Homomorphisms of differentiable dynamical systems By Toshio Niwa

Inthis note we consider the following problems.

Let (M, \mathcal{G}_t) and (N, \mathcal{Y}_t) be differentiable dynamical systems (D.D.S.). Assume that there exists a homomorphism, i.e. differentiable mapping $\mathcal{T}: M \longrightarrow N$ such that $\mathcal{T} \cdot \mathcal{G}_t = \mathcal{Y}_t \cdot \mathcal{T}$ for all $t \in \mathbb{R}$. Under these assumptions, what relations can exist between the structures of (M, \mathcal{A}) and (N, \mathcal{Y}_t) ?

Then we obtain the following results. For the proofs, see [1].

2) Theorem 1. Let (M, \mathcal{L}) and (N, \mathcal{L}) be D.D.S.'s and \mathcal{T} be a homomorphism of (M, \mathcal{L}) to (N, \mathcal{L}) .

If M is compact and the system (N, \mathcal{H}) is minimal, then \mathcal{T} is a surjective mapping of maximal rank, and as a consequent of it, M is the total space of a locally trivial fibre space over N, the system (\mathcal{H}) preserves the fibres, and the naturally induced system on the base space is isomorphic to (N, \mathcal{H}) .

Theorem 2. Let $\pi: T^{m} \to \mathbb{N}$ be a homomorphism of a quasiperiodic motion (T^{m}, \mathcal{T}_{t}) to D.D.S. $(\mathbb{N}, \mathcal{H}_{t})$, and $r = \operatorname{rank}$ of π .

Then $\pi(T^{m})$, image of π is an r-dimensional invariant submanifold of \mathbb{N} , which is homeomorphic to an r-dimensional torus T^{r} , and the restricted system of $(\mathbb{N}, \mathcal{H}_{t})$ to $\pi(T^{m}) \subset \mathbb{N}$, $(\pi(T^{m}), \mathcal{H}_{t}|_{\pi(T^{m})})$ is C° -isomorphic to some quasi-periodic motion (T^{r}, \mathcal{T}_{t}) , i.e. there exists a homeomorphism \mathbb{N} of \mathbb{T}^{r} to $\pi(T^{m})$ such that

 $h \cdot \tilde{\zeta}_t = \chi_{t, \eta(T)} h$ for all t.

Here (T^{n}, \mathcal{T}_{t}) is called a quasi-periodic motion, when $T^{n} = \{ (x^{i}, x^{2}, \dots, x^{n}) : x^{i} \in \mathbb{R} \pmod{1}, i=1,2,\dots, n \}$, and $\mathcal{T}_{t} : (x^{i}, \dots, x^{n}) \bowtie (x^{i} + w^{i}t, \dots, x^{n} + w^{n}t), \mod 1, \text{ where } w^{i}, \dots, w^{n} \text{ are rationally independent.}$

References

- 1 . T. Niwa: Homomorphisms of differentiable dynamical systems, to appear.
- 2 . T. Niwa: Classical flows with discrete spectra, J. Math. Kyoto Univ. 9-1 (1969) p.p. 55-68.
- 3 . V.I. Arnold- A.Avez : Problemes ergodiques de la mecanique classique, Gauthier-Villars, Paris (1966).
- 4 . S. Smale: Differentiable Dynamical Sydtems, Bull. A. M. S. 73 (1967) p.p. 747-817.