ooooboooao
2040 19740 26-34

26

L.imit Theorems for Continued?Fractions
Kenji Nagasaka

The Institute of Statistical Mathematics

O. Introdu”ction: In this paper we shall discuss'several limit theorems
for cohtinﬁedffractions. 7 In the first section we define the continued -
fra(;tioﬁ expansion with notations in Billingsley's "Ergodic theory and
information' and mention its ergodic property with applications.

Next, »undker the mixing éondition of exponential order we shall state
ihnit theorems which are sufficient for applying to continued-fractions and
ta related 'algorithm;s.‘ These theorems are the general‘izations of the
central limit theorem and tvkvle law 6f the iterated logarithm 1o non-inde~
pendént cases. |

Finally, applying thése limit,theorerhs for continued-fractions, we
get results in theorems 1, 2, and 3.

1. Definitions and preliminary remarks.
\A:ny nﬁmbezj w in the umt _}i}pter}va‘l has a sir:nple continued—fractiqn ex-
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pansion
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where the partial quotients an( - ) are positive integers. The expansion

terminates after finifely many steps if and only if w is rational. 'If w

has the expansion (1), then

R |
(2) _ ,
w. = al(u)) + w!
where
/. 1/ 1 .
(3) YT fptw) Y fagwy) T

which is also a number in the unit interval whose parﬁal quotients are
the same as the translates of‘ thgse ofw. Since al(u)) is the integer part
[1/w] of 1/w, and uo( is its fractional part {1/&/«) } , we are led to study -
the transformation T that carries w to {l/w } .

For easier comprehension, we introduce the usual set-up: Let Q =

[0, 1), % the Borel g--field over () and define T by

’ {1/w} if wéc
(4) Tw = {
0 if w=0,

If we define ’

(5)

[1/w] if w#o
a(w) = {
7] ifw=¢u

and

2l n=1 2, oo

a(w) = a(T
n
then al( w), az(u)), --- are just the partial quotients in the continued-

fraction expansion of . The n-th approximant of w is

©  fagw) @) T ) T ey
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and w is then represented by

p(w) + (TwW)p (W)
(7 W= n n-1 ’
q(w) + (Tw)q (W)

where these integral-valued functions pn(u) ), qh( w) are defined by the

following recursion formulae;

a (Wp__ (W) +p__(w), nzl,

1

p (w) =1, p(w) =0, p(w)
(8) { ! © "
q_4(w) =0, q (w) =1, q (W) =a (w)q (W)+q »(w) n21,
, Which satisfy .
. _ - (_1)2
(9) P, {(w)a(w) — p(w)g (W) =(1)", n20.
The transformation T does not preserve Lebesgue measure A, but

does a useful measure on Sf namely Gauss!s measure

’ 1 dx
(10 P(A) = o7 LT AeF.

' This measure is not only‘ T—ihvariant but also equivalent to Lebesgue
mgasure A, i.e, Pand A are ‘absolutely continuous with respect to
each other. But if we omit the secor}d condition, one could find another
T-invariant measure, which will be discussed somewhere else. |

Khinéhine proved many measuré-theoretic results about continued-
fractions, ‘kbut his proofs‘ are complii:ated by the fact that he made no use
of the ergodic theorem. |

The ergodicity of ';his fransformation,T was first prqved by Kﬁopp
in 1926 and with a’differ"enf proof by kRylyl—Nardzgawski. According to the’

ergodic theorem, if f is an integrable function on the unit interval L s
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_then it holds

N-1 . 1
(11) lim _i_ Z f(Tnu)) = B [ f(x) dx
- N=>00 N n=0 log 2 0

for almost all w with respect to A (or P).

Taking f to be the indicator of the set {LJ a (w) = k} , we see that the

1

asymptotic relative frequency of k among the partial quotients al(u’) ),

a(w), ---1is equal to
2 ‘ 1
1 k dx 1 (k+ 1)?
(12) g2 | 1 1+x ~Tog2 ° W(k+ 2)
: k+1
= lim —L#{i“N”‘a(u)):k} a,e
N T R

N-—mo
where # { 1 £N; } indicates the number of integers i< N satisfying the
condition in the brackét., In particular, it is seen that the partial quotients
are a.e, unbounded.

Taking f (w) = log al(u) ), we see that

n > 1 log k/log 2
(13) lim,\/al(uj) -8 (w) = I (1 - ) e
n->% k=1 k“ + 2k

Also by virtue of the ergodic theorem, we see that

2
1 \ 7
(14) lim — log ap{w) = ——— a.e.
n-»co 121og 2

Another type of limiting properties of continued-fractions is the
limit theorem, such as Gaussian law, the law of the iterated logarithm

or Poisson's law, most of which were proved by Doeblin in 1940, These
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Iimiting laws aré based on the mixing condition of T of expoﬁential border,
which is called Gauss-Kuz ’mip's theorem (or simply, Kuz'min’,.‘s theorem),
In the next section we give more precise limit theorems with rémainder
for mixing sequence of random variables.
2. The central limit theorem with remainder and the law of the iterated
logarithm.

We shall state the central limit theorem with remainder 271/(1 the la§v '
of the iterated logarithm aécording to W. Phillip_b‘y which he attempts to
unify probabilistic number thebry. First, we consider a sequehce of prob-

ability spaces < (0 N’ F Py ), N=1, 2, --- > and for each N =1, 2,

NY

--~ a sequence of randdm variables (XN ,n=1,2 ---, nN > defined
' : ) n

on { £2 N’ F N PN ). By M . We mean the g~ -algebra generated by

* the random variables XN , 1gagng&bgn ‘Under the mixing condition

. n N'
of exponential order,
(15) .~ P(AB) - P(A)P(B) &« e “TP(A)P(B) ( x>0)
for any events A € M(N), and B € M(N) s
: 1t ) t+n n
N
we have the next result.
Theorem A. Let ¢ ,n=1,2, ---, ; N=1,2,--- > be a dou-
Theorem A. Let <Xy nN

ble sequence of random variables centered at expectations with
2 2
sup, o | Xanlm < 1, andsy = E(nZ:HN XNn) - 00 as N-—»oo,

Suppose the condition (15} and moreover



-
[

M+H M+H 0

(16) Z FiX l <« E< Z.x XN ) (H— o)
n= M+ 1 n=M+1 "n
uniformly in M=0,1,2,---. Then
’ o

1 1 [ , s s

(an N Zu Xy <) = = | expl-t7/2)dt + OCs ' T1ogs ).
n< Ny ‘/2 T w
‘We can relax the condition (15) by replacing e-)\n by X (n) with
/ 1 3 - . .

Z."X 1/ 3 <%, but with some additional conditions { say, the estimate

for the sum of forth moments) required. The remainder term worsens

1/10

to O(s ).

Theorem B. Under the same hypothesis in the theorem A, we have
. -
| 2 % |
(18) P{limsup = 1}: 1.
N 00 \/ 2 2
2 SN loglog SN

3. Application of limit theorems to continued-fractions.

We return to the ergodic transformation T in section 1. For a set

of positive integers (bl’ b2, -~ b ), we call Ab -——b the fundamental
1

interval of ranknwith(bl, --=, bn), where

(19) Ay b ={w ;s aw)=b, - a(w) fbn} ,

Let f(n) be any sequenée of positiw}e integers and let En be the event
{uu ; fan(u)) 2 ‘f’(n) } . Since P¢{ En) = O(1/ P (n)), it follows from Bérel—
Cantelli lemma that if ’Z, 1/ Y(n) converges, then an(w) > $(n) occurrs
finitely often, except on a set of measure 0 (P or N\). If the events {Erj ,

or the functions an(u} ), were independent, the statement of Borel-Cantelli
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&
1émma in divergent case (i.e. 2,1/ ¥(n) = o ) would follow immediately.
But by easy calculations, we see that fhe events En occur infinitely often
for almost all w if J,1/ $(n) =00 . Our subject is to give a quantitative
statement to the term "infinitgly often' with the help of the preceding the-
orems.

In order tb apply the theorem A and B, the following iemma is neces-
, sary. By Mab we. denp‘ce the T-algebra generated by the ‘fundaméntal i‘n—

tervals of rank kwith a<k<&¢b. Then we have | |

and B & Mt+n o Ve have

1t
(20) - P(AB) - P(A)P(B) € P(A)P(B)p",

Lemma. For any sets A eM

where P <1 and the cénstants implied by « are namerical,
‘We are now in a position to apply the theofem A and B to obtain
Theorem 1. LetA(N, w) be the number of integers n ¢ N satisfying
van(w) e Y(n). Let jox(n)—wﬁ be a sequence of integers with 3,1/ $(n) =

oo , Put

1

(21) P (N) =

Z 1og(1 +

log2 ngN ¥ (n) ) ‘

Then for any probability measure V , absolutely continuous with respect

to the Lebesqgue measure X, it holds

AN,w) - M) O
: exp (-t7/2) dt

(22) Viw

-0

Moreover, for almost all
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[AN, w) -3

(23) lim sup =1,
© Noo 423 (N)loglog &(N)

The order in their remainder terms depends on the measure V.
By using almost the same procedure, we have
Theorem 2. For almost all w,

log q(w) — N T°/(121og 2)

(24) lim sup - \ =1
| |  Nooo Y2 &N loglog N -
where .
. 1 . ; :
-2 -1 2 RS Tt
(25) ¢ = lim N ( log qN(x) - N R7/(12 1og‘2)) ——— > 0,
0 ' (1+x)log2
Moreover
1 9 P
(26) P{ — (log q, ~ N/ (121og2)) < o
T JN
d
1 9 log log N 1/2
= exp (-t /2)dt + O('——————-—— )
2R log N

A slight modification of theorem 1 is as follows

Theorem 3. Let f(k) be a function satisfying

; 1_ ¢
(27) f(k) = O(Kk? )
with some ¢ >0. Put
1 (k+ 1)2
(28) K = 2. f (k) log———

log 2 ; k(k+2)

Then we have |
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N
2 fla(w)) — NK
(29) lim sup : — = g

N -+ 00 '\/ﬁ log log N

for almost all w, T being sb_me constant.
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