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Socio-Combinatorics

by Konrad Jacobs

in Erlangen

Everybody knows the marriage theorem of Ph. Hall [3]
and W. Maak [7] (see aslo Halmos-Vaughan [4]1, Maak [8],
Jacobs [5]) as an example of a combinatorial theorem whiéh
allows of a completely elementary proofvand has a sociologi-
cal interpretation. It is the purpose of the present article
to bring three more theorems of the same character to the
attention of the reader: V. Strehls theorem on unreliable
coalitions, K. Arrows dictatorship theorem, and the friend-
ship theorem of ErdGS-Rényi;Sés. It is to be admitted that
Arrows dictatorship theorem is the only one among fhese four
which originally stems from sociological investigations. 1In
all‘other cases the sociological interpretation was only
given after the theorem had.been found in the course of
combinatorial investigations. The coming of "marriage
theorem" gbes back to Weyl [10], and "friendship" seems to
héye been mentioned first by Wilf [11].

We will outline an unpublished proof of V. Strehl for

~his theorem, Kirman-Sondermanns [6] proof of the dictatorship

theorem (although this is not the shortest proof; for this
see Blau, J. #. [12] ), and Wilfs [11] proof of the friend-
ship theorem. Ail proofs are quite elementary and suggest

themselves (as well as the theorems, of course) strongly for



being included in lectures for a wider audience like those
published in the Selecta Mathematica series of the Springer-

Verlag.
. 81. Unreliable coalitions.
Let X be a finite set, to be interpreted as the voting

body of some parliament. Nonempty subsets C of X are

called coalitions accordingly. A voting function on the set

of all coalitions is a *1-valued function v such that
v(C v D) = v({(C) (CAb=29¢, v(C) =v(D)).

A voting function is called linear if there are rationally

independent reals c(x) (x€ X) such that

v(C) =1 iff § c(x) > 0,
seC :
It can be shown that in all cases where the power |X| of
X 1is <4 every voting function is linear. For IX{_iS
there are nonlinear voting functions.

There are obviously only the following fwo Ways in which
the values Vv(E), v(F) of 2 coalitions E, F can uniquely
determine v {C):

1) C 1is the disjoint union of E and F, and v(E)=v(F).

We have then
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2)7 C and E are disjoint with union F, and vV (E)=-v(F).

We have then
v(C) = v(F)

(because otherwise v(C)=v(E)=-v(F), which is impossible).
E _and F can exchange their places in either‘l) or 2), of
-course. In both"caSes we call the set {E, F} a derivation

of C.

Definition 1.1. A coalition is called unreliable (for v)

if it has no derivation.

Unreliability of C thus means: however you split C,
the two parts do not vote in the same way; and no matter

what you add to C,  its vote is the vote of the union.

There are, of course, some trivial cases. Take e.g.
a linear v with all c¢(x)>0. Then the only unreliable
coalitions are the singletons. Or take a linear v with

c(x)>0 except for one x=x,, where |c(x0)|> ; c(x).
X#x
0

Then again thé singletons #XO and X are the only unreliable
coalitions. The reader is invited to invent more complicated
examples on the same line.

Consider now the coalitions as vectors in RX via their
indicator functiomns. The above examples suggest that there
are always at least |X| 1linearly independent unreliable

coalitions. There are counterexamples showing that this is
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not generally true for |X|>7. But there is one easy result,
which is a small particle in a large bulk of unpublished
investigations of V. Strehl running under the headline

nfluctuation theory'.

Théorem 1.2. If v 1is linear, then every coalition is a
jinear combination of unreliable coalitions, i.e. there are
!X[ linearly independent unreliable coalitions.
.
In Qrder to prove this, one has only to realize two
things
1) passing from C to a derivation {E, F} implies a
representation of 1C as a (rational) linear combihation

of 1E and 1F. | | -

2) If E and F constitute a derivation of C, then

| el > 15 ecoml, |1 e

xeC y€E z €F

(exercise). Running through successive derivations one
builds a binary '"tree'" which ends up in unreliable coalitions

after a finite number of steps.
§2. The dictatorship theorem.
Let again X be a finite set which is to be interpreted

as the set of the individuals in a society. Let A be a

finite set of "alternatives" and put |A|=n. Every indi-
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vidual xeX chooses one of the n! possible total strict

orderings of A as its individual preference order in A.

Write

a < b
f(x)

if, for such a choice having been made by all individuals, x
prefers b to a. Let C denote the set of all (n!)IXI

possible s}fstems f of individual preference orders.

Definition 2.1. A mapping s of C into the set of all

n! possible preference orders in A 1is called a social
choice if it obeys the following two rules:

1) Unanimity: If a < b for all xeX, then also a < b.
» . £(x) ’ _- s (f)

2) Independence: ‘Let f, g, a, b be such that a < b iff
' £(x) ’
a < b. Then
g(x)

a < b iff a < b.
s (£) s (g)

Definition 2.2. A family ¢#F¢g X 1is said

1) to win over its complement for s if

a < b (x €F), b < a (x¢F)
f(x) £(x)

imply a < b for every f €C, a,be€A.
s (£)

2) to rule (for s) if a < b (xe€F) implies a < b
£(x) f(x)

for all f e€C, a,b€A (no matter what the x¢F do
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about’ a and b).

A ruling singleton is called a dictator (for the given s).

Arrows famous result is

Theorem 2.3. For n>3 _ and every social choice there is

exactly one dictator.
The proof outlined here is due to Kirman-Sondermann[6].

The first step is a proof thét, for any social choice s,
the system of all families winning over their complements is
the same for all couples a#b in A.  One does it by first
replacing a, then b by some other alternative in A. Thus
we can, for the rest of the proof, limit ourselves to, say,

three fixed elements a, b, ¢ of A.

The next step consists in proving that the system of all

families winning over their complement$ forms an ultrafilter.

Let us outline how it is shown that e.g. the intersection

EAF of two such families is again such a family:

For xe FAG we choose a < b < c.
f(x) f(x)

For x€FN\G we choose b < ¢ < a.
f(x) f(x)

For x€ GNF we choose ¢ < a < b.
f(x) f(x)

For x¢FuUG we choose ¢ < b < a.
f(x) £(x)
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Now we see that for xe€F=(FaAG)V (FNG) we have b < c,
f(x)

and for x¢F we have c < b. As F wins over its
‘ £(x)

complements, we have b < c.
s (f)

Similarly we have for x€G=(FAG)Y(G\F) a < b -and for
, £(x)

x¢G we have. b < a. As G wins over its complement, we
' £(x)

have a < 'b. By transitivity, a < c follows. But for
s(f) s(f)

Xx€FnG we have a < ¢, and for xéFAG we have ¢ < a,
e £(x) £(x)

thus showing that also FaG wins over its complement. By
similar arguments the other‘uyltrafilte‘r‘ properties are verified,

In the third 'sétep of the proof we show that the ruling
families form an ultrafilter, more precisely: Let F be a
winning family and a < b (xe€F). Then .[ x’ a < b};F,

- £(x) : f(x)

hence belongs also to the aforementioned ultrafilter, i.e. is
.Win'n“ing, and a < br”fdllows,' i.e.” F rules.
' s(f)

' The last step in the proof consists in realizing that
an ultrafilter contains exactly one singleton. In our case,

this is the dictator.

‘One. can establiéh'an uitrafil-ter,théorem of the above
type alvso{ for infinite X, and for SQ-,célléd "weak orderings"
" (Fishburn [2]). 1In this more general situation one can prove
the converse statement that every ultrafilter in X 1is
induced by some social choice” S. |

The proofs clearly show that it is mainly the axiom of

- 7 -
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independence ('forgetfulness'") which is responsible for the
existence of a dictator. But no analogous theory avoiding

dictatorship reasonably is known to me.
§3. Friendship.
Let X be a finite set (of persons) and -~ a non-
reflexive non-transitive symmetric binary relation in X

which we call "friendship". Let us assume the following

Friendship Axiom. For any x,y€X with x#y there is

exactly one
z = F(x, y)e€X

such that x~.z, y~z, i.e. any two different persons have

exactly one common friend.

This axiom is e.g. fulfilled in the following

Example 3.1. X has an odd number 2n+l of elements, and
there is»one X which is the friend of everybody (ai"poli—
tician") while the rest of 2n ~persons can be partitioned
into n couples of friends. We may picture this situation

as follows
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The friendship theorem 3.2 below states that this example

represents the general case.

" Theorem 3.2. If the friendship axiom holds, then there is

exactly one "politician" x,, |X]= odd = 2n+1, and the re-
maining 2n persons can be divided into n couples of
friends.

We outline the simple proof given by Wilf [11] in 1971.
The friendship axiom strongly suggests the use of the theory
of projective planes. Actually, if we denote for every X
by 2(x) the set of all friends of x, i.e. &(x)={y|x~y},
and call the &(x) "lines'", 2&(x) being the line determined
by x, then the friendship axiom reads as the following
well-known axiom for the projective plane: -
Axiom I:  Any two different lines intersect in exactly one
point: x#y implies 2(x)n 2(y)={F(x,y)}.
It also reads as .
Axiom II. Through any two different points x, y there is
eXactly one 1iﬁe, namely Q(F(x,y)).
For the projective plane there is still the
Axiom IO. There are four different points, no three of them
iying on the same line. |
This axiom II can be derived from the
Assumption: There is no "politician', ie. fof any x€X
there is at least one y#x such that ygél(x).

We omit the derivation qf axiom II from this assumption
as well as the derivation of the?rem 3.2 from the existence

of a "politician" and concentrate upon leading the assumption

- 9 -
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to a contradiction.

Under the assumpfion, we have X as a finite projective
plane with the lines 2(x). Well-known elementary statements
about finite projective planes (see e.g. Ryser [9]) show that
there 1is a natural number 'm such that

1X] =m? +m + 1
and this is also the number of different lines. m 1is the
number of points on every line as well as the number of lines

through one point, and we have m>1 in our case. Let us

number X={xi,..g;x 5 } and likewise {2(x)|x:EX}={2(x1),
m-+m+1

oy (X )} and let us consider the incidence matrix

m2+m+l

where
'I if Xj El(xk)

LO otherwise

Since x 4£x, we have ajij (j=1,...,m2+m+l) and hence
trace (A) = 0. On the‘other hand A is a real symmetric
mapping and can be put into diagonal form by a procedure
which doesn't change the trace. 1In order to compute the
diagonal form, i.e. the eigenvalues and eigenvectors of A,
we first do the same with A2=B. This matrix has the easy-

to-handle form
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m+1 1 1 . . . 1

B = 1 1 m+tl . . ., 1

1 1 1 . . . m+l

In fact the diagonal elements count the number of coincidences
of xel(y)» and yef(x) for a fixed x if j'runs. The

non-diagonal elements count the number of coincidences of
X €4z) and z €L(y)

for fixed x#y (it happens exactly once, namely for z=F(x,y)).
Now it is easy to see that B has the following eigen-

values and eigenvectors:

1) (m+1)+(m2+m)=(m+1)2 is' a simple eigenvalue for the
eigenvector (1,...,1).

2) m 1is a ‘(m2+m)-fold eigenvalue for the eigenvectors

(x, -1, 0, 0, . . . , 0)
(0, 1, -1, 0, . . . , 0
(0, 0, 1, -1, . . . ’ 0)
(0, o0, 0, 0, . . .1, -1)
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It is immediately visible that these m2+m+l eigenvectors

mZ+m+1

of B=A2 form an orthogonal base of R Hence they

are also the eigenvectors of A, for the eigenvalues m+1,

tv/m,...,*/m and A may be orthogonally transformed into
the shape'
[ m+1 o 0 ]
+v/m
+ym
. O t/m |

The trace still being 'O, we obtain
O=m+1+(u1—u2)/rﬁ

where My is the multiplicity of eigenvalue +v/m, and Hy

is the multiplicity of eigenvalue -vm. Clearly
Ul"'llz:m"'m
and thus we arrive at

M, = l(mz +m + v/m + —l).
2 2 =

This, with u, an integer, mnow easily leads to a contradic-

tion, because then
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"
=
+
—

A
5|

als® is an integer, hence /ﬁ=% with relatively prime

integers u>0, v, and we get V2m=u2 showing m=u2

hence au=u2+1 which has no integer solution a for u>1l
(the latter being a consequence of m>1); Having thus
arrived at a contradiction, our assumption is false and a

"politician'" exists. This proves the friendship theorem

3.2.
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