110

Ergodic properties of the equilibrium processes associated with infinitely many Markovian particles

Tokuzo SHIGA and Yoichiro TAKAHASHI

Consider a system of independent identically distributed Markov processes which have an invariant measure λ . It is known that if each process starts from each point of a λ -Poisson point process at time zero, these particles are λ -Poisson distributed at every later time t>0. In this paper we are concerned with the ergodic properties of the stationary process obtained from such a system of particles, which is called the equilibrium process. Sinai's ideal gas model is a special example of the equilibrium processes.

Let $(X \ \mathcal{G}_X \lambda)$ be a 6-finite measure space, and denote by $\mathcal{K}(X)$ a family of all the counting measures on X, i.e. each element of $\mathcal{K}(X)$ is an integer-valued measure with a countable set as its support. $\mathcal{K}(X)$ is equipped with a 6-field \mathcal{G} which is generated by $\{ \mathcal{F} \in \mathcal{K}(X) : \mathcal{F}(A) = n \}$, $n \ge 0$, $A \in \mathcal{G}_X$. An element \mathcal{F} of $\mathcal{K}(X)$ is represented by $\mathcal{F} = \sum_i \delta_{x_i}$ where $\mathcal{F}_X(A) = 1$ if $x \in A$ and $\mathcal{F}_X(A) = 0$ if $x \notin A$. Let \mathbb{T}_X be a probability measure on $(\mathcal{F}(X) \mathcal{F})$.

 Π_{λ} is λ -Poisson point process if it satisfies the following; for any disjoint system A_1, \ldots, A_n of \mathcal{B}_{X} such that $\lambda(A_i) < +\infty_{i=1,\ldots,n}$ $S(A_1), \ldots, S(A_n)$ are independent random variables on $(\mathcal{B}(X), \mathcal{C}_{X}, \Pi_{\lambda})$, and $\Pi_{\lambda} \{ S : S(A_i) = n \} = \left[\frac{\lambda(A_i)}{n} i^{-1} \exp[-\lambda(A_i)], i=1,\ldots,n. \right]$

Next, we define the equilibrium processes associated with Markovian particles.

Let X be a locally compact separable Hausdorff space and \mathfrak{G}_X be the topological Borel field of X. Denote by W the path space of X, that is, each element of W is a X-valued right continuous function with left limit defined on $(-\infty,\infty)$, and define the shift operators $\{\theta_t\}_{-\infty< t}$ \emptyset was usual; $(\theta_t f)_s = f_{t+s}$ for each f of W.

Put $S = \mathcal{N}(X)$ and $\Omega = \mathcal{N}(W)$. Denote by $\{H\}_{\infty < t < \infty}$ the shift operators on Ω induced by the shift operators $\{\theta_t\}_{\infty < t < \infty}$ on W, i.e.

$$\Theta_{t}\omega = \sum_{i} \delta_{\theta_{i}f_{i}} \quad \text{if } \omega = \sum_{i} \delta_{f_{i}}$$

Define S-valued process $\{\xi_{\mathbf{t}}(\omega)\}_{-\infty<\mathbf{t}<\infty}$ on Ω as follows;

$$\xi_t(\omega) = \sum_i f_t^i$$
 if $\omega = \sum_i \delta_{f_i}$

Then $\xi_t(\omega)$ is right continuous in t in a natural topology.

In our situation a motion of one particle is given as a Markov process on X and denote by $\left\{P_{t}(x,dy)\right\}$ its transition probabilities.

Assumption

 $P_{\mathbf{t}}(\mathbf{x},\mathrm{d}\mathbf{y})$ is a conservative Feller Markov process and have a Radon invariant measure λ , that is, $\left\{P_{\mathbf{t}}(\mathbf{x},\mathrm{d}\mathbf{y})\right\}$ induces a semi-group of contraction operators $\left\{T_{\mathbf{t}}\right\}$ on $C_{\infty}(X)$, and $\int T_{\mathbf{t}}f(\mathbf{x})\,\lambda(\mathrm{d}\mathbf{x})=\int f(\mathbf{x})\,\lambda(\mathrm{d}\mathbf{x})$ for every f of $C_{\mathbf{0}}(X)$.

Under this assumption $\{T_t\}$ is, also, a semi-group of contraction operators on $L^2(X \setminus \beta_X \lambda)$.

<u>Lemma</u> There is only one σ -finite measure Q on (W, \mathcal{B}_W) such that for $-\infty < t_1 < t_2 < \cdots < t_n < +\infty$ and $\{A_i\}_{i=1,2,\ldots,n}$

Q[f;
$$f_{t_{1}} \in A_{1}, f_{t_{2}} \in A_{2}, \dots, f_{t_{n}} \in A_{n}$$
]
$$= \int_{A_{1}} \lambda(dx_{1}) \int_{A_{2}} P_{t_{2}-t_{1}}(x_{1}, dx_{2}) \dots \int_{A_{n}} P_{t_{n}-t_{n-1}}(x_{n-1}, dx_{n})$$

In Particular Q is $\{\theta_t\}$ -invariant.

Denote by \mathbb{B} the σ -field generated by $\{\omega \in \Omega; \omega(A) = n\}$ $n \ge 0$, $A \in \mathcal{B}_{x}$ and put $\mathbb{P} = \mathbb{T}_{\mathbb{Q}}(Q$ -Poisson point process). We consider $(\Omega, \mathbb{B}, \mathbb{P})$ as our basic probability space.

Proposition 1. $\{\Omega, \mathbb{B}, \mathbb{P}; \{\S_t\}\}\$ is a right-continuous Markov stationary process with \mathbb{T}_{λ} as its absolute law.

The Markov process defined above is called the equilibrium process associated with $[\{T_t\}, \lambda]$. Our purpose is to investigate the ergodic properties.

Proposition 2. The following (i), (ii), and (iii) are equivalent.

- (i) $(\Omega, B, P; \{\xi_t\})$ is metrically transitive.
- (ii) $\lim_{t\to\infty} \frac{1}{t} \int_0^t \int_K P_s(x,K) \lambda(dx) ds = 0$ for every compact subset K of X.
- (iii) $\lim_{t\to\infty} \frac{1}{t} \int_0^t (T_s f, g)_L^2(\lambda) ds = 0$ for all f and g of $L^2(X, \lambda)$.

<u>Proposition 3.</u> The following three statements are equivalent.

- (i) $(\Omega, \mathbb{B}, \mathbb{P}; \{ \}_{t \in \mathbb{R}^n})$ has the strong mixing property.
- (ii) $\lim_{t\to\infty} \int_{K} \lambda(dx) P_t(x,K) = 0$ for all f and g of $L^2(X,\lambda)$.
- (iii) $\lim_{t \to 0} (T_t f, g)_{L^2(t)} = 0$ for all f and g of $L^2(X, t)$.

Proposition 4. The following three statements are equivalent.

- (i) $(\Omega, \mathbb{B}, \mathbb{P}; \{\}_{1})$ is purely non-deterministic.
- (ii) $\lim_{t\to\infty} \int_X (dx) [P_t(x,K)]^2 = 0$ for every compact subset K of X.
- (iii) $\lim_{t\to\infty} \| T_t f \|_{L^2(\lambda)} = 0$ for every f of $L^2(X,\lambda)$.

Proposition 5. $(\Omega, \mathbb{B}, \mathbb{P}; \{\S_{\underline{t}}\}_{\infty < t < \infty})$ is purely non-deterministic if and only if $\mathbb{E}[\S_{\underline{t}}|\S_0]$ converges to λ vaguely in probability.

Next we study the Bernoulli property of the shift $flow\{\bigoplus_{1=\infty<1<\infty}\}$ It is easy to see that $\{\bigoplus_{1=\infty<1<\infty}\}$ is a flow on the probability space $(\Omega = \mathcal{N}(W), \mathbb{R}, \mathbb{R} = \mathbb{R}_0)$. So, we define the Bernoulli property in the strong sense.

 $(\Omega, \mathbb{B}, \mathbb{P}; \{\mathbb{Q}\}_{-\infty < t})_{\infty}$ is called a Bernoulli flow if there exists a σ -subfield ζ_0 of \mathbb{B} and $\zeta_t = \mathbb{Q}_t \cdot \zeta_0$ satisfies the following conditions;

- (i) $\zeta_t \subset \zeta_s$ for any t < s
- (ii) $\bigcap_{t} \zeta_{t} = \{ \phi, \Omega \} \pmod{\mathbb{P}}$
- (iii) $\bigvee \xi_t = \mathbb{B}$ (mod. \mathbb{P})
- (iv) for any t < s there exists a σ -subfield ζ_t^s of B such that $\zeta_s = \zeta_t \vee \zeta_t^s$ and $\zeta_t \perp L \zeta_t^s$.

The following lemma is a criterion of the Bernoulli property of our shift $flow\{\bigoplus_{t}\}_{t=1}$.

Lemma Suppose that there exists a real measurable function $\Upsilon(f)$ on the σ -finite measure space (W, \mathcal{B}_W ,Q) such that for almost all f w.r.t. Q (a) $\neg \infty \langle \Upsilon(f) < +\infty$

(b)
$$\tau(f) = t + \tau(\theta_t f)$$
 for all $t \circ f R^1$.

Then, $(\Omega, \mathbb{B}, \mathbb{P}; \{\mathbb{B}_t\}_{t = \infty})$ is a Bernoulli flow.

We can show the following proposition by appealing to this lemma. Proposition 6. Suppose that $\{T_t\}$ is transient in the sense that $\int_0^\infty (T_t \varphi, \varphi)_{L^2(\lambda)} dt < +\infty \text{ for every } \varphi \text{ of } C_o^+(X).$ Then, $(\Omega B P; \{\Theta_t\})$ is a Bernoulli flow.

The equilibrium process $\{\xi_t\}$ induces a factor flow of $\{\Theta_t\}$. Since a Bernoulli flow $\{\Theta_t\}$ in our sense is a Bernoulli flow in the weak sense (i.e. the automorphism $\{\Theta_t\}$ is Bernoulli for each $t \neq 0$), the shift flow induced by $\{\xi_t\}$ is also a Bernoulli flow in the weak sense by the theorem of Ornstein.

Finally we can prove a central limit theorem related to the equilibrium process. Denote by $G_{\mathbf{c}}(\mathbf{x}) = \int_{\mathbf{c}}^{\infty} T_{\mathbf{c}}(\mathbf{c}) d\mathbf{c}$ if the integral is well-defined.

<u>Proposition 7.</u> Consider any function $\emptyset \in L^2(X, \lambda)$ which satisfies $(G[\emptyset], |\emptyset|)_{L^2(\lambda)} < +\infty$ and $(G([\emptyset], |\emptyset|), |\emptyset|)_{L^2(\lambda)} < +\infty$. Then, we have

$$\lim_{t\to\infty} \mathbb{P}\left[\omega;\alpha \left\langle \frac{\int_{o}^{t} \langle \mathcal{G}, \, \xi_{s} \rangle \, ds - t \cdot \langle \mathcal{G}, \, \lambda \rangle}{\sqrt{2 \, (\mathcal{G}, \, G\mathcal{G})} \, L^{2} \, (\lambda)^{x} \, t} \right\rangle \beta\right] = \frac{1}{\sqrt{2\pi}} \int_{\alpha}^{\beta} \exp\left(-\frac{x^{2}}{2}\right) \, dx \quad \text{for } \forall < \beta \ .$$

Let $\{Q_t(\xi,d)\}$ the transition probability of the equilibrium process defined in Proposition 1.

In general, $\{Q_{\mathbf{t}}(\S, d\eta)\}$ has many invariant measures besides λ -Poisson point processes. In this paper we treated only the equilibrium processes with λ -Poisson point processes \mathbb{T}_{λ} as its absolute law. But this is reasonable because of the following proposition.

Proposition 8. Suppose that

 $\lim_{t\to\infty} \sup_{X\in X} P_t(x,K) = 0$ for any compact set $K\subset X$.

Let $\Pi(d\xi)$ an invariant probability measure with respect to $\{Q_t(\xi,dl)\}$. If the stationary process generated by $[\{Q_t(\xi,dl)\},\Pi(d\xi)]$ is metrically transitive, $\Pi=\Pi_{\lambda}$ for some P_t -invariant measure λ .

Referrences

- [1] D.S.ORNSTEIN, Factors of Bernoulli shifts are Bernoulli shifts, Adv. in Math. 5, p.349-364, 1970.
- [2] Y.G.SINAI-K.L.VOLKOVISKII, Ergodic properties of the ideal gas with infinitely many degrees of freedom, Funl. Anal. and its Appl., 5, No.3, p.19-21, 1971.
- [3] H.TOTOKI, A class of special flow, Z. Wahr. und verw. Geb. 15, p.157-167, 1970.