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A Note on Finite Element Approximation of Evolution Equations

Hiroshi FUJII, Kyoto Sangyo University

0. Introduction

In this note, we consider the finite element method for approximate solu-
tions of mixed initial-boundary value problems of both parabolic and hyper-
bolicvtypes, including the equation of elastodynamics. The main concern is
the problem of stability in the sense of energy norm for hyperbolic problems,
and in the sense of maximum norm for parabolic problems (i.e., the problem of

discrete maximum principle).
We begin by defining some preparatory notions.

1. Stability Functions and Acuteness of Triangulation

1.1 Finite Element Spaces Xg, Xh, Yg and Yh

Assumption: Q is an m-dimensional polyhedral domain with the boundary T.
Definition: Triangulation Th of Q.

T" is a finite set of non-degenerate (closed) m-dimensional simplices A
such that

AET
(2) any face of A€ T is either a face of another m-simplex, or a portion

of the boundary T.

‘Definition: barycentric fragments A!, A=1,..,(m+1)! of AEETh.

Ai, A=1,..,(m+1)!, are m—Simplices which satisfy

(m+1)!
/ ' =
(1) =1 AA A (AiEA),
(2) a vertex of A! is the barycenter of A, and another vertex of A' is a

A A
vertex of A, and '

(3) the intersection of Ai and a face of A (which is an (m-1)-simplex)
is again a barycentric fragment of the face.
Definition: barycentric subdivision B? (i=1,..,m+1) of a m-simplex AE:Th.
With each vertex P.1 of A, Bi is defined to be
B, = J AL
.
PiLAk
Note: mes(B?) = mes(A)/(m+1), i=1,..,m+1,



Note: mes(B?) = mes(A)/(m+1), i=1,..,m+1,
Definition: barycentric domain Bi associated with each vertex Pi of Th.
B, = b
- PiCB;
Definition: Yh = Yh(Q;Th) and Yg = Yg(ﬂ;Th) (piecewise linear finite element
spaces). v '
Yh = {$; @éiCo(ﬁ) and $‘A= linear for each simplex AEETh}
YE = {$; $e;Yh and $[P= 0}
Definition: Xh = Xh(Q;Th) andﬂxg = Xg(ﬂ;Th) (piecewise constant finite ele-
ment spaces).
X = {6; $|B = constant for each barycentric domain B, of Th}
i
X" = 3; p€xX" and 3= 0)
Definition: We say that functions éeiYh and $€5Xh ére associative if $(Pi)=
5(Pi) for all vertices P. of Th.
Definition: Let'@iéYh and $ie X be such that -
3 - g - . '
(1.1) ¢i(Pj) = dij’ and ¢i(Pj) = sij (Gijf Kronecker's delta).

The sets {$i}i§1 and {éi}ifl form the bases of Yh and Xh, respectively.

The space X 1is sometimes called 'the lumped space', since it is used to de-

fine the so-called lumped mass type approximation.

1.2 Acuteness I of the Triangulation
. (k___) is defined to be the minimum (maximum) perpendicular
min ““max h

length of all the simplices A of T .

Definition: «

Definition: Acuteness cAof a simplex A of Th is defined as:

(1.2) O, = mln{—cos(VA.,VAi)} = min

i#j J i#jlvijiElv i g
where ii (i=1,..,m+1) are the barycentric coordinates of a point x&€A with
respect to the point Pi' The vector Vi., j=1,..,m+l, denotes the gradient of
the function Xj’ j=1,..,m+l.and ( , )E and | lE respectively denote the

Euclidean inner product and Euclidean norm in R".

ila (i=1,..,m+1).

©>

Note: \. =
1
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Definitiofi: Acuteness I of a triangulation Th is defined to be the minimum
of all the N i.e., '
-(1.3) ¥ =min o,.
reTh 8
Definition: We say that a triangulation is of acute type if £>0, and of
Strictly acute type if I>o.

Example: m=1: By definition, ZI= 0\ 1.

m=2: Let ny (i=1,2,3) be the three angles of a triangle A. Then,

(1.4) o, = min{eostny))
m=3: Let (i,j,k,8)=(1,2,3,4) be the vertices of a tetrahedron A,
and nij be the angle made by the faces PiPkPZ and PijPl. Then,

(1.5) o, = plg{cos(nij)}.
1,]
Hence, GA is of acute type if and only if ”ij < w/2.

1.3 Estimation of Stability Functions

Stability functions will play an essential role in establishing energy

estimates of time-discrete finite element schemes.

Definition: Stability functions y1=yl(m;Th) and y2=y2(m;Th) are defined as:

m -~
2 ow |2 /y~ 2
(1.6) 1% = kgt ] "‘l/lwll
1 min -~ vheZy Bxl |
2 2 Thad Y2/ - 2 ~ - _.h
(1.7) Yo = KpiptSwp z 5 ”w" (wey , weX ).
www =1 2

An estimate of the stability functions Yq and Y, are given in [1], [2]
for the cases m=1 and m=2. Here, we give an improved estimate of Yy and Y,

with arbitrary space dimension m.

Theorem 1. For any QEYh and v_véXh such that w ~w, it holds that

ow ||2 Ap .2
(1.8) = s —— 1) m+2) [[W]f°, and
=1 2 K.
min
aw |2 m - 12
(1.9) = < (m+1) lw]l®,
g=1119% g 2.
min

where the constant Am is estimated as
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N x 2 (z =20
(1.10) m = ml (2 < 0).

To prove Theorem 1, we first show the following

" Lemma 1. For the basis functions $i and 51 (i=1,..,N), it holds that

m19¢. 42 : R -
(1.11) ) 5}}\ < ; (m+1) (m+2) ”¢i“2 G=1,...1),
=1 L K.
min
and .
my3¢. 2 _ _
112 ]| s 35— @D 115,11 (=1,..,N).
=1 2 K.
min

Proof of Lemma 1. Let A be an m-simplex of Th. Let P. and «, be a vertex of

A and the length of the perpendicular line from Pi’ respectively. Then, (1.11)

and (1.12) immediately follow from

A2 2 mes(4)
6.l = ————,
oyl (m+1) (m+2)

-2 s{A
I5,l5 = mes(d) = and
(m+1) P
o a<bi - mes (A) < mes (A)
2=1 Bxl A K? i K2.
1 min

where ]-”A implies the Lz-integration over the simplex A.

Proof of Theorem 1. Suppose that w and w are expressed as

. m+l . _ - mil _
w = .X wi-¢i and w = .E wi°¢i on the simplex A.
i=1 i=1
Then, we have that
m+1
el = 2@y w2 and
. i
m+1 i=1
m+1 m+l m+l
~ 2 2 2
Wl = _2mes(d) (v 4 2.7 7 W)

(m+1) (m+2)  i=1 b i=1 j=i+l
2 mes (A) ( l_mil
(m+1) (m+2) 2 i=1

On the other hand, we can show the inequality

2
wo ).

(A"

S

aw

axl

Am mes (A) m+l 2

2<__.__.-—-—— w

< P

A K2. i=1 *
min

*) L1
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where AL is the constant given by (1.10). This is shown as follows:

T @2 ml a2 mgl
=) = 7 wo|v. s+ w.ow., (V6.,v6.)..
0=1 Bxl 121 i i'E i,5=1 1] i j°E
i#j mil o,
The first term of the rlght hand is bounded by Z w. /K min® and the second
term is written as {W} [X]{W}, where {W} (w ,..%., ), and K..=0, K. .=
1 Ym+1 ii ij

(V¢ V¢ )E (A#j). We estlmite the spectral r%dius o of the matrix [K]. We
make use of the fact that Z V¢ 0 (since z $. =1 on A). Now, the

j=1 j=1 9 mel
largest Gerschgorin radius r of [K], i.e., r = max Z IKijI is estimated as

m+1 12 it 5

= max ) -(v9;,900p = max|ve;lp < Ve, (22 0)

i j#i i
r

m+1 m+1 2

s max ) |V¢, IE[V¢ l = max ) — s m/k ;o (2 <0).

i j#i R S
Hence, the inequality (*) follows, completing the proof of Theorem 1.

2. Approximation of Second Order Hyperbolic Equations and of Equation of

 Elastodynamics

~ In this section, we discuss briefly the finite element approkimation. of
hyperbolic equations of second order and the equation of elastodynamics. The
main concern is the question of stability in the sense of energy for thc¢ scheme
under consideration. We note that the convergence of the finite element ap-
proximate solution follo&éélmost automatically from the stability under appro-

priate assumptions on the exact solution. See, [1] and [2].

2.1 Model Problems and Accociated Energy Forms

The domain Q is assumed to be an m-dimensional polyhedron. We take the

following as the model problems:

Problem 1. Wave Equation (m 2 1)

32u . ’
(2.1) — = Au+ f in @ x(0,T]
at2
(2.2) u = 0 on FDX(O,T]
au
(2.3) I 0 | on PN (0,T]

where T= fDLJFN, T NI, = ¢ and n is the outward normal direction.



where A and u are the L

with the boundary condition:

i=1,..

(2.10) ;
=0, i=l,

W~
=
L)

(2.11) n.
j=1 )

Associated Bilinear and Quadrat

4 . .
ame coefficients.

,m  on FDX(O,T]

..,l on PNX(O,T].

ic Forms
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Problem 2. Equation of Elastodynamics (m = 2 or 3)
: aZui m 3
(2.9) — = 7 a= Ty * fpe iheom,
3t2 j=1 9%y 1
)
(2.5) 1,.[u] = c... e [u], i,j=1,..,m,
ij K, %=1 ijk2 k&
du. ou.,
(2.6) e..[u] = L+ =) = e ul, i,j=1 m
ij 2 ij Bxi ji > et
with the symmetry assumption on the generalized Hooke coefficients:
(2.7) Cijke = Cjike = Ckeij
also, for any symmetric tensor €40
. v ? 23
(2.8) Z C € [ L U €. ..
fakefii Bk z o & i
15K ijke 1] ij J
Note. (the isotropic case)
(2.9) Cisrg = 130 * #Oulse * %1851

We introduce a bilinear and a quadratic form corresponding to each prob-

lem. problem 1. n
212 Wlu,u#] = Z Qu 35ﬁ>
(2.12) ’ . ox.’9x. °
i=1 1 i
) 2
(2.13) Wul = Whwul = ] lsc )
i=1 i
Problem 2, m
i, k=1
: m
(2.15) Wlul = Wul = ] <ty ful,
i,k=1

s [ul>s

u, uf € Hl(ﬂ)

u, ut € @™

ue @™
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Remark: Korn's Inequality

Under appropriate assumptions on the boundary condition, the so-called

Korn's inequality holds:
du, y2

Bxk

. m
(2.16)

CW[ ul
i,k=1

where C is a constant depending only on the region Q. Hence, W[ u ] can be
an equivalent norm in the space (Wz(l))m. See K.0. Friedrichs[5] for the
case of isotropic elasticity with the first boundary condition, I.Hlavacek-

J. Necas [6] or G. Duvaut-J.L. Lions [7] for general cases.

2.2 Stability Function for Energy Quadratic Form

Definition: Let
1 K
2.17) v = 7 max

Coooo
° i, k,g=1 KA

Remark: For the isotropic case (2.9), Vo turns out to be

(2.18) ‘ v, = A +.§-u,

where A and p are the Lamé coefficients.

Theorem 2. For any associative functions W éi(Yh)m and w éf(Xh)m, it holds
that

v 2(Ym)2 m
A~ o) C o) ~ 2
(2.19), Ww] s —=——3 2wl
K. i=1
: min
and 2
‘ ' ‘ v 2(yq) m
' , ~ 0 L” »p - n2
(2.20), wiwl < = 5-‘2 flw. (",
K_ - 1=1
min
where the chstants'yg and y? are given by
m v 1/2
(2.19)b e —'{Am (m+1) (m+2) }
m 1/2
(2.20)b YL = {Am (m+1)}

in“which Am is the quantity defined by (1.10).
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2.3 Finite Element Scheme. Definitionf

Let YE (resp. XE) be the set of functions $€iYh (resp. $€5Xh) which
satisfy the geometric boundary condition, i.e., $= 0 (resp. ¢=0) on TD.
Definition: Finite Element Continuous-Time Scheme of Consistent Mass Type

Seek a function v = G(-,t)éi(YE)m for each t, 0 <t < T, such that

BZAA m 3 ~ ~ .
(2.21)  <p— v, > + 'Z <Tiooe 6> = <fLé>, 0<ts T, i=1,...m,

at? j=1 J 3
for any test function $65YE, where the finite element stress tensor %ij is
defined to be
~ ~ m ~
(2.22) T Tij[v] = ) %zlcijklekz’ i,j=1,..,m,
A aﬁj
(2.23) ey meyyvl =5 G+ 5 1h3=lm

Definition: Finite Element Continuous-Time Scheme of Lumped Mass Type

Seek associative functions V = 0(-,t)e§(YE)m and v = GE',t)GE(XE)m for

each t, 0 <t < T, such that

2 _ mo -
(2.2) <=V, b> ¢ ] <tgmd o= LB, 0<tsT, s,
ot j=1 j

for any associative test functions @eY}: and ?qSéX}*l.

It i§ easily seen that the "continuous-time schemes' (2.21) and (2.24)

are reduced to systems of ordinary differential equations in terms of
T

i,V L)
,1, 2 1’J 3

the number of nodes which are in Q or on FN. For detail, please refer [2].

For practical numerical computations, we need discretize the schemes with

the nodal displacement vector {Vi}= (vi i=1,..,m, where J is

. . . AT
respect to time. Let tn= nAt, where At =T/p and p is an integer. Let v

and v denote G(-,tn) and G(-,tn), respectively.

¥ Here, we give the definition of the finite element schemes only for the

Problem 2. Definition for the Problem 1 is similarly given.
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Definition: Finite Element 8 Scheme of Consistent Mass Type (8 > 0)

m m
. o (N ~n 3 . 2 A 3 A Mg
(2.25)  <oD Dzv;,¢> + jZI<Tij ’szj‘*” + Bat jZ;DthTijﬁjW--<fi’¢> ;

n=1,2,..,p-1, i=1,..,m,

for any test function $63Y2.

Definition: Finite Element B Scheme of Lumped Mass Type (B 2 0)

n n

m m
-n - . . 2 N U TS T
(2-26) <thD€Vi:¢> + JZ'_L<T13 )E)?j¢> + B At JZI<DtDETlJ ’H.¢>" <fi:¢> L

n=1,2,..,p-1, i=1,..,m,
h

for any associative test functions $65Y2 and ¢&X,.
Remark: A special case B=0 is the so-called central difference scheme. It
is noted that the central difference scheme with lumped mass type approxi-
mation is of explicit in the sense that it can be solved step-by-step ex-

plicitly, while all the other cases are of implicit type.

2.4 Energy Stability of the Finite Element Schemes

Obviously, for the "continuous-time' schemes of both consistent mass

and lumped mass types the a priori energy estimate of the form

T
(2.27) (K+W)IM < C{(Kk+ W) +S £l 23t 11
(o]

holds, where W (t) = W [;(-,t)] (see Eq.(2.13) or (2.15)), and K (t) de-

notes either

» R m yov.y2
K (t) =K [v(:,t)] = %— ) 55 for the consistent mass case,
i=1
3 _ m aGi 2
or K (t) = XK [v(-,t)] = % Z 3T for the lumped mass case.
i=1

With regards to the time-discrete scheme, that is, the B scheme (2.25)
or (2.26), the discrete analogue of the energy inequality does not hold,
unless some restriction on the ratio (At/Kmin) is fulfilled. 1In fact, we

can show the following



Theorem 3. (Energy Stability of the B Scheme of Consistent Mass Type)

The B scheme of consistent mass type (2.25) is unconditionally stable

if B > 1/4, or stable under the condition

At 1 V2(1-g) 1

(2.28)
“min Ao VI-A(1-T)8 yz

(¥rg>0)

if B < 1/4, where ¢ is any positive constant, M is the quantity given by (2.19)b,

y
C
in the sense that, in both cases, the following estimate holds:

(2.29) & ? I D-vE 2 ot 0 oy LT om0
: 7 L lopvil” - w vl < 3 Z ID Vo0 + w 3% + T ac § (€115
i=1 i=1 n=1 i=1

r=2,3,..,p; where peAt = T and C is a constant independent of

‘At and the triangulation.

Theorem 4. (Energy Stability of the B Scheme of Lumped Mass Type)

The B scheme of lumped mass type (2.26) is uncondltlonally stable if

B > 1/4, or stable under the condition

At 1 VZ(1-p) 1

- — (¥t>0)
min /bo/p V1-4(1-z)8 YL

(2.29)

IA

if B < 1/4, where ¢ is any positive constant, y? is the constant given by (2.20)b,

in the sense that, in both cases, the following estimate holds:

m m
-1i 2 N -
2.3 & T oAl e w v < i o Y7+ w 0] + Z st Z €2 1P,
i=1 i=1 n=1
r=2,3,..,p; where peAt = T and C is a constant independent of

At and the triangulation.

Remark: For the proof, see [1], [2] or [4], where the stability conditions and
the convergence in energy norm are discussed for two-dimensional elasto-
dynamics and wave equation. These Theorems give an improved estimate of those
results, including three-dimensional cases also. It is also noted that the
convergence of those schemes to the solution of the original equation can

also be shown under the assumption that the stability conditions are satisfied.

The key to those discussions is the estimate of the stability function

yg or y? given by Theorem 2.
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2.5 A Remark on Linear Visco-Elastodynamics

An interesting generalization of the results in the previous section
is the problem of linear visco-elastodynamics.

The linear visco-elasticity with materials of long memory is charac-

terized by
‘ m : t
@3 - §=1 kg, Sk () +SO By 51eq (85 €1, (5) ds,
where Cijkz are the generalized Hooke coefficients which satisfy the con-

ditions (2.7) and (2.8), and B.

P5ke” Bijkz(x’t) are bounded functions of x

and t, such that

(2.33), Biske™ Bjike
and that
' 2 2 b
(2.33)b Bijkl’ aBiij/at, P Bijkz/at €& L (9x(0,T))

The equation of motion of linear visco-elastodynamics is again given

by Eq.(2.4), i.e.,
: azui
(2.34) p — =
at2 j

ne~—s

39 .
. T Tij[u] + fi, i-= l,f.,m,
J
with the stress-strain relations (2.6).
For the sake of illustration, let us consider the phenomena of wave
propagation on a one-dimensional material of long memory. Eq.(2.32) is

reduced to
(2.35) tlu] = Ceefu] + 7 B(t-s)-e[u](s)ds.
Since efu] = du/dx, Eq.(2.34) is written as

v 3%u 3 3u
(2.36) p— = 3 € 3§.)+f

ot

t 2

o 3x (B(t-s) %%{s)) ds + f,

which is a differential-integral equation.
Existence and uniqueness of the solution of Eqs.(2.32)-(2.34) are dis-

cussed in Duvaut-Lions [7].

Let us construct a finite element approximate scheme for Eqgs.(2.32)-
(2.34):



~Nn l'zl‘l ~N Izl Ii‘ n-s S
T, = C...n €., + At B..., €
ij ijke kg2 ot ijke "k
(2.37) k,2 s=0 k,2
- ~ . n ~ N
= (1) o)y

Corresponding finite element B scheme may be obtained by substituting

this expression into Eq.(2.25) or Eq.(2.26).

Remark: 1In practical computations, the expression (2.37) may cause diffi-
culty in storage of those element-wise strain data éil’ s=0,1,..,n. In many
cases, however, the functions Bijkl("t) take an exponential form in t, and

which makes it possible to compute (fl)gj recursively from (fl)?;l and é?l'

Our main result is that the introduction of long memory term does not
destroy the energy stability. In fact, we have the following
Theorem 6. (Energy Stability of the Finite Element B Scheme for Linear
Visco-Elastodynamics)

The finite element B scheme (2.25) (resp.(2.26)), with the memory term
(2.37) is stable in energy, i.e., in the sense of Eq.(2.29) (resp.Eq.(2.31))
under the same condition on the ratio At/Kmi i.e., Eq.?2.28) (resp. Eq.
(2.29)).

n’

Since all the novelty comes from the long memory term f?, we show only
a brief discussion about the treatment of this term: We let
n n
H[B )u)V] - ..z <B1jk£ ekl(U)’ Eij (V)> 3
ijke
and

- sup(B) = max sup Bi'kz(x’t) sup(B') = max sup
ijke x,t! *I » ijke x,t

)
EE'Bijkl(x’t)%.
What is necessary is to show the inequality
p:-l Caes A .

z At g At-H[Bq S;vs,%--(Dt+D-)vq]

t
q:o s=0
(2.38)

o
Dy 2 R ~
< 8:Cyd %izllng PI€ v wivP) 3o« 02(1+1/5)S§0At-ww51,-

s > 0).

When this inequality is established, then the first term is absorbed by the
energy at the left hand of Eq.(2.28) for small § > 0, and the second term can
-be, thanks to the discrete Gronwall lemma, eliminated, which leads to the

desired energy stability. Now;
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-1

Lot ] seemppd=s;is 30, +D2)7Y]

= i At i At-n[Bq'S, ,~{D +D- )v |

- - z ) At-n[%{nt+nf)(q)Bq'S;QS,Gq]

i at {n[BP7175.55 3P) + neP 275;95,9P) - nBP 175,4°, atD. vp]}

7 at {n[%:9%,9%71 + e 95,9571y

(I) + (I1) + (II1) + (IV) + (V) + (VI).

With the help of Korn'% inequality (2.16) and Theorem 2, we see that

-1 p-1 .
| 1] < sup(B') T Z st ] e, (v 1% < ¢ 7 at-w[es],
s=0 1i,j s=0
Cltrfelianls sup®) e (vp)H Z st ) fle; ﬁsﬂl
’J s=0 - ’J
~ Pl ~
< 5-c-w[vp] + %- T oatew(v®],
s=0
VIV < sup® Tt T Jeg GO € ¢ ) aen®l,
, s=0 i,j s=0
and
. p;l ~S ~p
|1v] < sup(B) Z At iEj]]eij(v slj(At-DE )

p-l . .
<cC {%— [ 5t-W[P®] + §TeW[st+D-iP]}
s=0
p-1 m
1 Yo At m, 2
< s-sz Ate W[V 1+ GJTB- : Y~) o Z “D—
N l<min

Combining the above estimates, we obtain the inequality (2.38).
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3. Parabolic Problems. Discrete Maximum Principle and Lz-sense Stability

It is an interesting question whether or not a parabolic scheme con-
structed in a Finite Element-Galerkin manner still retains the maximum
principle property. In this section, we investigate this discrete maximum

principle property, as well as stability in the mean square sense.
3.1 Finite Element Scheme

We consider the Dirichlet problem of the simplest parabolic equation,

that is, the heat equation:

m .2
(3.1) %%~ = ag ) 07U, ¢ in ox(0,T], (¢ = constant > 0),
2=1 3x2
Q/ .
(3.2) u = g on I'x(0,T],

subject to the initial condition

(3.3) ' ul = u in Q.

Here, appropriate smoothness of the data f, g and Uy is .assumed. The weak
form corresponding to the differential problem (3.1)-(3.2) is formulated as:

Seek a function u é;Hl(Q) such that u-g € Hi(Q), and that

m
(3.4) <% por V<o 28,2 L 45, 0<t < T, for any ¢ € H ().
ot 0=1 0 ax2 3x£ - 0

The fiwnite element scheme of consistent masg type is defined to be:

Seek a function v = v(-,t) € Y" such that

Aa h
(S.S)a V- g é;Yo and

(3.5) & o> + ? <a éﬁ- éé—> = <f, ¢>, 0 <t < T, for any § < Yh
b at’ g1 O 9x,7 9xy R - y o’

Similarly, the finite element scheme of lumped mass type is defined with the

aid of the lumped spaces Xh and ng Seek a function v é_Yh and its associ-

ative function v é'Xh such that

PN h
(3.6)a vV -g G_YO and

V. - T 3$
(3~6)b <'3_t': > + Qzquo Yl 5')'(_2'> =<f, ¢>, 0 <t < T,

for any $ € YZ and its associative function ¢ 6~X2.
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Here, in Eqs.(3.5) and (3.6), é is defined to be a function of Yh which
coincides with g at each node points.+ '

As in the hyperbolic éase, the scheme (3.5) or (3.6) is reduced to a
system of ordinary differential equations
A
G

where [MO;MB] and [Ko;Ka] are N by N matrices (N: number of nodes in Q, N:

.7, O] %{ J+ x5k ig} - {F},0 <t < T,

number of nodes in ﬁ) with

%<$j, $i> (consistent mass) (1

A A
(.} H
1A IA
20 Z
e

3.7y My = <35, 8> (lumped mass)

o ~ ~ 1 <i
3.7, Ky o= Lo 2% M <
: 2=1 "o Bxg’ sz 1 j

1

~1 'B
A
2

1A
e

1A

4

Corresponding to the continuous-time scheme (3.7),‘we make use of a
- family of finite difference approximation in time with a parameter 6, 1 <
0 <1: forn =0,1,2,..,p-1; psat = T,

n+1l

n n
(3.8) MO ;M°] Dtszn} + 0+ [K°;K%] ‘{Z"’“l}\k (1-0) + [K°:K°] S\X“S = {F"}

where D, denotes the forward difference operator in time.

t
Note: © = 0  : the forward difference scheme
©. = 1/2: the Crank-Nicolson scheme
@ =1 : the backward difference scheme
© = 2/3: proposed by Zienkiewicz in [8].
+
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3.2 Study of Discrete Maximum Principle

In this section, we study .the discrete maximum principle problem of
the finite element © scheme (3.8). The key in this argument is the notion
of "triangulation of acute type', introduced by Ciarlet and Raviart [9].

The first step is the following

Theorem 6. Assume that the triangulation Th is of acute typé. Assume also

that the time increment At is taken so as to satisfy

(3.8) Mii - (l—Q)At-Kii 20 foralli, 1 <i <N,
and ‘ -
(3.9) Mij + GAt-Kij < 0 for all i and j such that i#j, 1<i<N, 1gj<N.

Then, the discrete maximum principle

n+l n+1 n k
min ax} +At'fzax

n+1
.} o+ At fn v. < max{ O, Imax’® “m

. n
(3.10) min{ 0, g s Vi minS Vi

(1 <1i<N),

holds for n = 0,1,2,..,p-1, where

o = max{0, max_ Vo 1, ot = min{0, min_ o },
max . min .
1<jsN 1<j<N

(3.11) £ = max{0, eupf" (x)}, f~. = min{0, inff>(x)},

max min

, x€Q xeQ

n n n . . n
and g = max{0, max _g. }, g . = min{0, min _g. }.

max ISJSNS ] - min 1$J(N8 ]

For the proof, see [10].

The conditions (3.8)-(3.9) euarantee the maximum principle (3.10) of
the finite element scheme (3.8). Those conditions, however, give no infor-
mation whether or not the maximum principle holds for a given pair of At,

6 and a triangulation Th, until the matrices [ M ] and [ K ] are actually
computed. Also, Theorem 6 gives no guiding principle how to modify the tri-
angulation Th along with At and O, when they violate the conditions (3.8)-
(3.9). Thus, we need some criteria to check the conditions (3.8)-(3.9)

a priori.

Lemma 2., Assume that the triangulation Th is of acute type. Then, a suf-

ficient condition for (3.8) is given by

(3.12) o (1-0) 7 2

min ‘ (m+1) (m+2)

IA

for the consistent mass case,
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or by
(3.13) o, (1-8) ﬁt < 1 for the lumped mass case.
“min - (m+1)

Proof is easily obtained from the estimates in Lemma 1. With regard to
the second condition (3.9), we remark that it does not impose any restric-
tion on the time increment At, Zf [ M ] is the lumped mass matrix, and if
the triangulation is of acute type. While for the consistent mass type ap-
proximation, the situation becomes to be rather restrictive. In fact, the
following lemma implies that the time increment At cannot be taken too
small (and, at the same time, it cannot be too large from the condition (3.
12)).

Lemma 3. Assume that the triangulation is of strictly acute type. Suppose
ihat [ M ] is the mass matrix of consistent type given by Eq.(3.7)b. Then,
if At is chosen as

(3.14) 0 0 ﬁ; N S
max Ze(m+1) (m+2)

then the condition (3.9) is satisfied.
Proof is given from Eq(1.2) and <$i,$j>A = mes (A)/ (m+1) (m+2), |V-$ilE
= l/Ki. For detail, see[10]. Now, combining Theorem 6 with Lemmas 2 and 3,

we finally obtain the following
Theorem 7. (Maximum Principle for Lumped Mass Type Scheme)

Assume that the triangulation Th is of acute type. Then, the solution
of the finite element scheme of lumped mass type (3.7) satisfies the dis-

crete maximum principle (3.10) if

(3.15) o (1-6) —o% ¢ 1
. 0 K<,
min (m+1)

Theorem 8. (Maximum Principle for Consistent Mass Type Scheme)

Assume that the triangulation Th is of strictly acute type, that is,
£ > 0. Then, the solution of the finite element scheme of consistent mass

type (3.7) satisfies the discrete maximum principle (3.10) if

(3.16) o (10) 2L o 2
. o K2 .
and min (m+1) (m+2)
At 1
(3.17) oy 8] - >

max T (m+l) (m+2)



Remark: From Theorem 8, we see that the value of @ cannot be taken arbi-

‘trary. For example, let us consider a triangulation with regular simplices.

Let . =« = x. It is easily seen that I = 1/m, and that the condi-
min max
tions (3.16) and (3.17) are reduced to
(3.18) — < < 2
‘0« (m+1) (m+2) (1-6) (m+1) (m+2)

where we put A :'aOAt/Kz. In order to let the two inequalities hold simul-

taneously, © must be greater than or equal to m/(m+2), i.e.,

e

[\

1/3 for one-dimensional case,
(3.19) e = 1/2 for two-dimensional case,

~and 6 = 3/5 for three-dimensional case.

3.3 Stability in the Mean Square Sense

In this section, we assume for simplicity g=0. We say that the finite
- . o . /\n
element scheme (3.7) is stable in the mean square sense if the solution v

satisfies the inequality

~ry 2 ol aGg ’ ~o[1 2 ol 1y 2
(3.20) 7+ el sz | < V7« c Joaef£° >0,
n=0 2 n=1
. r=1,2,..,p; pAt =T,
where Gg - g™y (1-0)-v".

Such a priori estimates have been used by several authors to study
stability aﬁd convergence of discrete approximations for parabolic equa-
tions. Douglas and Dupont [11]have investigated a class of step-by-step
Galerkin schemes with the case © » 1/2, and obtained unconditional stabi-
lity and error estimates in the mean square sense,

, This problem, i.e., obtaining a priori estimates of (3.20) type is es-
sentially that of a priori estimation of the spectral radius of [MO]—I[KO],

and Theorem 1 has already provide an effective tool for this purpose.
Theorem 9. (Stability in the Mean Square Sense for Lumped Mass Type Scheme)

The finite element scheme of lumped mass type (3.7) is stable in the
sense of (3.20), if

(3.21) max{ 0, a_(1-20) ——} < -2z
where min Am(m+1)
f 2 (2 0)
(3.22) A

L 1 mtl (2 < 0).

11

«
L3

}
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Theorem 10. (Stability in the Mean Square Sense for Consistent Mass Type Sc.)

The finite element scheme of consistent mass type (3.7) is stable in
~ the sense of (3.20), if
At 2
—) e —,
min Am(m+1)(m+2)

(3.23) max{ 0, ao(l-ZG)

where Am is the constant defined by Eq. (3.22).

3.4 Some Numerical Illustrations

l ' * ‘ ‘ : In the following,
A we give some numerical
' illustrations on Lz-
sense stability and
the maximum principle
sense stability (L°°~

stability). All the

® examples are one-dim-

2_ _
L2-stable / 1)

o

ensional; the acute-

1=
( ,59}

1
2
e ——

1 ness assumption is
~

automatically satis-
fied.

~~

(Im)

X-____X

0 | | ] | ‘

Q
Ny

(13

N
/
Ay

Lz—kstabvle
& L*-stable

0

Fig.1

1/2

Stability Region for Lumped Mass Type Scheme

Fig.l shows the
stability region for
the lumped mass type
scheme, where A is
aoAtsz. (Mesh spacing
is assumed to be uni-
form.) In this case,
the situation is not
so much differént from
that of finite differ-
ence cases.

Fig.2 gives the cor-
responding stability
region for consistent

mass type scheme.
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It is seen from Fig.2 that the consistent mass type scheme is more

restrictive from the standpoint of Lm-stability. For a fixed O, too small
X as well as too large A

may yield L”-unstable solution, and which is
clearly shown in Fig.S5.

Fig.3 and Fig.4 show an example of L2/Lm-stab1e computation (Fig.3),
and an example of L"-stable, but not L”-stable computation (Fig.4).

LA l
I ®
0
]
! X
3 o |
|
1 |
1™ |
|
L
! C)
! N
| -
i Z
| © P
o |
| .
'._ |
L (V) T
\ v L?-stable
\ |
| v
\ (m) (1)
\ ‘ ®
1 \\\ /
.\\ />< /' L2-stable
\\' ®
o /./ & L=-stable
1/2 e ’—.“’,;, \.
1/3¢-=-*" e
I /X .\.\ i
1/6x—>" . L2-stable (1I) S—o—uo,
Lol I Y I
0 1/3 1/2 1

Fig.2 Stability Region for Consistent Mass Type Scheme
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Lz—stable, but not L*-stable
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Fig.5 Too small A causes Lm—instability, as well as too large A!
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