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Operators and operator algebras in Krein Spaces I.

Spectral analysis in Pontrjagin space.

Minoru Tomita

Introductioh

Krein space is an infinite dimensional generalization of
Minkowsky space, and more than fourty years ago several physists
already awared the importance of studying such spaces. For
instance one old idea 1s that a Hamiltonian in relativestic
quantum mechaniques must be a selfadjoint operator in a Krein
space.

In any sense the theory of operators and operator algebras
in Krein spaces must be founded by developping the spectral
analysis of selfadjoint operators in such spaces.

This paper is devoted to founding spectral analysis of self-

adjoint operators in Pontrjagin spaces.
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Chapter 1. Nectations and definitions

§1.0. Preliminary images of Krein space and Pontrjagin space.

Consider the product space L: = H1 X H2 of Hilbert spaces
Hy and Hg, and define a sequilinear form <x,y> in L x L
by
<X,y> = (xl]yl) - (xglyg),
where x: = (xl,x2) y: = (yl,y2) are elements of L. If H1

and H2 are of finite dimensional. L 1is known as a Minkowsky

space. If H and H are Hilbert spaces, L has been called
1 2

a Krein space, or an indefinite metric space. If either H or

1
H2 are of finite dimensional, L has been called a Pontrjagin
space.
In the following sections we shall introduce other defi-
nitions of Krein and Pontrjagin spaces, as we shall start from

defining indefinite innerproduct space.

C

ind

pro

§1.1. Indefinite innerproduct space.

In what follows "linear" always means" complex linear",

denotes the complex numbers, and R the real numbers.

1.1.1. (Definition) A linear space L is called an
efinite innerproduct space if L has an indefinite inner-

duct <x,y> satisfying the following conditions I.1 and I.2.

I.1. <x,y> 1is a symmetric sequilinear form on L x L.

Namely, it 1s a complex valued functional on L x L satisfying

-2 -
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<X’y> = <y,X> 3
<ax1+8x2,y> = a<x1,y> + B<x2,y>.
<x,ay|t y,> = E<x,y1> + §<x,y2>.

I.2. There is a certain innerproduct-norm | | (ie.,
a norm |[x|: = (x|x) defined by an innerproduct (x]|y) of

L) which is selfpolar. Namely, it satisfies

x| = sup“y“il[<x,y>|.

A norm | | satisfying I.2. in L 1is called a finite

unitary norm of L.

1.1.2. (Definition). An indefinite innerproduct space L
is called a Krein space if it becomes a Hilbert space under its
certain finite unitary norm. The topology of L dis that of

the Hilbert space.

1.1.3. (Definition). The metrical completion L(p) of
an indefinite innerproduct space L under a certain finite
unitary norm p of L 1s a Krein space, which we call the

Krein completion of L under p.

1.1.4. We must beware that the space L may have finite
unitary norms which are not generally mutually equivalent on
L, so0 that Krein completions of L under different norms

cannot generally be identified to each other.

-3 -
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1.2. #-innerproducts in Krein spaces.

Let L Dbe a Krein space. Then <x,y> denotes the indefinite
innerproduct of L, and it is also called the #-innerproduct of
L, to distinguish it from the ¥*-innerproduct which is defined by
a fixed anxiliary finite unitary norm ¥ of L.

In what follows L and M denote Krein spaces.

1.2.1. (Definition). Let x and y belong to L. x is
called #-orthogonal to y if <x,y> = 0 holds. Let Y. and 7L
be subsets of L. Il is called #-orthogonal if <x,y> = 0 holds
for xeMmMm and y ¢7,. The elements of ] which are #-orthogonal

to is denoted by mﬁ% If 1, is a closed linear subspace of

L, 7nfL is called the #-orthogonal complement of Wl

1.2.2. (Definition). X : L—>M denotes a mapping whose
domain £9(X) is in L, and range R(X) is in M. X is called
densely defined if 4ﬁ(X) is everywhere dense in L. X 1is called
invertiblly densely defined of X and its inverse mapping X-l

M »~» L are densely defined.

1.2.3. (Definition). Let X : L~»M be a linear mapping.

The #-adjoint, or the Krein adjoint, of X means a linear mapping

#

X M =21 which is determined by the following rule : Take

any x e L and y € M. X#y is defined and x = X#y holds

iff it satisfies
<x,z> = <y,Xz> for all =z e 8(X).

The #-adjoint X# exists iff X 1is densely defined.
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1.2.4. (Definition) (a). An operator X in L 1s called

#-selfadjoint if X = X#

holds.

(b). An operator X in L 1s called #-positive if it is
#-selfadjoint and satisfies <Xx,x> > 0 on «£4(X).

(¢). An operator X in L is called a #-projection if it
satisfies X = X' = X°.

(d). A linear mapping X : L »M is called #-unitary if
x* = x1 holds.

(e). A linear mapping X : L->»M is called #-imaginary if
x* = _x™1 holds.

(f) A linear mapping X : L-—>M is called #-selforthogonal

if x"X vanishes on a(X).

1.2.5. Every #-selfadjoint operator is closed and densely
defined, and so are every #-positive opefétor and’#—projection._
Every #-unitary mapping and every #-imaginary. Mapping are
closed and invertiblly densely defined. Indeeﬂ? for instance,
if X : L » M is #-unitary, x* = x™1 means that X 1is densely
defined and the inverse mapping X_:L is closed. Then X 1is

1

closed and hence X#(=X_ ) is densely defined. A mapping X : L

+ M is #-selforthogonal iff X 1s densely defined and has the
#-selforthogonal range. Indeed, X 1s selforthogonal iff X#

is defined and satisfies <Xx,Xy> = 0 for all x, y in £%(X).

1.2.6. (Remark). We must beware that #-projections and

#-unitary mappings in our definition are not generally continuous.

- 5 -
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§1.3. The ¥-norm in Krein space.

1.3.1. We consider a certain fixed finite unitary norm
of L which makes L a Hilbert space. We call this norm the
*_norm and denote it by | || or by &. The innerproduct associate
with the norm ¥ is denoted by (x|y), and is called the *-inner-
product of L. The definitioné in the Section 1.2 are also applied

to the ¥*-innerproducts of the spaces L and M.

1.3.2. (Definition). Let x, y belong to L. x is
¥_orthogonal to y if (x|y) = 0 holds. Let M, Y. be subsets
of L. L is ¥-orthogonal to 1 if (xjy) =0 hoids for xe M
and y € 7.

Let X be an operator in L. X is ¥-selfadjoint if
X = X¥ holds. X 1is ¥-positive if X 1is ¥-gselfadjoint and
satisfies (Xx|x) > 0 on «(X). X 1is a ¥*-projection 1if ‘

X = X¥ = X2 holds. A linear mapping X : L+ M is ¥-unitary

if X* = X™' holds.

A subset M #¢% of L Dbecomes ¥-selforthogonal iff (= 0
holds. *¥-projections and ¥-unitary mappings are continuous.
¥_imaginary mapping X : L - M does not exist. A densely

defined linear mapping X : L-2? M 1is ¥-gelforthogonal iff X

vanishes on the domain.

1.3.3. (Definition). An operator X in L is called
biselfadjoint if it is #-selfadjoint and ¥-selfadjoint. X
is called a biprojection if it is a #-projection and a ¥-
projection. A linear mapping X : L >M is called biunitary
if it 1s #-unitary and ¥-unitary.

-6 -
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§1.4, Defining operator of the ¥-norm.

The #-innerproduct <x,y> 1is a continuous sequilinear
form on L x L treating L as a Hilbert space under the

¥_norm. Then

1.4.1. (Proposition). There is a certain continuous

linear operator J 1n L satisfyiﬂg
<x,y> = (Ixl|y),
-1
Indeed the last identity immediately follws from
<X,y> =<y,x>
I x|l = supuy”;1]<x,y>|.
1.4.2. (Definition). The operator J in L is called

the defining operator of the ¥-norm. If necessary, we also

denote J Dby JL.

The Definition 1.4.2 is based on the next theorem.

1.4.3. (Theroem). The defining operator J of the ¥-norm
of L is a continuous #-positive #-unitary operator in L,

and the ¥-norm of L is determined by
‘“XH2 = <Jx, X>.

It is also clear that
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1.4.4, (Proposition). Let X : L - M Dbe a densely defined

linear mapping. Then

Chapter 2. Geometry in Krein space.

In Krein space, we may consider two types of geometries.
One 1s the classical geometry which ihveétigates the invariants
of the group of continuous #-unitary operators in L. Another
is the investigations of geometrical aspect of unbounded #-unitary
operators in L. In this chapter wé‘shall sketch certain aspects
of the latter geometry based on the concept of the Cartan decom-

position.
§2.1. Cartan decomposition of #-unitary operators.

The Cartan decomposition of Lorentz groups in Minkowsky
spaces 1s generalized to the case of #-unitary operators in

Krein spaces.

2.1.1. (Theorem). Let X : L » M be a #-unitary mapping

Then X 1is represented in the form

U:L-+M is a biunitary mapping. K1 and K2 are ¥-positive

#-unitary operators in L and M respectively.

The above representation of X 1is called the Cartan

decomposition of X,
- 8 -
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Proof. X = K2U = UK1 is the V. Neumann's polarization
of the mapping X : L » M regarding L ‘*and M as Hilbert
spaces. U : L > M is a ¥-unitary mapping, and Kl and K2

are ¥-positive operators in L and M, satisfying

2-—* 2-— *
K, = X*X, K, = XX*.

We show that X*¥X and K, are #-unitary. Indeed, remarking

1
-1 _ J# _
that X = X" = JX¥J, we have
% = % =y~ iy=1s - *y)~ L
J(X*¥X)J = (JX¥J)(JXJT) = X "X = (X¥X) 5

o 2 . o .
and JK1 J = K1 . From this we have JKlJ = Kl and Kl is

#-unitary. Similarly we find that K is #-unitary, and U

] 2
satisfies

<K1X,K1y> = <x,y> = <Xx,Xy>

<Ule,UKly>.

Since U 1is bijective, it 1is #-unitary, and the Theorem is

proved.
§2.2. Unitary norms and #-unitary operators.

2.2.1. (Definition). Let X : L » M Dbe a linear mapping.
Then X induces a (unbounded) seminorm Py ¢ X > “XX”
defined on L, where we set |Xx| = 4o 1if Xx 1s not defined.

If X dis injective, is called a (unbounded) norm in L.

Px

Now we characterize unbounded norms in L induced from

#-unitary mappings.
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2.2.2. (Definition). A functional p on L 1is called

a unitary norm of L if the following U0, Ul, U2 are satisfied
Ua. 0 < p(x) < +o.

Ul. The finite part «f(p): = {x ¢ L : p(x) < +o}
of p 1is a linear subspace of L, and p 1s an innerproduct
norm on it. Namely, p(x)2 = (X|x)p holds for a certain inner-
product (X|y)p in «%(p). The innerproduct (xly)p is called

the p-innerproduct in L.

U2. The norm p 1s selfpolar on L. Namely, it

satisfies

p(x) = sup 1|<x,y>|.

p(y)<

2.2.3. (Theorem). A functional p on L is a unitary
norm of L iff p 1s induced from a certain #-unitary mapping

X : L » K, where K 1is a certain Krein space.

Proof. Suppose taht p 1is induced from a certain #-unitary
mapping X : L » K. Then the finite part of p dis identical to
the domain x¥(X) of X and p is an innerproduct norm on it.

p 1s self-polar. Indeed,

xx| = gt

|x™="x] = sup”y”<l|<x,X‘ly>!

B EETEtbia

The identity is valif§d even if Xx 1is not defined. Then p
is a unitary norm of L.

- 10 -
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Conversely, suppose that p 1is a unitary norm of L.
p is an innerproduct norm of the finite part «}p) of p,
and 43(p) has an indefinite innerproduct <x,y> and a finite
unitary norm p. Let L(p) be the Krein completion of z%(p)
under the norm p, and X : x + x, L(p) - L be the identity
mapping on «Xp). X 1is injective, densely defined, and
x" 2 1. We show that xte x7t, Namely, if a pair x ¢ L,

y € L(p) satisfies
<x,Xz> = <y,z> for z € 49(p),

then x =y holds. If x and y are as above, then the norm
p(y) of y in L(p) is determined by
p(y) = SUP (1)1, ped(p) | V52

|<x,z>]|

= SUPh(z)<1

p(x).

Therefore x belongs to xﬁ(p), and remarking
<x,z> = <y,z> for z e 8(p),
we have x = y. Then X is #-unitary and induces p.

2.2.4. (Theorem). For every unitary norm p of L
there is a unique ¥-positive #-unitary oeprator K in L

which induces p.

Proof. We take a certain #-unitary mapping X : L > M

which induces the norm p, and consider the Cartan decomposition

- 11 -
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X :=UK of X. U :L~+M is biunitary. K 1s a x-positive
#-unitary operator in L and induces p. Suppose also that

p 1is induced from another ¥-positive #-unitary operator S

in L. Then | K<x]|| = ||Sx|| holds on «f(p): = {x e L : p(x) < +=}.

Therefore K = S holds, and the Theorem is proved.
§2.3. Defining operator of unitary norm.
Proposition 1.4.1 is now generalized as follows

2.3.1. (Theorem). Let p be a unitary norm of L. Then

there is a unique #-positive #-unitary operator Jp in L

satisfying
2
p(x)" = <J_x,x>.
: p
for all x in dﬂ(Jp).

Proof. p is induced from a certain ¥-positive #-unitary

operator K 1in L. We set

J_ = JK°.
D

Then Jp is #-unitary. We show that Jp is #-positive.

Indeed, it is #-selfadjoint and
T XK> = (K2x|x) = “KXH2 = p(x)°,

and we have the Theorem. (For the uniqueness of Jp, refer

the next Theorem 2.3.3).

- 12 -
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2.3.2. (Definition). The operator Jp in Theorem 2.3.1 -

is called the defining operator of the norm p.

2.3.3. (Theorem). Let S be a #-positive #-unitary operator

in L, then S defines a certain unitary norm p in L.

Proof. JS 1s a ¥-positive #-unitary operator in L.

Indeed, it is ¥*-selfadjoint, #-unitary and

(ISx|x) = <Sx,x> > 0.
1
holds on ¢%(S). Let K = (JS)Z. Then K is also ¥-positive

#-unitary and S = JK2 holds, and induces the norm Py -

§2.4. Canonical partition and canonical quasi=partition.

2.4,1. (Definition). Let Ll and L, be subspaces of L

such that

(a). Ll and L2 are the #-orthogonal complements of
each other.

then <x,x> > 0. If 0 #y e L

(b). If O # x e L ,

1
then <y,y> < 0.

(c¢). The linear sum of L and L

1 5 is everywhere

dense in L.

Then the representation of L : L = L1+L2 is called a
- canonical quasi-partition of L. Inparticular, if L = L1 + L2

holds, the representation L = Ll + L2 is called a canonical

partition of L.

2.4.2. (Definition). Let p Dbe a unitary norm of L.
Let L+(p) be the elements x of L satisfying p(x)2 = <X,X>,

- 13 -
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and L (p) the elements x of L satisfying p(x)2 = —<X,X>.

We call the representation L : = [L+(p) + L (p)] the p-quasi-

partition of L.

2.4.3. (Theorem). Let p Dbe a unitary norm of L. Then
the p-quasi-partition L : = [L+(p) + L (p)] is a canonical quasi-
partition of L. Let Jp be the defining operator of p.
Then L+(p) and L (p) are eigen-spaces for eigenvalues 1

and -1 of Jp, and we have
+ -
dﬂ(Jp> = L (p) + L (p).

Proof. PFirst we consider the case that p 1is the ¥-norm

HX{L Then the defining operatcr J of the ¥-norm satisfies
J = J¥% = J—l, and hence is represented in the form : J = gt - J,
where J7 and J~ are ¥_projections satisfying 1 = gt + o,

we set LY = L+(*), L™ = L7(*). LY 1is the elements x of

L satisfying “X”2 = (Jx x), and is identical to the range
o J'. Similarly, L~ is identical to the range of J_,
these are the eigenspaces for the eigenvalues 1 and -1 of J,
respectively, and L = L+ + L~ is a canonical partition of L.
Next, we return to a general unitary norm p, and let K

be the ¥-positive #-unitary operator in L which induces p.

Then

7= Jk° = k"sk.

An element x of L belongs to L (p) iff

]

HKXH2 = <X,X> (JKx,Kx),

- 14 -
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ie., Kx = JKx or Xx = JpX holds. In other words x 1s
an eigenvector of Jp for the eigenvalue 1. Then L+(p) is
the eigenspace of Jp for the eigenvalue 1. Similarly, L (p)

is the eigenspace of Jp for the eigenvalue -1. Now we set

gy
H
[}
=
oy
=

1
-2-(1 + Jp)

]
=

_ 1
5= 5(1 -3

Then L+(p) and L (p) are the ranges of J; and J;, and
2 + -
I = H KT = L7(p) + L7(p).

L+(p) and L (p) are mutually #-orthogonal to each other.

Then it determines a canonical‘qﬁasi—partition of L.

2.4.4%, (Theorem). Let L = [L1 + L be a canonical

5]
quasipartition of L. Then it is identical to a certain quasi-

partition of L defined by a certain unitary norm of L.

Proof. Define an operator S with the domain «% in L

oy

for x. € Ll’ X

T Xq+ -
S X X 1

17%5 > € L2.

We show that S 1s a #-positive #-unitary operator in L.

S satisfies S = S™%, and

<8X,X> = <X > = <X5,X,> > 0

1°%1 23%p

for x = xq+x,e48 . Then s 2 S holds. We show s? ¢ S.

Let y and 2z be elements of L satisfying

- 15 -
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<8X,y> = <X,z> for x e g29.

Let

= 1 = Loyo
u = 5(y+z), v = 5(y-z).

Then

<Xqp,V> = <X,,u> for x, € L € L

1 10 %o 2°

Since Ll and L2 contains 0, we have

§xl,v> = <X,5,u> = 0] for X, € Ll’ X5 € L2,
and v Dbelongs to the #-orthogonal complement L2 of L.
Similarly, u belongs to Ll. Then remarking
y = utv, Z = u-v,
we find that 2z = Sy, and S# = S holds. Hence S 1is a

#-positive #-unitary operator in L and identical to the
defining operator Jp of a certain unitary norm. Hence
Ll = L+(p) and L2 = L (p) holds, and the quasipartition

is defined by p.

§2.5. Reduction by #-selforthogonal subspace.

2.5.1. (Definition). Let M be a certain closed #-self-

orthogonal subspace of L. Then setting Ll = M, L3 = JM,

and L2 the ¥-orthogonal complement of L1+L3 in L, L 1is

represented as a linear sum L = L1+L +L3 of mutually

2

¥-orthogonal spaces Ll’ L2 and L3. We call it the reduction

of L Dby the space TN = Ll' We immediately obtain that

- 16 -
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2.5.2. (Lemma). Let L = L1+L2+L3 be a reduction of L

by a certain closed #-selforthogonal subspace : = Ll of L.
Then L2 is a Krein space whose #-innerproduct and ¥-norm are
the restrictions of those of L on L2. Each element  x of

L has a unique representation

X = X + X

1 + Jx !

2 3’

where Xq5 X3 e N> X, € L2. The #-IiInnerproduct and the

¥_norm of L has the following representation
<X,y> = (X11y3) t <X,y 4 (x31y4)>
2 _ 12 2 2
Y N e P S P

If A 1is a continuous linear operator in L, A and A have

the following matrix representation.

A % # %
A11 Bqp Agg A3z A3 A3
_ N # y
A=l Aoy Ay Ang |, AT =[Agy Any Ajg
A A * #oooat
BA3p B3 Agg Az Aoy Ay

Chapter 3. Spectral analysis in Pontrjagin space.
§3.1. Pontrjagin space.

3.1.1. (Definition). A Krein space L is called a
Pontrjagin space if C has a certain canonical partition
L = L1+L2 such that either L1 or L2 is of finite dimen-

sional.
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In this chapter we always denote by L a Pontrjagin space
with a canonical partition L = L1+L2 whose L2 is ¢of dimen-

sion n < 4o, The partition determines a certain finite unitary

norm | || which we call the ¥-norm of L. The operator J
which defines the ¥-norm of L is represented as J = J+ - J°
L, 1is the range of J~, and hence dim J = holds.

3.1.2. (Lemma). If M, is a #-selforthogonal linear

subspace of L, then the dimension of M, is < n.

Proof. Let E Dbe the ¥-projection in L whose range
is the closure [TIV] of the range of . [7M] is also #-self-

orthogonal. Then

(JEx|Ey) <Ex,Ey> = 0

and EJE = 0. Remarking J

I - 2J°, we have
E = 2EJ'E and dim E dim J~ =

3.1.3. (Theorem). Every #-unitary operator in L is

continuous.

Proof. Let U be a #-unitary operator, and take its
Cartan decomposition U = KV. V 1is biunitary, and continuous
on L. Hence it 1s sufficient to see that K 1is continuous
on L. Consider the spectral decomposition K = J+ AdE(A) of
K. Since JKJ = K_l, we have JyY(K)J = w(K“l) fgr any bounded

Borel function ¢y on O

A

A < t+o, In particular, we consider
the projections El’ E2, E3 which are spectral measures on
the sets (0,1), {1} and (l,+x), respectively, since the

- 18 -
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mapping A - A—l carries (0,1) onto (1,+»), we find that
JElJ = E3, JEZJ = E2, and the ranges of El
#-selforthogonal. By Lemma 3.1.2 we have dim E3 = dim El < n.

and E3 are

Then the spectrum of K consists of at most 2n+l points,

and K geeess==- hecome continuous in L and we have the Theorem.
3.1.4. (Corollary). Every unitary norm of L 1is finite.

Proof. Every unitary norm is induced from a certain
¥_positive #-unitary operator in L, and by Theorem 4.1.2

it is finite-valued on L.

3.1.5. (Theorem). Let R = My+M, be a canonical quasi-
partition of L. Then it is a canonical partition of L

and dim M2 = n holds.

Proof. The partition determines a unitary norm P of
L, and 4% is identical to dﬁ(Kg), where K 1is a ¥-positive
#-unitary operator which induces the norm -P. Since K is

continuous, we have L = &9 and L= M1+M2 is a partition of
#_—

5 is the range of the operator Jp. Since J; = K"J K,

=4 holds, and the Theorem is proved.

L. M

dim M2

3.2. #-spectral and #-prespectral operators.

We now introduce operators in a Krein space with certain

nice properties.

3.2.1. (Definition). An operator A in a Krein space

LO is called #-spectral if there is a continuous #-unitary

operator X and a biselfadjoint operator B in LO satisfying
A = X#BX.

- 19 -
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‘3.2.2. We return again to the Pontrjagin space L. The
discussién of spectral analysis of #-selfadjoint operator would
finish if every #-selfadjoint operatbr in L would have been
#—spectral, because such an operator A have the spectral |
representations A = deE(k) by continuous #—préjections
{E(A) : =o» < A < +w}. But even in Minkowsky spaces, #-self-

adjoint operators generally dc not have such a wishful property.

3.2.3. So we introduce the concept of #-prespectrality,
which 1s a property of operators in L slightly weaker than:
the #-spectrality. On the other hand it preserves the following

two conditions.

3.2.4. Every #-selfadjoint operator in'Minkowsky . space.

'is #-prespectral.

3.2.5. #-prespectrality of operators in- L is preserved
under the strong convergences in bounded nets of operators .in

L.

3.2.6. We start from modifying the represeﬁtation of
a #-spectral operator A in L. A 1is written as A = X'CX,
by a (continuous) #-unitary operator X and a biselfadjoint
operator C in L. Consider the Cartan decomposition X = UK,
where U 1is biunitary and K is ¥-positive #-unitary in L.
We set B = U#CU, and represent A again by A = K#BK.
Then B 1is also biselfadjoint. We define a ¥-positive operator

T in L by

T = K2(1+k°)7L.

- 20 -
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From JKJ = K~T, we have JTJ = I-T, and

TA(I-T) = (TA(I-T))*.

Indeed,

CTA(T-T) = (T+K%)"lxBR(T+K°%)"L.
Summarizing these properties of A we define

3.2.7. (Definition). An operator A in L is called
#-prespectral if A 1is #-selfadjoint and has a certain‘
¥.positive operator T in L 'satisfying JTJ = I-T, and

| TA(I-T) = (TA(I-T))*.

3.2.8. (Lemma). A continuous operator A in L is
#-spectral iff A 1s #-selfadjoint, and satisfies the con-
dition of Definition 3.2.7 whose operator T 1in L 1is

injective.

Proof. 1Indeed, if there is such an injective T, we

can take a ¥_positive operator K satisfying T = K2(1+K2)—1.

K 1is #-unitary, and B: = KAK'

Then A: = K#BK is #-spectral.

is biselfadjoint in L.

§3.3. Canonical represntations of #-selfadjoint operators.

Now we generalize the Jordan's canonical representation

of matrices to the cases of #-selfadjoint operators in L.
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3.3.1. (Theorem). Let A Dbe a continuous #-selfadjoint
operator in a Pontrjagin space L with dim L~ = n. Then A

has the following matrix representation

A A A

11 12 13
A = 0 A22 A23 R
0 0
A33
* = * = ¥ = i
where All A33, A23 A12’ A13 AlB' The representatlon

is determined by the reduction L = L1+L2+L of L by a

3

certain #-selforthogonal closed subspace Ll of L satisfying
dim Ll = dim L3 n, and A22 becomes a #-spectral operator

in L2.

3.3.2. (Definition). The matrix representation of an
operator A in L satisfying the requirement of Theorem 3.3.1

is called the canonical representation of A.

3.3.3. (Lemma). A continuous operator A in L is

#-prespectral iff A has the canonical representation.

Indeed, let A be a continuous operator with the canonical

representation. Then A 1is #-selfadjoint. A22 is #-spectral

and has a representation A22 = KﬁBsz, where B2 1s biself-

adjoint and K 1is #-unitary, and further we can suppose that

K is ¥*-positive in L2. Let IK denote the identity in L

and define the operators T2 in L2 and T in L by

K,

2

0O 0 0

T, = K(I+K2)™, T= [0 T. 0
o = Ky (I,*Ks

0 0% 1,
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Then clearly, T is *-positive and satisfies JTJ = I-T and

TA(I-T) = (TA(I-T))¥. Hence A is #-prespectral.
"Conversely, suppose that A 1is #-prespectral.

Then there is a ¥-positive operator T in L such that

JTJ = I-T and TA(I-T) 1is ¥-selfadjoint. Let L be

1
the kernel of T. Then Ll is a closed subspace of L.
L3: = JL; 1is the kernel of JTJ (= I-T), and hence Ll is
¥-orthogonal to L3, and L, and L3 are #-selforthogonal.
Let A: = (Aij) be the matrix representation of A defined
by the reduction L = L1+L2+L3. We show that Ll is invariant
under A. Indeed, if x belongs to Ll’ then Tx = 0, and

hence (I-T)x = x holds. Now
TAx = TA(I-T)x
= (TA(I-T))¥x = (I-T)A*Tx = O.

Therefore Ax Dbelongs to Ll’ and L is invariant under

1
. . _ _ - #
A. From this we find that A, = A31 =0, and Ay, = (A21)
= 0. T has the matrix representation
0 O 0
T = ( 0 T2 0
0 O I3
. s . . o - _
T2 is pesitive in L2, and satisfies J2T2J2 12 T2,
- ) *_ . . . I . .
and ’I‘2A22(I2 T2) is selfadjoint. Further, T2 is injective
on L2. Then by Lemma 3.2. A22 becomes #~spectral. Thus

has the canonical representation.
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§3.4. Proof of the canonical representation theorem.

The assertion 3.2.4 is now equivalent to

the following 3.4.1.

3.4.1. (Lemma). If A is a #-selfadjoint operator in a
Minkowsky space L, then A has the canonical representation.
To prove 3.4.1, let Ll be a maximal subspace of L which

is invariant under A, and consider the reduction L = L.,+L,+L

17273
of L Dby the space Ll' Then L has the representation
A1 A2 Byg
A=10 Ass A23
0 0 A33
‘Suffice it to show that A22 is #-spectral in L2. Notice

that ‘L2 does not contain any nontri?ial #-selforthogonal
subspace N1 which is invariant under A,,. Indeed, if e
is such a space, then L2+Tﬂ, becomes a #-selforthogonal
subspace of L which is invariant under A.

Then 3.4.1 is verified by showing the next lemma.

3.4.2. (Lemma). If a #-selfadjoint operator A in
a Minkowsky space L does not have any nontrivial invariant

#-selforthogonal subspace, then A is #-spectral.

Proof, Let S ©be the set of eigenvalues of A.
For each o0& S consider the operator
B(a): = (2ni)‘1f (a-2)"Laz,
C
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where C is a small circular surrounding & to the positive
direction. It is very well-known that I = ZaeSE(a)’

E(oc)2 = E(a) and E(a)E(B) = 0 for o # B. The range of

E(a) 1is the eigenspace of A associated to the eigenvalue a.
Remarking that A# = A, if o Dbelongs to S, then a also

belongs to 3. E(a) commutes to A, and
4 —
E(a)” = E(a) # 0.

S is contained in the real line. Indeed, if o 1s a
non-real element of S, then E(a)#E(a) = 0, énd E(a) is
#-selforthogonal. Then the range of E(a) 1s a nontriviél
#—selforthogonai, invariant subspace of A, and it leads a
contradiction. If o is real, then AE(a) = aE(a) holds.
Indeed, let n be the least number such that (A—a)PE(a) = 0.
If n > 2, we can take a number m such that 2m >n and
m < n-1l. The operator (A-0)™E(a) is # 0 and #-selforthogonal.

Indeed,
((A=a)™E(a))* ((A-a)™E(a))
= (A-0)°™E(a) = O.

This 1s a contradiciton.

The signs of <x,x> for elemehts x # 0 of the range
of E(a) is constant, and we denocte it by sign E(a).

Indeed, if there are elements x # 0 and y # 0 such
that <x,x> > 0 and »<y,y) < 0, we can take a certain element
z = ax+(l-a)y # 0 satisfying <z,z> = 0, and {0z : aeC} is
a nontrivial invariant subspace of A.
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Now we set

rt(a) = E(a),

sign E(a)=4%

E (a) = Isign Bla)=- E(a).

and let M1 and IVI2 be the ranges of E+(A) and E(A).

Then L = M1+M2

a certain finite unitary norm p of L. Consider the

is a canonical partition of L and defines

innerproduct (xly)p corresponding to p. Then A 1is
p-selfadjoint on L. Let K be the ¥-positive #-unitary
operator in L which induces p. Then K#AK is biselfadjoint,
and A 1is #-spectral in L. Thus 3.4.2 and hence 3.4.1 are
verified.

We now show 3.2.5 as the next lemma 3.4.3.

3.4.3. (Lemma). If {a,} 1is a bounded net of #-prespectral
operators in L which converges strongly to an operator A

in L, then A 1is #-prespectral.

Proof. For each Aa we take a certain ¥-positive operator

T satisfying JT J = I-T and
o o o
- = - *
TaAu(I Ta) (TaA(I Ta)) .

Then in the Hilbert space L we have 0 < T < I, and
we can take a certain subnet {TB} of {Ta} converging
weakly to a certain operator T in Ll' T dis also ¥-positive
and satisfies JTJ = I-T.
We show that
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TA(I-T) = (TA(I-T))¥*.

The identity T AB(I—TB) = (TBAB(I—TB))* is equivalent to

B

~N¥ = -
ToAg-ART, = T (A ~A%)T,,

Where {AB} is norm-bounded, and converges weakly to

T A _-AXT
BB BB
TA-A¥T. Since AB are #-selfadjoint we have

Af = JAgJ = (1—2J')AB(1-2J”),

and

- A% = - - - -
AB AB 2J AB + 2ABJ L ABJ .

J~ is of finite dimensional, and the right hand of the above
identity converges uniformly to A-A¥,
Remark that

~N¥ = -A¥
TB(AB A )TB TB(A A )TB + TBRBTB,

where [RBI + 0. Then to see that TB(AB—AE)TB converges weakly
to T(A-A¥)T, it is sufficient to find that if X is an operator
of finite dimensional, TBXTB converges weakly to TXT. This
also turns to verify the case that X 1s an operator of one-

dimensional range, say X = ab¥, which is an operator in

L : ab*¥ : x » (x|b)a. Notice that

% = %
TBab TB (TBa)(TBb) .

Then TBab*TB converges weakly to Tab¥*¥T. Thus we obtain

the identity
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TA(I-T) = ((TA(I-T))*¥,
and A is #-prespectral. The Lemma is proved.

3.4.4, (Proof of Theorem 3.3.1). The discussion of this
section insures the validity of Theorem 3.3.1, but for completeness
we summalize how our argument goes to this conclusion.

If L 1is a Minkowsky space, the Theorem is valid (3.4.1).
So, even if L 1is a general Pontrjagin space, every #-selfadjoint
operator of finite rank has the canonical representation.

If A 1is any continuous #-selfadjoint operator in 1L,
we can take a bounded net of #-selfadjoint operators of finite

ranks converging strongly to L. Now operators in this net
rare #-prespectral (by Lemma 3.4.1). Then by Lemma 3.4.3
A is #-prespectral. Then by Lemma 3.4.1 A has the canonical

representation.
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