On a problem of Sakai in unbounded derivations

H. TAKAI (都立大理)

as a quantization of spaces, especially n-dimensional real lines, Sakai [7] posed the following interesting problem: are there simple C*-algebras A and a family \(\{ S_i \}_{i=1}^{\infty} \) of non approximately bounded pregenerators of A such that given a *-derivation \(\delta \) of A with \(D(\delta) = \bigcap_{n=1}^{\infty} D(S_n) \), there exist \(k_1, k_2 \in \mathbb{R} \) and an approximately bounded *-derivation \(\delta_0 \) of A with the property that \(\delta = \sum_{n=1}^{\infty} k_n S_n + \delta_0 \).

In this note, we show that there is at least one model for two-dimensional case. It is nothing but the irrational rotation algebra, namely the \(C^* \)-crossed product \(C(T) \times_\theta \mathbb{Z} \) of the C*-algebra \(C(T) \) of all continuous functions on the one-dimensional torus \(T \) by an irrational angle \(\theta \). More precisely, we have the following:

Theorem 1. Let \(A_0 \) be the irrational rotation algebra. Then there exist two non approximately bounded pregenerators \(S_1, S_2 \) of \(A_0 \) such that any
*-derivation \(\delta \) of \(B_0 \) with \(D(\delta) = D(\delta_1) \cap D(\delta_2) \) can be expressed as \(\delta = k_1 \delta_1 + k_2 \delta_2 + \delta_0 \) for some \(k_1, k_2 \in \mathbb{R} \) and an approximately bounded *-derivation \(\delta_0 \) of \(B_0 \).

Remark 1. Suppose \(D(\delta) = D(\delta_1) \) \((i=1 \text{ or } 2) \), then one can show that \(\delta = k \delta_1 + \delta_0 \) for some \(k \in \mathbb{R} \).

We now state our main theorem as follows:

Theorem 2. Let \((\mathcal{A}, G, \alpha) \) be a C*-dynamical system where \(\mathcal{A} \) is unital abelian, \(G \) is discrete abelian, and \(\alpha \) is effective. Suppose \(\beta = \exp t \delta_0 \) \((t \in \mathbb{T}) \) commuting with \(\alpha \), and there exists an eigenunitary \(\nu \) for \(\beta \) which generates \(\mathcal{A} \). Then for any *-derivation \(\delta \) of \(\mathcal{A} \times_\alpha G \) with \(D(\delta) = D(\delta_0) = D(\delta_1) \otimes B \) there exist a \(k \in \mathbb{R} \), free-generator \(\delta_1 \) and an approximately bounded *-derivation \(\delta_2 \) of \(\mathcal{A} \times_\alpha G \) such that

1) \(D(\delta_2) = D(\delta) \) \((2.1.2) \)
2) \(\delta|_\mathcal{A} = 0 \), \(\delta_1 \) commutes with \(\delta_0 \)
3) \(\delta = k \delta_1 + \delta_0 + \delta_2 \),

where \(D(\delta) \otimes B \) is the set of all \(D(\delta) \)-valued function of \(G \) with finite supports, and \(\delta_0(x)(g) = \delta_0(x)(g) \) \((x \in D(\delta) \otimes B) \).

Remark 2. If \(G = \mathbb{Z} \), \(\delta_1 = l \delta_1' \) for some \(l \in \mathbb{R} \) where \(\delta_1' \) is independent of \(\delta \).
Let \((\mathbb{R}, G, \alpha)\) and \((\mathbb{R}, H, \beta)\) be two C\(^*\)-dynamical systems where \(\alpha, \beta\) commute. Then there is a C\(^*\)-dynamical system \((\mathbb{R} \times G, H, \hat{\beta})\) such that \(\beta_\alpha(x)(\xi) = \beta_\alpha(x) \xi\) (\(\xi \in L(G; \mathbb{R})\)). Then we have the following proposition of fixed point type:

Proposition 3. \((\mathbb{R} \times G)^{\hat{\beta}} = \mathbb{R}^g \times_{\alpha} G\)

Proof. By definition, \(\mathbb{R}^g \times_{\alpha} G \subset (\mathbb{R} \times G)^{\hat{\beta}}\).

Suppose the inclusion is proper, then \((\mathbb{R} \times G)^{\hat{\beta}} \times_{\alpha} G \not\subset (\mathbb{R} \times G)^{\hat{\beta}} \times_{\alpha} G\) since \(\beta\) commutes with \(\alpha\).

Since \((\mathbb{R} \times G)^{\hat{\beta}} \times_{\alpha} G \subset (\mathbb{R} \times G)^{\hat{\beta}} \times_{\alpha} G\), it follows from duality \[\psi\] that \(\alpha^g \psi \in (\mathbb{R} \times G)^{\hat{\beta}} \times_{\alpha} G\), which is a contradiction. Q.E.D.

Comment. We only consider locally compact abelian groups throughout this note.

In what follows, let \(D\) be a \(*\)-derivation of \(\mathbb{R} \times G\) such that \(D(\delta) = D(\delta)\) where \(\delta\) is a generator of \(G\) commuting with \(\alpha\). Suppose \(\delta\) commutes with \(\hat{\alpha}\), and \(G\) is discrete. Then \(D(\alpha) = C\) for \(a \in D(\delta)\). Let \((x_n) \subset D(\delta)\) with \(x_n \to 0\) if \(D(x_n) \to \gamma \in \mathbb{R} \times G\). Since \(x_n = \sum_k \alpha_k^m \lambda_k\) \((\alpha_k^m \in D(\delta))\), using the conditional expectation \(\mathbb{E}\) of \(\mathbb{R} \times G\) onto \(\mathbb{R}\).
one has \(E(x, \lambda(\gamma)*) \to 0 \) and \(E[\langle \delta(x, z) - y, \lambda(\gamma) \rangle] \to 0 \)

for each \(\varphi \) in \(\mathcal{F} \). Thus \(a^m \to 0 \) and \(E[\sum_k (\delta(a^m_k) \lambda(k) + a^m_k \delta(\lambda(k)) \lambda(\gamma)^* \to \gamma_k \lambda(\eta) \lambda(k) \rangle] \to 0 \) where \(\gamma = \sum_k \gamma_k \lambda(k) \) be the Fourier expansion of \(\gamma \) in \(\mathbb{R} \times \mathcal{F} \) (where \(\mathcal{F} \)). Then \(a^m \to 0 \) and \(\delta(a^m_k) \to \gamma_k \) for all \(k \) in \(\mathcal{F} \). Since \(\mathcal{D}(\delta) = \mathcal{D}(\delta) \), it follows from Batty's result \([2] \) that \(\mathcal{D}(\delta) \) is closable. So \(\gamma_k = 0 \) for all \(k \in \mathcal{F} \). Consequently we have the following:

Lemma 4. If \(\mathcal{F} \) is discrete, any \(* \)-derivative \(\delta \) of \(\mathbb{R} \times \mathcal{F} \) such that \(\delta(\delta) = \mathcal{D}(\delta) \) and \(\delta \) commutes with \(\delta \) is closable.

Remark 3. In the above lemma, the conclusion is unclear unless the condition \((\Omega) \) is added.

Now let \(\delta \) be a \(* \)-derivative of \(\mathbb{R} \times \mathcal{F} \) with \(\mathcal{D}(\delta) = \mathcal{D}(\delta) \). Define \(\sigma = \{ x \in \mathcal{D}(\delta) : \alpha \to \delta(\alpha x) \} \) is continuous from \(\mathcal{D}(\delta) \) into \(\mathbb{R} \times \mathcal{F} \}. \) Since \(\delta(\alpha \lambda(\varphi)) = \delta((\lambda(\varphi) \alpha) x) + \lambda(\varphi) \delta(\alpha(\lambda(\varphi) x)) \) and \(\delta \) commutes with \(\delta \), we have \(x \lambda(\varphi) = 0 \) for all \(\varphi \in \mathcal{F} \) and \(x \in \sigma \) if \(\alpha x \in \mathcal{D}(\delta) \to 0 \) and \(\delta(\alpha x) \to x \in \mathbb{R} \times \mathcal{F} \}. \) Then \(\mathcal{E}(x \lambda(\varphi)) = 0 \) where \(\mathcal{E} \) is the projection of norm one from \(\mathbb{R} \times \mathcal{F} \) onto \(\mathbb{R} \). So \(\mathcal{E}(x \lambda(\varphi)) \in \mathcal{L}(\delta) \), the left annihilator.
of I. Since I is a two-sided ideal of $D(b)$, it follows from the same way as Longo [4] that $L(I) = 0$. Thus $E(x \lambda(t)) = 0$ for all $f \in G$. Let $x = \sum x_t \lambda(t)$ be the Fourier expansion of x. Then $x_t = 0$. So $x = 0$. Then S is closable from $(D(b), \|\cdot\|_S)$ into $A \times G$. Therefore we have the following:

Lemma 5. Let S be a $*$-derivation of $A \times G$ with $D(b) = D(b)$. Then S is relatively bounded on $D(b)$ with respect to D_0, namely \(\|S(a)\| = K(\|a\| + \|S(a)\|) \) for all $a \in D(b)$, with some positive constant K.

Remark 4. Since D_0 is a pre-generator, one can not directly apply Longo's result. However, the crucial part of the above proof is due to his idea [4].

By the above lemma, let $F_t = \exp t D_0 (t \in \mathbb{R})$. Then there exist derivations $F_g (g \in L^1(G))$ of $A \times G$ such that \(D(F_g) = D(D_0) \) and \(F_g = \int_G f(t) D_0 \delta * F_0 \).

In fact, since \(\|S(a)\| \leq M (\|a\| + \|S(a)\|) \) for $a \in D(b)$, \(\|S \circ \beta (a) - S \circ \beta (a)\| \leq M \{ \|\beta (a) - \beta (a)\| + \|\beta (a) - \beta (a)\| \} \).

So $t \mapsto S \circ \beta (a)$ is continuous for each $a \in D(b)$. Thus $t \mapsto S \circ \beta (x)$ is also continuous for $x \in D(b)$ which gives
derivations $\hat{\mathcal{F}}_\delta$ for $\delta \in \mathcal{D}(\mathbb{R})$ of $\mathbb{R} \times G$ satisfying (i) and (ii). Similarly, for each $g \in G$ one has a derivation $\hat{\mathcal{F}}_\delta$ of $\mathbb{R} \times G$ such that $\mathcal{D}(\hat{\mathcal{F}}_\delta) = \mathcal{D}(\hat{\mathcal{F}}_g)$ and (i) $\hat{\mathcal{F}}_\delta = \int_G \hat{\mathcal{F}}_g \, dp \cdot \hat{\mathcal{F}}_g \cdot \hat{\mathcal{F}}_g \, dp$.

Moreover, suppose $\hat{\mathcal{F}}_g = \exp(\mathcal{F}_\delta)$ is periodic, then we have that $(\hat{\mathcal{F}}_g)^* = (\hat{\mathcal{F}}_{g})^*$ commutes with $\hat{\mathcal{F}}_\delta$, which follows from Lemma 4 that it is closable. Hence one may assume that it is closed. Let $x \in C^*(G)$, and $(x_t) \in \mathcal{D}^*(\mathcal{F})$ which converge to x. But $\mathcal{F}_x = \int_G \hat{x}(t) \, dp \in \mathbb{R} \times G$.

Since \mathcal{F} commutes with $\hat{\mathcal{F}}_\delta$ and \mathcal{F} is closed, $\mathcal{F}_x \in \mathcal{D}^*(\mathcal{F})$ and $(\mathbb{R} \times G)^* \mathcal{F}$ and $\mathcal{F}_x \rightarrow x$ since $(\mathbb{R} \times G)^* \mathcal{F} = C^*(G)$ by Proposition 1. So $\delta|_{C^*(G)}$ is a closed $*$-derivation of $C^*(G)$ since $\delta(\mathcal{F}_x) \in C^*(G)$.

Since $\hat{\mathcal{F}}_g \cdot \hat{\mathcal{F}}_\delta \cdot \hat{\mathcal{F}}_g = \delta$ for $p \in \hat{G}$ and $\mathcal{F} \cdot \hat{\mathcal{F}}_\delta \cdot \mathcal{F} = \hat{\mathcal{F}}$ on $C(\hat{G})$, $\hat{\mathcal{F}} = \mathcal{F} \cdot \mathcal{F} \cdot \mathcal{F}$ commutes with T on $C(\hat{G})$ where \mathcal{F} is the Fourier isomorphism of $C^*(G)$ onto $C(\hat{G})$, and T is the shift action of \hat{G} on $C(\hat{G})$. It follows from Goodman-Nakagato [3, 5] that there exists a one parameter subgroup (\hat{P}_ϕ) of \hat{G} such that $\hat{\mathcal{F}}(\phi) = \lim_{\delta \to 0} \hat{\mathcal{F}}(\mathcal{F}(\phi))$.
\[f(\lambda f) \text{ for all } f \in D(\mathcal{D}). \] Since \(\langle f, \cdot \rangle \in D(\mathcal{D}) \), one has \(\sigma(\lambda f) = \mathcal{D}(\lambda f) \) for all \(f \in \mathcal{G} \) where \(\mathcal{D}(\lambda f) = \lim_{t \to 0} \langle f, Pe^{-t} \rangle - 1 \). Let \(\mathcal{D}(a \lambda f) = \mathcal{D}(\lambda f) a \lambda f \) for all \(a \in D(\mathcal{D}) \) and \(f \in \mathcal{G} \). Then it is a pregenerator of \(\mathcal{A} \times \mathcal{G} \) such that \(\mathcal{D}(\mathcal{D}) = \mathcal{D}(\mathcal{D}) \) and \(\mathcal{D}/\mathcal{G} = 0 \), \(\mathcal{D} \) commutes with \(\mathcal{D} \). Since \(\mathcal{D} \) is a closed \(*\)-derivation of \(\mathcal{A} \times \mathcal{G} \) and \(\mathcal{D} \) commutes with \(\mathcal{D} = \text{exp}\, t\mathcal{D} \), it follows from Batty [1] that \(\mathcal{D}/\mathcal{G} = k\mathcal{G} \) for some \(k \in \mathbb{R} \). Therefore we have that \(\mathcal{D}(a \lambda f) = k \mathcal{D}(a \lambda f) + a \mathcal{D}(\lambda f) \frac{d}{dt}(a \lambda f) = (k\mathcal{G} + \mathcal{D})(a \lambda f) \), which implies the following lemma:

Lemma 6. Let \((\mathcal{A}, \mathcal{G}, \lambda) \) be a \(*\)-dynamical system where \(\mathcal{A} \) is unital abelian and \(\mathcal{G} \) is discrete abelian. Let \(\mathcal{D} = \text{exp}\, t\mathcal{D} \) be a periodic action of \(\mathcal{A} \) on \(\mathcal{G} \). Suppose \(\mathcal{D} \) is ergodic, then given a \(*\)-derivation \(\mathcal{D} \) of \(\mathcal{A} \times \mathcal{G} \) with the property that \(\mathcal{D}(\mathcal{D}) = \mathcal{D}(\mathcal{D}) \) and \(\mathcal{D} \) commutes with \(\mathcal{D}, \mathcal{G} \), there exist a \(k \in \mathbb{R} \) and a pregenerator \(\mathcal{D} \) of \(\mathcal{A} \times \mathcal{G} \) such that

1. \(\mathcal{D}(\mathcal{D}) = \mathcal{D}(\mathcal{D}), \mathcal{D}/\mathcal{G} = 0 \), \(\mathcal{D} \) commutes with \(\mathcal{D} \), and
2. \(\mathcal{D} = k\mathcal{G} + \mathcal{D} \) on \(D(\mathcal{D}) \).

Remark 5. The pregenerator \(\mathcal{D} \) defined above would
be written as \(\delta = r \delta' \) for some \(r \in \mathbb{R} \) where \(\delta' \) is not depending on \(\delta \). Actually if \(G = \mathbb{Z} \), we have \(\delta'(a \lambda(n)) = i n a \lambda(n) \) for \(a \in D(\delta) \) and \(n \in \mathbb{Z} \).

Let \(\delta \) be a linear mapping from a \(* \)-subalgebra \(D(\delta) \) of \(A \) into \(A \) such that \(\delta(ab) = \delta(a)\delta(b) + \delta(a) \) for all \(a, b \in D(\delta) \) where \(\delta \in \mathbb{R} \) is a fixed element.

Suppose there is a unitary \(u \) of \(D(\delta) \) such that \(\delta = 1 + \delta(u)u^* \), then we have by direct computation that
\[
\delta(u^n) = \sum_{k=0}^{n+1} \delta(u)^k u^k \delta(u) u^{n-k}.
\]
Since \(1 + \Delta(u)(u^*) \), one has that
\[
\sum_{k=0}^{n+1} \delta(u)^k u^k = (\delta(u)u^n - 1)(\delta(u)u^n - 1)\delta(u).
\]
So \(\delta(u^n) = \delta(u)u^n(\delta(u)u^n - 1)\delta(\text{id})(u^n) = \delta(u)(\delta(u) - u)(\delta(u) - u)\delta(u) \) for all \(n \in \mathbb{Z} \) since \(\delta(1) = 0 \). But
\[
\delta = \delta(u)(\delta(u) - u)\delta(\text{id}) \in A.
\]
Since \(\delta(\delta - \text{id}) \) is bounded on \(A \), the conclusion follows. Namely we have the following:

Lemma 7. Suppose \(\mathbb{R} \) is unital abelian and \(G \) is discrete. Let \(\delta \) be a linear mapping of a \(* \)-subalgebra \(D(\delta) \) of \(A \) into \(A \) such that \(\delta(ab) = \delta(a)\delta(b) + \delta(a) \) for all \(a, b \in D(\delta) \) for a fixed \(\delta \in \mathbb{R} \).

Suppose there exists a unitary \(u \in D(\delta) \) such that \(1 + \delta(u)u^* \), then \(\delta = \delta(u)(\delta - \text{id}) \) on \(D(\delta) \cap C^*(\mathbb{R}) \).
for some $a_3 \in A$.

Remark 6. By the above lemma, there is no unbounded γ-cocycle closed \ast-derivation of a_3 has an eigenunitary generating Ω.

Now let $\hat{S}_\gamma (\gamma \in \Gamma)$ be a derivation of $A \times \mathbb{F}$ as in the previous way (following to Remark 4). Then it implies that $\hat{S} = \sum_\gamma \hat{S}_\gamma$ on $D(\gamma)$. In fact, let $S(\lambda)(\gamma) = \sum_\gamma S(\lambda)(\gamma) \cdot \lambda(\gamma) \cdot \gamma(\gamma)$ and $S(\lambda)(\gamma) = \sum_\gamma S(\lambda)(\gamma) \cdot \gamma(\gamma)$ be the Fourier expansion of $S(\lambda)$ and $S(\lambda)(\gamma)$ respectively.

Then $\hat{S}_\gamma (\lambda)(\gamma) = \sum_\gamma S(\lambda)(\gamma) \cdot \gamma(\gamma)$ and $\hat{S}_\gamma (\lambda)(\gamma) = \sum_\gamma S(\lambda)(\gamma) \cdot \gamma(\gamma)$.

Suppose S commutes with β, it follows from Lemma 6 that $\hat{S}_\gamma = \lambda_\gamma + \hat{S}_\gamma$ on $D(\gamma)$ where λ, γ are as in Lemma 6. Let $\hat{S}_\gamma (\lambda)(\gamma) = \sum_\gamma S(\lambda)(\gamma) \cdot \gamma(\gamma)$ for $\gamma \in D(\gamma) (\gamma \in \Gamma)$.

Then S satisfies the condition of Lemma 7. Suppose there exists a unitary $u \in D(\gamma)$ such that (a) $1 \ast S(\gamma(u)u^*) = (\gamma \in \Gamma)$ and (a) $\Omega = C^* (u)$. Since S commutes with β, and γ commutes with $\beta = e^{\gamma}$, which is ergodic, we have $a_3 \in A_1$. Then $\hat{S}_\gamma (\lambda)(\gamma) = \sum_\gamma S(\lambda)(\gamma) \cdot \gamma(\gamma)$ is $[a_3 \lambda(\gamma), \gamma(\gamma)]$. Hence $\hat{S}_\gamma (\lambda)(\gamma) = \hat{S}_\gamma (\lambda)(\gamma) + a_3 \lambda(\gamma)(\gamma) = [a_3 \lambda(\gamma), \gamma(\gamma)] + a_3 \lambda(\gamma)(\gamma)$. Since $\hat{S}_\gamma - \text{ad} (a_3 \lambda(\gamma))$ is a derivation on $D(\gamma)$, one has $\hat{S}_\gamma (\lambda)(\gamma) = 0$ for $\gamma \in \Gamma$.
In fact, since $\delta^*(\lambda(k)) = \delta^*(\lambda(h))(h+k)\lambda(h+k)$, we have that $\delta^*(\lambda(h+k))(h+k)\lambda(h+k)U = \delta^*(\lambda(h))(h+k)U_2 U_2 + \delta^*(\lambda(h))(h+k)U$ for all $h, k \in \mathbb{Q}$. Since $1 \in D(\delta)$, we have $\delta^*(\lambda(h))U = 0.

So $\delta^*(\lambda(h))(h+k)U = 0$ for all $h \in \mathbb{Q}$ or $U_2 U_2 = U$. Since $1 \neq sp(\lambda(h)(h+k))$, we have $\delta^*(\lambda(h))(h+k) = 0$ for all $h \in \mathbb{Q}$. Consequently $\delta = k\delta_0 + \delta_1 + \sum_{\gamma \in \mathbb{F}} ad(\lambda(\gamma))$ on $D(\delta)$. Let $\delta_\mathbb{F} = ad(\sum_{\gamma \in \mathbb{F}} \lambda(\gamma))$ for a finite set \mathbb{F} of \mathbb{Q}-rational with $\mathbb{F} = -\mathbb{F}$. Then $\delta_\mathbb{F}$ are bounded $*$-derivations of $\mathfrak{A} \times \mathbb{Q}$ such that $\delta_\mathbb{F}(\lambda(h)) = 0$ and $\delta_\mathbb{F}$ converges to δ_2 pointwisely on $D(\delta)$ where $\delta_2(\lambda(h)) = \sum_{\gamma \in \mathbb{F}} \lambda(\gamma)$, $\lambda(h) = \sum_{\gamma \in \mathbb{F}} \lambda(\gamma)$. Then $\delta = k\delta_0 + \delta_1 + \delta_2$ on $D(\delta)$ and $\delta_2(\lambda(h)) = 0$ for all $h \in \mathbb{Q}$, which implies the following proposition:

Proposition 8. Let $(\mathfrak{A}, G, \alpha)$ be a C^*-dynamical system where \mathfrak{A} is unital abelian and G is discrete. Let $\beta = \exp t\alpha$ be an ergodic action of T on \mathfrak{A} commuting with α. Suppose there exists a unitary $U \in D(\delta)$ such that (i) $1 \neq sp(\lambda(\alpha)(U^2 U^*) (\beta U_* U^*))$, (ii) $\mathfrak{A} = C^*(U)$, then given a $*$-derivation δ of $\mathfrak{A} \times \mathbb{Q}$ such that (i) $D(\delta) = D(\delta_0)$ and (ii) δ commutes with β, there exist $A \in \mathfrak{A}$, a generator $\delta_\mathbb{F}$, and an approximately bounded $*$-derivation δ_2 of $\mathfrak{A} \times \mathbb{Q}$ such that (i) $D(\delta_2) = D(\delta)$, $\delta_2|_{\mathfrak{A}} = 0$, δ_2 commutes with δ_0,
1) \(D(\beta) = D(\delta_1), \delta_1(\lambda(\phi)) = 0 \) for all \(\phi \in \Phi \), and \(\Pi \delta = \delta_1 + \delta_2 \).

Remark 7. In the case of discrete abelian groups, the Fourier expansion of any element of \(AX_\Phi \) can be taken in the uniform sense. In fact, taking a net \(\{ \phi_i \} \) of positive definite functions on \(\Phi \) with finite support converging to 1, one can show that \(\Sigma \phi_i(\phi) \lambda(\phi) \) converges to \(\Sigma \phi \lambda(\phi) \in AX_\Phi \) uniformly.

Proof of Theorem 2: Since \(\beta \) commutes with \(\delta \) and \(\beta \) is ergodic, we have \(\phi_\beta(u)u^* \in C^1 \). Since \(AX = C^1(u) \) and \(\alpha \) is effective, there are \(Q^1 + 1 \) (Prop. C) such that \(q(\phi) = Q^1 u \). Let \(1 \neq \phi_\beta(u) = \phi(u) \) (Prop. C). Let \(\delta_0 = \int_t e^{int} \delta t \) for \(t \in D(\beta) \) for \(n \in \mathbb{Z} \). Since \(\delta_0 \) commutes with \(\beta \), it follows from Proposition 8 that \(\delta_0 = \delta_1 + \delta_2 \delta_1 \) where \(\delta_1 \) is as in Proposition 8. Since \(\delta_0 \delta_1 + \delta_2 = e^{int} \delta_0 (n \in \mathbb{Z}) \), \(\beta_\delta \delta_0 (\lambda(\phi)) = e^{int} \delta_0 (\lambda(\phi)) \). Since \(\beta_\delta (u^*) = e^{int} u^* \), we have that \(u^* \delta_0 (\lambda(\phi)) \in (AX_\Phi \hat{\phi} = C^1(\hat{\phi}) \) so there are \(\delta_\lambda \delta_0 (\lambda(\phi)) \in C^1(\Phi) \) such that \(\delta_0 (\lambda(\phi)) = u^* \beta_\delta (\lambda(\phi)) \). Let \(\delta(\lambda(\phi)) = \sum_\phi \delta(\lambda(\phi)) (\phi) \lambda(\phi) \) and \(\delta(\lambda(\phi)) = \sum_\phi \delta(\lambda(\phi)) (\phi) \lambda(\phi) \) be the Fourier expansion of \(\delta(\lambda(\phi)) \) and \(\delta(\lambda(\phi)) \) respectively.
Since \(\mathcal{A} = C^*(\mathcal{A}) \) and \(\beta_\varepsilon (\mathcal{A}) = e^{\varepsilon \mathcal{A}} \), we have that \(\delta (\lambda (\beta))(\mathcal{A}) = \alpha (\mathcal{A}) + \sum_{n \neq 0} \delta (n, \beta)(\mathcal{A}) \mathcal{A}^n \) where \(\alpha (\mathcal{A}) \) is the 0-component of the expansion of \(\delta (\lambda (\beta))(\mathcal{A}) \) in \(\mathcal{A} \). Since \(\delta \beta_{\varepsilon} = \alpha \delta_{\varepsilon} + \delta_{\varepsilon} \delta \), one has \(\delta \beta_{\varepsilon} (\lambda (\beta)) = \delta (\lambda (\beta)) \lambda (\beta) \). By uniqueness, \(\int \beta \delta \beta_{\varepsilon} (\lambda (\beta))(\mathcal{A}) \, dt = \lambda (\beta) \lambda (\beta) \) (\(\mathcal{A} \neq \{0\} \), = 0 (otherwise), which is nothing but \(\alpha (\mathcal{A}) \).

Therefore we deduce that \(\delta (\lambda (\beta)) = \delta (\lambda (\beta)) \lambda (\beta) + \sum_{n \neq 0} \delta (n, \beta)(\mathcal{A}) \mathcal{A}^n \lambda (\beta) = \delta (\lambda (\beta)) \lambda (\beta) + \sum_{n \neq 0} \delta (n, \beta)(\mathcal{A}) \mathcal{A}^n \).

Moreover \(\delta (\varepsilon) = \delta \beta_{\varepsilon} \) for all \(\varepsilon \in D(\mathcal{A}) \). It follows from Lemma 7 that \(\beta_{\varepsilon} \lambda (\beta) = \beta_{\varepsilon} (\delta_{\varepsilon} - \mathcal{A}) \lambda (\beta) \) for some \(\beta_{\varepsilon} \in \mathcal{A} \). So \(\beta_{\varepsilon} (\lambda (\beta)) = [\beta_{\varepsilon} \lambda (\beta), \lambda (\beta)] \) for all \(\varepsilon \in D(\mathcal{A}) \).

Since \(\delta \beta_{\varepsilon} \) commutes with \(\mathcal{A} \), we have \(\delta \beta_{\varepsilon} (\varepsilon) \in \mathcal{A} \) for all \(\varepsilon \in D(\mathcal{A}) \). Since \(\delta \beta_{\varepsilon} \) commutes with \(\mathcal{A} \) and \(\beta \), it means that \(\delta \beta_{\varepsilon} \) = \(\delta \beta_{\varepsilon} \delta_{\varepsilon} + \delta_{\varepsilon} \delta \), where \(\delta_{\varepsilon} \) are as in Lemma 6.

Then \(\int e^{\varepsilon \mathcal{A}} \beta_{\varepsilon} \delta \beta_{\varepsilon} (\mathcal{A}) \, dt = \delta \beta_{\varepsilon} (\mathcal{A}) \). Since \(\beta_{\varepsilon} (\mathcal{A}) = e^{\varepsilon \mathcal{A}} \mathcal{A} \), we have \(\delta (\varepsilon) = \delta \mathcal{A} \). Let \(\delta \beta_{\varepsilon} (\mathcal{A}) = \sum a_n \mathcal{A}^n \mathcal{A} \). Then \(a_1 = \delta \mathcal{A} \). Therefore \(\delta \beta_{\varepsilon} (\mathcal{A}) = \delta \mathcal{A} \mathcal{A} + \sum a_n \mathcal{A}^n \). Since \(\delta \beta_{\varepsilon} \) is a *-derivation, we deduce that \(\delta \beta_{\varepsilon} (\mathcal{A}) = \mathcal{A} \delta \beta_{\varepsilon} (\mathcal{A}) + \sum a_n \mathcal{A}^n \mathcal{A} \).

Hence \(\delta \beta_{\varepsilon} (\mathcal{A}) \lambda (\beta) = \delta \beta_{\varepsilon} (\mathcal{A}) \lambda (\beta) + \sum a_n \mathcal{A}^n \mathcal{A} \lambda (\beta) \).

Consequently, we have that \(\delta (\mathcal{A} \lambda (\beta)) = \delta (\mathcal{A} \lambda (\beta)) + \mathcal{A} \mathcal{A} \lambda (\beta) \).

12
+ \sum_{m=0}^{n} n \alpha_{m+1} u^{n-m} \lambda(\beta).

Since \delta = \delta_0 - \delta_1 is a \ast-derivation,
so is \sum_{m=0}^{n} \delta_0 [\delta_0 \lambda(\beta)] + \sum_{m=0}^{n} \delta_1 [\delta_1 \lambda(\beta)] + \sum_{m=0}^{n} n \alpha_{m+1} u^{n-m} \lambda(\beta).

Since \text{ad} (\delta_0 \lambda(\beta)) (u^n \lambda(\beta)) + u^n \text{ad} (\delta_0 \lambda(\beta)) (\lambda(\beta)) = \text{ad} (\delta_0 \lambda(\beta)) (u^n \lambda(\beta)),
we deduce that \(u^n (\sum_{m=0}^{n} \delta_0 [\delta_0 \lambda(\beta)]) - \sum_{m=0}^{n} [\delta_0 \lambda(\beta), \lambda(\beta)] + \sum_{m=0}^{n} n \alpha_{m+1} u^{n-m} \lambda(\beta) \)
\(\lambda(\beta) \) is a \ast-derivation. Let \(a = \sum_{m=0}^{n} a_{m+1} u^m \in \mathfrak{g}. \) Conventionally put \(\sigma(\lambda(\beta)) = \sum_{m=0}^{n} \delta_0 [\delta_0 \lambda(\beta)] - \sum_{m=0}^{n} [\delta_0 \lambda(\beta), \lambda(\beta)] \).

Moreover, put \(\Delta (u^n \lambda(\beta)) = u^n \sigma(\lambda(\beta)) + n a u^n \lambda(\beta). \)
Since \(\delta_0 (u^n) = i^n u, \) we see \(n a u^n \lambda(\beta) = (-1)^n a \delta_0 (u^n \lambda(\beta)). \) Now since \(\Delta (u^n \lambda(\beta)) = u^n \lambda(\beta) + u^n \lambda(\beta) \Delta (u^n \lambda(\beta)), \) we can show that \(u^n (\sigma(\lambda(\beta)) \lambda(\beta) - \lambda(\beta) \sigma(\lambda(\beta))) = n (\delta_0 (u^n) - a) u^{n-1} \lambda(\beta). \) Put \(a = 0 \)
and \(n = 1. \) Then we have \(u^n \sigma(\lambda(\beta)) = (\delta_0 (u^n) - a) u^{n-1} \lambda(\beta) for all \(n \in \mathbb{N} \)
and \(a \in \mathfrak{g}. \) Therefore \(\Delta (u^n \lambda(\beta)) = (\delta_0 (a) - a) u^n \lambda(\beta) + n a u^n \lambda(\beta) = (\delta_0 (a) + (n-1) a) u^n \lambda(\beta). \)
Since \(\Delta \) is a derivation,
we get \(\delta_0 (a) = a \) for all \(a \in \mathfrak{g}. \) So \(\lambda = \mathfrak{z} \Gamma \) for some \(\beta \in \mathfrak{g}. \) Then \(\Delta (u^n \lambda(\beta)) = a u^n u^n \lambda(\beta) = a \delta_0 (u^n \lambda(\beta)). \) Finally,
we obtain that \(\delta (u^n \lambda(\beta)) = (c \delta_0 + \delta_1) (u^n \lambda(\beta)) + \sum_{m=0}^{n} [\delta_0 \lambda(\beta), \delta_1 \lambda(\beta)] \) for some \(c \in \mathbb{R}. \)
Let \(\delta_0 (\lambda(\beta)) = \sum_{a \in \mathcal{F}} [\delta_0 \lambda(\beta), a \lambda(\beta)] \) for \(a \in \mathcal{D}(\beta) \) and \(\beta \in \mathfrak{g} \) where \(\mathcal{F} \) is a finite set of \(\mathfrak{g} - \{0 \} \) with \(\mathcal{F} = - \mathcal{F}. \) Then \(\delta_0 \) is a bounded \ast-derivative
of \(\mathfrak{g}, \mathfrak{g} \) for all \(\mathcal{F} \) and \(\delta_0 \to \delta \) pointwisely. Hence \(\delta \) is approximately bounded. This completes the proof.
References

