有限群の研究

数理解析研究所講究録

発表者

URL
http://hdl.handle.net/2433/105083

Type
Departmental Bulletin Paper

Publisher
Kyoto University
Finite groups with Sylow 2-subgroups of type A_{16}

Hiroyoshi Yamaki

Department of Mathematics, Osaka University

A 2-group is said to be of type X if it is isomorphic to a Sylow 2-subgroup of the group X. If G is a group with a Sylow 2-subgroup S of type X, we say that G has the involution fusion pattern of X if for some isomorphism θ of S onto a Sylow 2-subgroup of X, two involutions a, b of S are conjugate in G if and only if the involutions $\theta(a), \theta(b)$ of $\theta(S)$ are conjugate in X. Also we say that a group G is fusion-simple if $G = \mathcal{O}^2(G)$ and $\mathcal{O}(G) = Z(G) = 1$.

Now we have obtained the following:

THEOREM A. Let G be a fusion-simple finite group with Sylow 2-subgroups of type A_{16}. Then one of the following holds:

1. $G \cong A_{16}$ or A_{17}'.
2. $G \cong A_9 \cdot E_{256}$, the split extension of an elementary abelian group E_{256} of order 256 by A_9 with the action afforded by the 8-dimensional irreducible $\text{GF}(2)$-representation, or
3. G has the involution fusion pattern of $\Omega_9(3)$.

Here $\Omega_9(3)$ denotes the orthogonal commutator group of degree 9 over the field of 3-elements and A_m the alternating group on m-letters.

In the process of proving Theorem A we obtain the following characterization.
THEOREM B. Let G be a finite group with Sylow 2-subgroups of type A_{16}. If G has the involution fusion pattern of A_{16}, then $G/O(G) \cong A_{16}$ or A_{17}.

Proof of the Theorem A is obtained in the following way which appears to be rapidly becoming standard (cf. Gorenstein-Harada [5], [6], Solomon [9]). Let S be a Sylow 2-subgroup of G and A be the unique elementary abelian subgroup of S of order 256. At first we show that the fusion of elements of S is controlled by $N_G(A)$ and $N_G(Z_2(S))$ where $Z_2(S)$ is the second center of S, using results of Alperin [1] and Goldschmidt [2] on conjugation family. Since S/A is of type A_8, the structure of $N_G(A)/C_G(A)$ which is isomorphic to a subgroup of $GL(8,2)$ is determined by theorems of Harada [7] and Gorenstein-Harada [5], [6]. Then the fusion possibilities of involutions follow immediately. Here we can prove that if A is strongly closed in S with respect to G, then $G = N_G(A) \wr A_9 : E_{256}$ by a recent result of Goldschmidt [4]. Characterization theorems of Gorenstein-Harada [5], [6] and Solomon [9] permit the determination of $C_G(a)/O(C_G(a))$ for all involution a in S. Now O is an A-signalizer functor and a signalizer functor theorem [3] implies that $W_A = \langle O(C_G(a)) \rangle$, $a \in A^#$ has odd order. It follows that $N_G(W_A)$ is strongly embedded in G provided $W_A \neq 1$. Since G has more than one conjugacy class of involutions, $W_A = 1$. Therefore $O(C_G(a)) = 1$ and Kondo's characterization theorem [8] implies that $G \cong A_{16}$ or A_{17}.
References

