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Generalized Uniqﬁe Continuation Property for Hyperfunctions

with Real Analytic Parameters

by Akira KANEKO

University of Tokyo, College of General Education

.In these notes we give some elementary lemmas on hyper-
functions, eepecially on those with real analytic parameters.
These are expressed in terms of local operators with constant
coefficients. As for the local operators we refer the reader
to [ 1], of which some results are cited here.

Lemma 1 Let ué€B,(R") be a hyperfunction with compact
support. Then supp u $ O 1if and only if for every local ope-

rator J(D) with constant coefficients we have

. ~ ~-E1E1
lim S J(E)u(f)e ds = 0.
€30 JR" g8 5

Here ng) = Flul] = Seijrgu(x)dx denotes the Fourier trans-

form, and l§l = (§§+...+§§)1/2, X-g= xl§1+...+xn§n.

Proof Necessity If supp uEPO, then supp J(D)u$0 for

every J(D). Recall that E(x,8) = F-2e 2'5") is the Poisson

kernel for the boundary value problem:



7 (AX+ %2//622>E(Xa£) = 0,

\ E(x,0) =»S(x).

When £40, E(x,%) converges to zero uniformly for x on some
complex neighborhood of any real compact set K which does not
contain the origin. Taking supp J(D)u as the set K, we

have

lim <E(x,£), J(D)u(x)> = 0,

€30 :
where < , > denotes the pairing between A(K) and B[K), and
also the one between A(Rn>f\Q and B,(R®) for £>0, Q deno-

ting the space of Fourier hyperfunctions. Hence by the Parseval

formula we conclude that

. —E1EN o\
éig S;n e El8 J(EE)aE f 0.

Sufficiency By the Parseval formula we have

S0 7@ Blag - F O 5 0)

= J(D)(u(x) *Ex, e |, o
Put uk(x) = u(x)%E(x,1/k). Our assumétion implies that {uk(xj}

is a converging sequence in AJ({O}). Here A;(K) denotes the
space of real analytic functions f on K endowed with the
seminorms | f = sup 1J(D)f(x)1, J running over all the

. x€K
local operators with constant coefficients (see [ 1]}, Defini-
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tion 2.1). Thus it converges uniformly on some complex neigh-
borhood of the origin ([ 1 ), Proposition 2.4). Thus the 1i-
’mit function is real analjtic in a neighborhood of the origin.
On the other hand, u(x) is the boundary value of u(x,£) =
u(x) ¥E(x,£) with respect to the operator £>x+'32/‘352.
Since the operation of taking the boundary value to a non-cha-
racteristic surface is of local character (see [ 31), we
conclude that u(x) agrees with the above limit in that nei-
ghhorhood of the origin. Thus u(x) itself is analytic there.
Finally letting J(D) run all the finite order derivatives we
conclude that (’B//bxfxu(o) = 0 for any &, hence supp u
$ 0. q.e;d.

We_can slightly rewrite the result:

Lemma 2 Let ué€&B.(R"). Then supp u(\{xn= O} =g if
and only if for every local operator J(D) with constant coef-

ficients and for any fixed x'éan'l, the finite 1limit

£ 10 SRn' [T CALI I

exists.

Proof From the proof of Lemma 1, we see that u(x) is;
real analytic in some neighborhood of every point (x',O)é}Rn.
Since wu(x) has compact support, we conelude that supp u
r\{xn= 0} = 4 due to the uniqueness of analytic continuation.

g.e.d.
3
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A more refined form of this lemma will be effectively em-
pioyed in the forthcoming paper for the study of linear excep-
tional sets of real analytic solutions of partial differential
equations with constant coefficients.

The last one.concerns the unique’continuation property for
the real‘analytic parameters. We say that u(x) coﬁtains X,
as a real analytic parameter if S.S.ﬁ (the singular spectrum
of u(x)) does not contain +idx = on each fibre of iséﬁn.

In this case we can restrict the hyperfunction wu(x) to the
hyperplane {xnn O}. For the details see [ 4 ] or (5 1.

Lemmé %5 Let u be a hyperfunction defined §n a cylindri-~

cal doﬁain U,XFI, where UC Rg’.'l is open and _ICRg“cf is an

n
open interval containing zero. Assume that u contains x as

n
a real analytic parameter and for every local operator J(D)
with constant coefficients it satisfies
J(D)u(x)'xn=o = 0.
Then u = O on a neighborhood of UX{O}.

Sketch of Proof Without loss of generality we can assume

that U contains the origin of RﬁTl, Let XCU be a compact
o]
set whose interior K contains the origin of Rﬁ?l, By the

flabbiness of the sheaves C and Q, and by the vanishing of

cohomology groups of the sheaf P, of rapidly decreasing real
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analytic functions, we can find a Fourier hyperfunction v(x)

on Dn-l'XI, which contains x_ as a real analytic parameter,

n

is real analytic and rapidly decreasing outside KxI, and on

)
KxI differs from u(x) by a real analytic function f(x). (

rFor such argument see ([ 2 )J.) We are going to prove that v
is, hence u is real analytic in a neighborhood of the origin.
Since v contains X, as a real analytic parameter, the func-
tions

ve(x) = v(x) ¥ Fle e

are real analytic in RiTlX'I in the whole variables, where
%' denotes the convolution with respect to x'. Now for any

local operator J(D) with constant coefficients we have
i - —- s
J(D)ve(0) = {@DIV(R) |y o) ¥ FHle T ENY |, o
n ,

Here by the assumption on. u(x), J(D)v(x)‘xn=o is real analy-
tic outside K, and rapidly decreasing at infinity. Recalling
that F"l[e—g'g.'J converges uniformly to zero on a complex
neighborhood of K and converges to S(X') in p', we con-
clude, as in the proof of Lemma 1 .but with more delicacy, that
J(D)vg(o) converges to a finite value when & —> O. We pro-

ceed in the same way as in Lemma 1. 'Again employing (11,

Proposition 2.4 (after replacing § by 1/k), and considering

e A&
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that the ,;Lin}vit takes place ‘i,n the local sense, we .conclude
" that vwv(x) is, hence u(x) is analytic inksome neighborhood
~of the origin, hence wu(x) is identically equal tq,,:geno_, there.
~ Since the origin can be replaced by any other poipté of

~Ux{10}, we have proved u £ 0 in a neighborhood of Ux{0}.

~q.e.d.
Remark If supp uCKXI, ‘where KCU is comi)act, then
we can easily prove thet uw =0 in UXI if and only if>
(fa/’axn)kulxnzo =0 for k =0,1,2,.... On the other hand,
for a general hyperfunction the 1atter condition does not imply
u =0, T:he'following ié a famous counter-example by .M. Sato
, (unpu‘blished): Let Pn(z') be the polynomials in one variable
which approximate 1/z vlocally uniformly outside the nsgative
real axis; namely there exists a sequence of compact subsets
KlCKEC ooy \,./Kn = C~N]-w, O], and a dec.;ceasing sequence of

positive numbers Sn such that

1 .
I Z —Pn(z) I < En; if =z eKn.

Further writing 811 = dist(0, Kn) we can assume that 2./ gn

A ®
~—> 0 if n—>wm. Then F(z,t) = ). Pn(z)tn defines a
. n=0 o

t

holomorphic function in (C~J-m, 0)) x{t€C; 1ti<l}. The
associated hyperfunction f£(x,t) = F(x+i0, t+i0) - F(x+i0O, t+i0)

contains +t as a holomorphic parameter; every finite derivative

6
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vanishes when t = O; but supp f(x,t) contains the origin.
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