi)), \qquad \xi \in \mathcal{U}$$

defines a positive faithful tempered distribution. The first mentioned procedure for quantization is hence avaible too.

References

- 1. F. Hansen, Quantum mechanics in phase space, Université de Genève, preprint
- 2. M. Takesaki, Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Math. No. 128, Springer-Verlag, Berlin, Heidelberg, New York, 1970.