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Abstract

The mathematical structure of the quantum field
theory is investigated with the help of the -so-called
non-standard mathematics. It is seen that there exists
a renormalized Hamiltonian defined as a self—adjbint
operator, and that it determines the S-matrix almost
uniquely. The perturbation expansion of the S-matrix
converges absolutely at least in the non-standard

sense.
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1. Introduction

As it is well known the quantum field theory, from the
beginning of its birth, has fatalistic difficulties called the
difficulties of divergence. Those difficulties are partially
removed by the renormalization theory. Especially, in quantum
electrodyﬁémics the agreement between experimental and theore-
tical values is almost surprising. Such agreement alibws us to
presuppose that the renormalization theory provides a true
explanation of the nature, at least. in quantum électrodynamics.

The main purpose of this article is to make a first step to
the proof of this presumption based on a mathematically rigorous
foundation witH respect to the formal and/or willful operations
arising in<the renormalization theory.

We shall begin, at first, to construct a field theoretical
model described in terms of non-standard mathematicsl). This
model enablés us to give a rigorous meaning to the divergences
in the perturbation expansion. The renormalized Hamiltonian of
such a model, defined as a self-adjoint operator, determines the
S—métrianlmost uniquely, and the perturbation series converges
absolutely, at least in the sense of non-standard mathematics.
However, we are left with the problem whether the resultant series
converges rapidly sobthat the first few terms may give a good
approximation. The absolute convergence of the series is proved
in terms of the non-standard language, and hence the proof of it
in the standard sence is still an open question.

In the following discussions we make use of ®% scalar the-
ory for'simplicity. Essentially Same results can be obtained in

other renormalizable theories, especially in quantum electrodynamics.
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2. an—standard Hamilton models

Let ¢y be a non-standard natural numbérl) greater than any
other standard’numbers, and let P(x) and?t(x) be the canonicai
field variables such that . |

o) = £ guad), TR =L ke

| o (2.0 1)
[Py B = -t&p o [Pe,Pr) =0, [3a,8)=0

where {€Q¢Z)}is a complete set of orthonormal functions over
(.*R)3 . The canonical variables P(Z) and TU(Z) satisfy the -
canonical commutation relations as operator—&alued (S}ﬂ)R:qunc_

tions:
L@, ¢ = -0 8@R-7)
(2.72)

[, hl=0, LP@D,PH1=0.

The total Hamiltonian H 1is then defined as

2 . '2. v ,
H = s'facix { e @IHTPRDF mle@)y + Hp 3
where H; 1s a certain function of ® and is bounded below.

In~§4'we shall deal with the specified renormalized interaction

Hamiltonian

Hr = [ (¢) + 8n' Jae (90)" 4 89 [ure (e02)*

- Wwhich really satisfies the condition stated above. Because of the

orthonormality of i E&Cﬁ)} , we can rewrite the terms in (2. 3) as

o A fof. 4 of Math . WWM#



(2. 4)

Let *LZ('G‘) be the non-standard Hilbert space of the square-in-
begrable functions on G, and make a realization of f Ibot, Zd\'

in it by py :—[éag—o(and Z)‘::%c{ . The Hamiltonian H then becomes

Ho= -+4 + Tz )

where A is a Léplacian in (U -dimensional Euclidién space (*/R )w.
If we restrict G to a certain (standard) compact regibn““ in
(*[R)w , then U(%) is a continuous function of % - (Zl i Ew)
and 1is bounded below.

The ’Aiyroof of the existence of nontrivial examples of Hamilton
model comes from the fact that there exist a non-trivial solution

of the Schrodinger equation

s

iga{?(%f): (“%A +U(%))§Z’£%t), (2. 6)

In fact, under certain conditions, the boundedness of U enables
us to shbw; that the solution of this equation does exist uniquely.:.
For example, we can treat it as a mixed problem.' Let us put the

initial and boundary condition as
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y?cgw =fz) | 5¢G ,7%%‘)? *L*(G)
(o« + ﬁg%ﬂf)/bq =0

Then the solution of'(2.‘6) and (2. 7) can be written as

(2. 7)

WPizt) ::%j Qp \2—?)\kt Yetz) . 8

where ,Ak‘s and y&z’s are the eigenvalues and eigenfauncions,

respectively, of the eguation

(40 +UE) -2e) e =0 @9

Since the 'LPK 's Sa’cisfy the boundary condition (2. 7) and since
the totality of the eigensolutions of (2. 9) is known on *L2(g)2)
the expansion (2. 8) with Qg :f(f)s%)is the unique solution of
(2. 6) and (2. 7). ’

The Hamiltonian H diagonalized in *LZ(G) is a self-adjoint
operator. Therefore the operator I&zgzéxp(—th) is unitary. It

connects the Scrédinger picture to the Heisenberg picture:
YiEt) — Ue PiEL) = PI3)
X — T ?{?)U} = P&, t) (2. 10)
TR — T ) Uy = TR L)

in which the Heisenberg variables 9((x, t) and EFKX, t) satisfy

. A
the equal-time commutation relation as operator-valued (:7”)£?

functions

L]
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[ mXt, pgt] = -7 8R-g)

. 11)

, ) B / (
L mx’,t), mg’,t)j =0 , [PV, ?(jf)] ::02.

It is worth noticing that there also exists an interaction
picture in our model, which we shall powerfully utilize in the

discussions in §§3 and 4. Let H, bea free Hamiltonian

Ho = = [a § (@) + (@) + m PR)
(2. 12)

= -ip +TE)

It is easily seen that the second term 1is bounded helow (positive:

definite) and the solution of the eigenvalue equation

S (FHlo - Er ) My = O | (2. 13)
is dense in *L2(G). Hence we cari;expkahnd the solution of ’(“2. 6)
ans (2. 7) by IU]/@? as |
- (9] 3 ‘ ,
WYizt) = nzé, Crt) Mr (Z) (2. 14)

Let us observe the time dependence of bk(t) E?ck(t)eisktrﬁ

N o
Pbett) = 2 boit) €t Ot i) 21

Now, if we define a new operator HI(t) = eLH"fHI e-".H"t , we

finally arrive at the wave equation in the interaction pictiure:

&P = Hilt) P G
o |
Pty =2 brlt) e .
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The operator ‘67'. is unitary since H is self-adjoint.

| F\or" é given standard theory, different choices of W s fed(:i’)f
or’*L2(G) lead to various models which are, however, physically
equivalent with each 'o‘ther', and which give almost same S-matrix

if renormalization is- accomplished.

3. Realization of standard theory v

Let Cja(x) and J((x) be the canonical field variables (in
a certain model) defined in the preceding section, and 1et us
take off the so-called zero p01nt energy W in order that the

lowest elgenvalue of H cise exactly zero.

Ho= = [d¥x /Uoé)) (ﬁ%ij)i‘.ﬂ#(gbfz))z} ~-W, G-

The time dependence of the operators in the 1nteractlon plcture

is the f‘ollow1ng

w00 = Mgty e = G

The express:mn of ?(x) is not so éimpié'bec‘aus‘e of the 3 's
in the integrand of Ho. However, we can show thev fbllowing
theorem:

[Theorem 1] The operator 3"‘(}() is almost equal to m )Sp(x)
as an operator-valued (y)kz;functlon, w1th a suitable choice of
the bases { ed(i?)}

Proof: Since fj’)RX(f/)Ri is total in (%)kﬂ we may restrict
ourselves to f(x) = u(t)v(—)?)

c}cf) = v [ Ho, )]
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= - Jdw e ] (V) 7 if eu(2) Ca®) Jex)

3] 5 , (3. 3)
+ ot i) 2 &) eut@) fro |
A=)

- <w - '
Now Pr) = il Balt) &(F)  ana fem) = ud) 37, e (@)
where u&'s are rapidly decreasing with respect to ¢ in the
standard sense. Hence we have

fd“f /' SPC:X)Z &(CIJQO(C%)]L&) jm P f,ff’ﬁj

%-—

fabc f /" dBQ,/(v/cp(:v)),’\}/g (%((52/) e, %) 7[(9() (3. %)

]aoc Pee) Pf ) + fdec att)z U &) v 99(%)

Let us try to estlmate the last term:

e wety z U e (®) 7P |
w 3. 5)
=|| 5 2 t&f o Fatt) u(t)jm @) 7 ep(m)il

od=w+|
Choosing G of *L (G) satisfying ?gxf gﬁjl~ Q é-”z » and obser-

ving the equality

I 8(5@) =1 e“H"Jc ZP ~CHot g = ) BF Il

we get

h £ (3. < ‘ ‘
the r.h.s. of (3. 5) = 62“=ZM| F'Z=' | U |

0o , . (3. 6)
x [atlutr] -] [ ex@r | € () -
Some suitable cholce of the basis §eg@ | (for example Hermite

i functions)bmakes it possible that only a few terms survive in the

right hand side of (3. 6) with ¢ 's and ( 's in a finite neigh-
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borhood of {4 . Since the Uy 's are rapidly decreasing, it becomes
smaller than any power of 1/ . VWe conclude, therefore,
Plto+m* f) = 0 (3. 7)

on a dense subset of ¥ .§
The result obtained above enables us to write ST(X) as an

operator-valued (& )p#function such that

NiWw

P = ()7 [ dome) (g e FF + al P *) .o

where OLdep)is an invariant measure defined on the hypefboloid
Vo = 1P pr=m, P01}

We next prove: 7
[Theorem 2] The function 6(1,%’}5 L P, 50(‘1:')_:[ is seen to be
an "embodiment"*) of the standard Paﬁli-Jordan function [)ﬁt—){).
Proof: It is almost obviaus since g(x, x') satisfies the fol-

lowing relations

A Y= A ’ —
(D+a*) DxXI= 0, By [, =0

(3. 9)
A
20 D%, X)) Iitarxa’ = -~ 8({2_:}?’)'
If we define the functions 7
- .
—7L3 Forpoe P .
Faeo =(m)" [ap ogry e P Frpy, o

Fipy e (P)r¥

it is easy to observe that

%) See Definition 2 of the Mathematical Appendix.



142

PF) = [ dtmp) Fep) a*c,b) ,

(3. 11)
3"‘f+) ] dOm(p) Flp) @cp) .
We have on the one handv
CP), PGIT S [dmlp) [dOmeg)
(3. 12)

xFh Jip Cap, ag ]

and on the other hand the relation g(x, x') = D(x-x') éssures '
C 9, 93] = = Jobe [ doc’ _f(x)[)(oc—?c)g (z’)(3 s
joz,@,,,cp) Fep ?’cp)
'He,nqel we conclude
Cawp, vaf(Z):I = 2w CSC'P)"E)) . (3.1
Similafly we get

Cay, atpd = 0, cafp,alp] =0,
o | o | (3. 15)

[alp), e = -20, SF-F) .

With the help of the definition of SO(X) and the expression of
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So(x) the following relations hold as relations between operator-

A
valued (:70/)"74: functions

[Ho, atp) ] = wp atep)
| (3. 16)

[ Ho, atpp I =, — wp atp)
Hence we can interpret the, a*(p)'s and a{p)'s as creation and
annihilation operators, as is usually done in the standard theory.
If we write @o for the (non-degenerate) eigenvector belon-
ging to the lowest eigenvalue Eo =0 .of' HO, we may, with the
help of (3. 16), interpret the states Qp(f-_)_@o as one particle
states. In general the vectors @P( wy. .. So(j‘_(m) @-o repre-
sent the embodiments of n-particle states. On the other hand,
because of the positive-definiteness of HO the vectors
go(f_,f”) o P @o must be null. It can be easily seen that
the space 7,2 3), which is generated in the standard way from @o
by the ?(f_)'s, is the embodiment of the standard Fock spacej:ﬁF.

We give here, without proof, the relations which hold for -

(9’)/29 X (9/)'@)( - functions:
(P, T Poo Pad ®) = Driz- x)
(., T -+ Pua) o) | (3. 17)

, ,
= w2 P %) (B0, Tt 08 - Gy B)
where the symbol \J/ indicates the omission of the factor fP(xj).
In such a way one can construct all the relations which appear
in the standard theory described in the interaction picture. If

we take, at this stage, the quotient of our model by the relation
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= , we would go .over into tThe standard q# theory which is mathe-
matiaally vague. At the same time there reappear the difficulties
usually observed. The reason why those difficulties reappear is
now obvious: the interaction does not keep i%_ﬁinvariant and we
must carry it on in the total‘spacej{d but on the other hand the
relation ‘= 1is not a cdngruence relation inj{, so that we can not

.

cateh it up‘with the standard mathematics. That is the reason why we
must consider’the non-standard models. .We\believe that without :
the help of these models.we can not clear up the mathematical
structure of the quantum field theory and grasp the meaning?of the

renormalization procedure.

4. Renormalization

Let us begin to solve the wave equation
i & Pr) = Hrt) Pt) BENCRES

which is established in §2.
The wave operator u(t, to) defined by 7;,7:/(1:.) = U(t, ’co)q_)(to)

satisfies the equafion
”B% Uit te) = Hp Ut to) (4. 2)
The formal solution of Eg. (4. 2) is given by

Ultite)
B 00 ‘ f tm-l . ) (4. 3) p
=0t F e e T bttt

where we have put the initial condition U(to, to) = 1.



145

[Theorem 3] The formal sSolution (4, 3} is really‘the solution of

"Eq. (4. 2).
Proof: Since HI "is a polynomial of % = ( %I oo %LU) and
since

LHpw = I ettt Hp e CHt = 1 H |l

the compactness of G of *Lz(G) guarantees the existence of

D & *E’such that || Hyl| < D. Hence there holds the estimation

t o1 |
dty - [ oty Hr(h) -+ Hrtta) || & 5 (¢-8)" D7
V]t et Hrth) - Hrtto) || & g (626)" D
The right hand side of this inequality vanishes as n=—00 .l
In the standard SP4 theoryu) each term of the perturbation
expansion of S-matrix is finite if we adopt thé so-called re-

normalized interaction Hamiltonian

Hr(t) = 3 [d* (Pr)? + Son” [ ax (Peo)’
| | (4. )

+ 89 [ax (pe)*

which is mathematically vague, and if we invoke the completion of
the renormalization procedure. Renormalization essentlally consists
in the rearrangement of the terms under;the summation, but since

the quantiﬁies turning up are always divergent, the procedure has
only a formal meaning. We embhasize that the rearrangement is
.hecessary because the last two terms of (4. 4), which serve for

the cancellation of the divergences, are regarded as higher order
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o , e .
i et R A

perturbetions in g. Each term is then uniquely determined accor-

ding to the physical postulate, the so-called rénormalization

condition.

The renormalization in the standard theory induces the renor-

ones, but the mathematlcal structure of those are far clear and
simple enough to grasp.

In general, rearrangement of the terms in infinite series
criticallybleads to-different results so that they are unreiiable
eo bear physical meanings. We must show, therefore, that the
renofmaliied interaction givee a unique'vS—matrix,rbut it is almosf
1mposs1b1§§o prove this in terms of the standard language.

‘>In the non-standard theory, however, it is easy to show
[Theorem 4] For a given renormalized Hamiltqnian'there exists a
wave oﬁératqrf (T, -T) which gives the S-matrix almost uniquely.

Proof: The coefficients &gy and 7;7,in

- o0
2 2m . (%]
Sm™ = 2 Ham _— 2m
Nn=1 ? / 89 (? ,nz;, ,}710” j ]

.are determined by the renormalization condition step by step. Be-
S il o ’ . ) —
cause of the absolute convergence of the unrenormalized pertur-
‘bation series, those series of Snf'and,éz? must be absolutely

_convergent. It suffices then to consider the terms of the form

(’”')F/—: ;- '/jﬁ aty [&x o [oop

X 38 (&nnjtm(a?)ﬂ (?(xt))g—' ... (So[xp))g
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where p =4+ m+ n and q; ‘takes the values 2 and k. Since

g(mz' 82 ¢ ¥R and G of *LQ(G) is compact, we can estimate
w
g [ o ()t I 219171 2 Cprdadasy | A R

o, p, Y=
| om [ x (@) || £ j8m*) |2 £ = B ¢ *R

A

|89 fobn (qun* | £ 1631

e :C"‘FOV 43p5r|= C €K

We conclude, therefore, that |
| [ ar - /6Pldipjd3x,-'-fd3xp

x gt (6m* )" (89) (%q))g' ?Cip))g'b ”

}
S 5 RT)P AtB™

The right hand side of this inequality vanishes as “p.e>oo .
After the renormalization the matrix elements
(';PA, U(T,-T)‘Bb)) ( R<TE™R, %'%671\0) present the embodiments of
the S-matrix elements. Therefore we can conclude that we have
proved the absolute convergence of the S-matrix and, at the
same time, its uniqueness,
We make a few remarks at this point.
First we note that we have proved the absolute convergence
of the perturbation expansion only in the non-standard model, and

it does not necessarily mean the convergence of the original
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series in the standard sense. It is true that for Y¢1é,${ the
n-th terms of the original and the embodiment series are in the
relation ‘= , but it is not sure by the argument given’above,
whther the infinite accumulation of infinitesimal errors remain
infinitesimal. h

| The seéond remark, which may be~éasily”overlooked, is the
following. Most of the reldations established in®*§3 are relations
in the sense ‘= , but this is not the congruence relation in the
non-standard calculations. Hence we must, first of all, restrict
the integration region of (4. 45 to a certain standard compact
region; and also tﬁe time interval as 2T &R . If we use' the
relation = instead of the true equality, what we ¢an conclude

.

is the following: 1let [L Dbe a four-dimensional square
D= fx| LTeR, M SLER, (=1,2,3}

and let f]l& %Lepg,be a truely increasing sequence of such
squares. Then for a given arbitrary positive number £ ¢ |R there

exists J € N such that
[ D%, - 05, @) | < & for V(Y ST

where g‘;(ﬂ)‘:‘i (%, U(-?('I',"T) lfb) with z_-Pa, g_’bé 7/}; ,V = L3,‘
is the n-th term of the perturbation\expansion of‘(QQ)E}5{IJFHEQ.
In that case there exists at least one.I{ , and therefore‘inhume—
rably maﬁy N s ( ]R“ < _()_ € (*Rf")', fbr which Uég)(,ﬂ) is the
embodiment of Ségz It is worthwhile to notice that it i§ not
sure whether the statement ébove is true or not for'arbitrary

’<Q e (¥
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With these remafks in mind we can write down the embodiment

of the perturbation expansion of the S-matrix

y

; Q
Tasl0) = §@) T 3 37 U0

(4. 5)

o0
— LS, n (m) m)
o o, b) y=) 3 ( S st T & ad )

*
where Ség) is the copy ) of the corresponding renormalized term

in the standard theory for n &€ N , and 8“21.1s infinitesimal

for n ¢ N

5. Discussion

With the help of the non-standard Hamilton model we success-
fully gave the mathematically rigorous foundation for the renor-
malization procedﬁre

The series (4. 5) for the S-matrix convefges absolutely‘at
least in the non—standard sense, and it is alm&st uniquely deter—
mined by the given Hamiltonian which is rigorously defined as a
self-adjoint operator. The S-matrix, on the other hand, does'not
uniquely determine the Hamilténian.* The coliegtion of those non-
standard models which realigse the given S-matrix forms an equi- -
valentclass. Any elements of the equivalent class are physically
equivalent with eéch oéher, that is, those non-standard models
reproduce the almost same S-matrix.

It is desirable from the practical point of view that the

convergence of the series is rapid enough. The series of the

¥) See Definition 1 in the Mathematical Appendix.
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standard gﬂ theory, on the other hand, was polnted out not to
be convergent5) lf it 1is true; the series corresponding to
(4. 5) should not converge in the standard sense in the 9ﬁ theory.
This means that theraccumulation of the infinitesimal errors '
becomes infinitely large, making the definition (4. 5) of the
S—matrix meaningless.v

There seems to be no definite conclusions up to now on the
convergence of the series in other renormallzable theories such .
as the gﬂltheory or quantum electrodynamlcs. As for quantum
electrodynamics the experlments strongly suggest that the con-
vergence of the series is good. If the theory would predlct that
it does not cohverge in the standard sense, we should be confronped
with the puzzllng problem why the first few terms agree with

experlments so miraculously
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Mathematical Appendix

[Definition 1] When a object f of standard mathematics is

given, we define the copy of f 1in non-standard mathematics as

gy by ) L G fa, )2 0 b [ 2

Example: the copy of 1 ¢ R 1is *1 €& *R which is generated
by (1, 1, ...) €& RN . We use a same symbol fior the copy and"
the original.

[Definition 2] The non-standard object, which is in the relation
‘=, to the copy of f, is called the embodiment of f. The wordihg
is sometimes used in an .extended meaning. Example: (1, 2, 3, ...)
is the embodiment of the infinity in standard mathematics.
[Definition 3] The space (9’)an , N ¢IN 1is defined as the em-
bodiment of standard Schwartz's space (y)R”. (9}2‘" is the
vector space of complex—valued functi;)ns which map (*/R)n into

€ : we can differentiate f(x) any times, and when‘ ) =

1%] + ¢ +[%,] increases greater than any other standard numbers, |

f(x) and its derivatives decreases faster than any power of

1/1x1 . In other words:

For any o= (&, -+ dm) and any 3 = (-{5, "'pm),(di)/}é’G/N)
we have Ix‘*Dp'j—(ix) l ::—, O Tfor all x, R <|x|¢*R .

A
The topology of (y’)an is defined by the semi-norms

Po-tf) = max max aup | 24DP fro| ¢ R
4] £ 0 |{>|_§_¢ xé(*mw ,
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where 6 = 0, 1,2, ... € N . Thﬁs the space (5>)this

invariant under standard operations defined in (9)Rw , SO that

the equivaleneé relation ‘=, becomes a congruence relation in
(9’)3" .

[Definition 4] We define (5/62ﬂ as the embodiment of the tem-

pered distribution space (j/oﬁph It is the dual space of (S;QRm .

‘Example: the function (cu/zn)m/2 &CP(—%)(‘I,Z"P ot xg )) is

an element of (onnand is an embodiment of &) € (y/)kn.

[Remark] It is necessary not to confuse(%l(‘?l) and (*ff)) (*¥),

The latter are the non-standard extensions of (%), (Y) .

Example: (wﬂn)’/zwp(—gf) is an element of (¥ %)r but not of (&)R .
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